
Lecture 05:
Advanced Concurrency Control

CS343 – Operating Systems

Branden Ghena – Fall 2020

Some slides borrowed from:
Stephen Tarzia (Northwestern), and Shivaram Venkataraman (Wisconsin)

Today’s Goals

• Understand how we can apply locks to gain correctness and
maintain performance
• Counter

• Data Structures

• Signaling between threads to enforce ordering
• Condition Variables

• Semaphores

2

Review: Locks/Mutexes

• Simple mutual exclusion primitive

• Init(), Acquire(), Release()

• Implementations trade complexity, fairness, and performance
• Spinlocks

• Ticket locks

• Yielding locks

• Queueing locks

3

4

• Applying Locks

• Concurrent Data Structures

• Ordering with Condition Variables

• Semaphores

Outline

5

• Applying Locks

• Concurrent Data Structures

• Ordering with Condition Variables

• Semaphores

Outline

Review: Need to enforce mutual exclusion on critical sections

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e9;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter++;

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

return 0;

}

6

Naively locked counter example

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

pthread_mutex_lock(&lock);

counter++;

pthread_mutex_unlock(&lock);

}

printf("%s: done\n", (char*)arg);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

pthread_mutex_init(&lock, 0);

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

return 0;

}

7

Problem: locking overhead decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds (Correct…)

8

• Formerly loop contained 3 instructions (mov, add, mov)

• Now it has
• Two function calls
• Multiple instructions inside of those
• Possibly even interaction with the OS…
• 3 instructions -> 60 instructions

Simple mutual exclusion: one big lock

• Simple solution “one big lock”
• Find all the function calls that interact with shared memory

• Lock at the start of each function call and unlock at the end

• Essentially, no concurrent access
• Correct but poor performance

• If you’ve forgotten all of this years from now, “one big lock” will still work

9

Counter example with big lock technique

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

pthread_mutex_lock(&lock);

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

counter++;

}

printf("%s: done\n", (char*)arg);

pthread_mutex_unlock(&lock);

return NULL;

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

pthread_mutex_init(&lock, 0);

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

return 0;

}

10

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multithreaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

11

• Big lock technique basically returned us to single-threaded
execution time (and single-threaded implementation)

• Why is the no-lock multithreaded version so slow?
• Not 100% certain
• Likely something to do with hardware memory/cache consistency

Reducing lock overhead

• We want to enable parallelism, but deal with less lock overhead
• Need to increase the amount of work done when not locked

• Goal: lots of parallel work per lock/unlock event

• “Sloppy” updates to global state
• Keep local state that is operated on

• Occasionally synchronize global state with current local state

• Counter example
• Keep a local counter for each thread (not shared memory)

• Add local counter to global counter periodically

12

Sloppy counter example

#include <stdio.h>

#include <pthread.h>

static volatile int counter = 0;

static const int LOOPS = 1e9;

static pthread_mutex_t lock;

void* mythread(void* arg) {

int sloppy_count = 0;

printf("%s: begin\n", (char*)arg);

for (int i=0; i<LOOPS; i++) {

sloppy_count++;

if (i%1000 == 0) {

pthread_mutex_lock(&lock);

counter += sloppy_count;

pthread_mutex_unlock(&lock);

sloppy_count = 0;

}

}

int main(int argc, char* argv[]) {

pthread_t p1, p2;

pthread_mutex_init(&lock, 0);

printf("main: begin (counter = %d)\n", counter);

pthread_create(&p1, NULL, mythread, "A");

pthread_create(&p2, NULL, mythread, "B");

// wait for threads to finish

pthread_join(p1, NULL);

pthread_join(p2, NULL);

printf("main: done with both (counter = %d, goal

was %d)\n", counter, 2*LOOPS);

return 0;

}

13

Offscreen Tail condition: don’t forget to update
“counter” again when the for loop is complete!

Problem: locking decreases performance

Single-threaded counter: 3.850 seconds

Multi-threaded no-lock counter: 4.700 seconds (Broken!)

Naïve-locked counter: 80.000 seconds

Big lock counter: 3.895 seconds

Sloppy lock (synchronize every 100): 2.150 seconds

Sloppy lock (synchronize every 10000): 1.472 seconds

Sloppy lock (synchronize every 1000000):
Sloppy lock (synchronize every 1000000000):

1.478 seconds
1.500 seconds

14

• Optimal for this counter example will be synchronizing once, when
entirely finished with the local sum

15

• Applying Locks

• Concurrent Data Structures

• Ordering with Condition Variables

• Semaphores

Outline

Thread-safe data structures

• “Thread safe” – works even if used by multiple threads concurrently
• Can apply to various libraries, functions, and data structures

• Simple data structures implementations are usually not thread safe
• Some global state needs to be shared among all threads

• Need to protect critical sections

• Challenge: multiple function calls each access same shared structure
• Need to identify the critical section in each and lock it with shared lock

16

Linked List

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

}

17

Concurrent Linked List – Big lock approach

void List_Insert(list_t *L, int key) {

pthread_mutex_lock(&L->lock);

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

pthread_mutex_unlock(&L->lock);

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

pthread_mutex_unlock(&L->lock);

return; // success

}

18

Most important part
of this example.
Don’t forget to unlock
if returning early.

• Much better than counter
example, because we are
only serializing the list itself.
Hopefully the rest of the
code can run concurrently.

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

}

19

Check your understanding:

Where is the critical section here?

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

}

20

Check your understanding:

Where is the critical section here?

What about malloc? Is that safe to use??

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

new->next = L->head;

L->head = new;

return; // success

}

21

• Thread-safe functions
• Capable of being called concurrently

and still functioning correctly
• (Because they use locks!)

• How would we know if malloc is thread-
safe?

Must check the library documentation to determine thread safety

• https://man7.org/linux/man-pages/man3/malloc.3.html

• Malloc (and free) is indeed thread-safe

• If it wasn’t, we would have to consider it another shared resource
that needs to be locked

22

https://man7.org/linux/man-pages/man3/malloc.3.html

Better Concurrent Linked List – Only lock critical section

void List_Insert(list_t *L, int key) {

node_t *new = malloc(sizeof(node_t));

if (new == NULL) {

perror("malloc");

return; // fail

}

new->key = key;

pthread_mutex_lock(&L->lock);

new->next = L->head;

L->head = new;

pthread_mutex_unlock(&L->lock);

return; // success

}

23

• Now new node is created
locally in parallel

• Only actual access to the
linked list is serialized

Concurrent Queue

• Separate head & tail locks

• Allows concurrent add & remove
• Up to 2 threads can access without waiting

24

Concurrent Queue

• “tailLock” controls adding elements

• Looks similar to ListInsert

25

Concurrent Queue

• Head lock controls removing elements
from front

• Needs to lock almost entire function

26

Concurrent Hash Table

• Each bucket is implemented with a
Concurrent List
• We don’t have to define any locks!

• (Locks are in the lists)

• A thread can access a bucket
without blocking other threads’
access to other buckets.

• Hash tables are ideal for
concurrency.
• Hash (bucket id) can be calculated

without accessing a shared resource.

• Distributed hash tables are used
for huge NoSQL databases.

27

28

• Applying Locks

• Concurrent Data Structures

• Ordering with Condition Variables

• Semaphores

Outline

Requirements for sensible concurrency

• Mutual exclusion
• Prevents corruption of data manipulated in critical sections

• Atomic instructions → Locks → Concurrent data structures

• Ordering (B runs after A)
• By default, concurrency leads to a lack of control over ordering

• We can use mutex’d variables to control ordering, but it’s inefficient:
• while(!myTurn) sleep(1);

• We would like cooperating threads to be able to signal each other.

• Park/unpark and futex could be used solve this problem

• But we want a higher-level abstraction

Barriers for all-or-nothing synchronization

• Barriers create synchronization points in the program
• All threads must reach barrier before any thread continues

• pthread_barrier_init(barrier_t)

• pthread_barrier_wait(barrier_t)

• Use case: neural network processing
• Spawn a pool of threads
• Each thread handles a portion of the input data
• Collect results from all threads at the end of the layer
• Distribute results to appropriate threads for next layer

30

Basic Signaling with Condition Variable (condvar)

• Queue of waiting threads
• Combine with a flag and a mutex to synchronize threads

• wait(condvar_t, lock_t)
• Lock must be held when wait() is called

• Puts the caller to sleep and releases lock (atomically)

• When awoken, reacquires lock before returning

• signal(condvar_t)
• Wake a single waiting thread (if any are waiting)

• Do nothing if there are no waiting threads

31

Waiting for a thread to finish

pthread_t p1, p2;

// create child threads
pthread_create(&p1, NULL, mythread, "A");
pthread_create(&p2, NULL, mythread, "B");

...

// join waits for the child threads to finish
thr_join(p1, NULL);
thr_join(p2, NULL);

return 0; How to implement
join?

32

CV for child wait

• Must use mutex to protect
“done” flag and condvar

• Parent calls thr_join()
• wait()’s until done==1

• Child calls thr_exit()
• sets done to 1

• calls signal()

• unlocks mutex

33

Buggy attempts to wait for a child, no flag
P
a
re

n
t

C
h
ild

1) Without done variable, the child could run first and signal before
the parent starts waiting for the child.

Correct Code

34

Buggy attempts to wait for a child, no mutex
P
a
re

n
t

 C

h
ild

2) Without a lock, the parent could see done==0,
then the child could finish and signal,
then the parent would start waiting (after missing the signal).

Correct Code

35

Spurious (fake) wakeups

• Pthreads allows wakeup to return not
just when a signaled, but also when a
timer expires or for no reason at
all!

• Spurious wakeups were included in
the specification because they may
allow some implementations be more
efficient.

• There is no guarantee that the
condition you’ve been waiting for is
true when you are awoken

• So, we must also use a “predicate
loop.” (while, not if)

36

Another Example: Produce/Consumer Problem

• We have multiple producers and multiple consumers that
communicate with a shared queue (FIFO buffer).
• Concurrent queue allows work to happen asynchronously.

• Buffer has finite size (does not dynamically expand).

• Two operations:
• Put, which should block (wait) if the buffer is full.

• Get, which should block (wait) if the buffer is empty.

• This is more complex than a (linked-list-based) concurrent queue
because of the finite size and waiting.

• Example: request queue in a multi-threaded web server.

Managing the buffer

• A simple implementation of a circular
buffer that stores data in a fixed-size
array.

• fill is the index of the tail

• use is the index of the head

• count = (fill – use) % MAX

This simple implementation assumes:

• Concurrency is managed elsewhere

• It will overwrite data if we try to put
more than MAX elements.

Managing the concurrency

• Always acquire mutex
• Must use same mutex in both

functions

• Use two condvars

• Producer waits for an empty if the
buffer is full
• Consumer signals empty after get

• Consumer waits for fill if the buffer
is empty
• Producer signals fill after put

• while loops re-check count
condition after breaking out of wait,
to handle spurious wakeups.

Broadcast makes more complex conditions possible

• Recall that signal wakes one waiting thread (FIFO)

• But there are times when threads are not all equivalent

• The signal may not be serviceable by any of the threads

• For example, consider memory allocation/free requests
• An allocation can only be serviced by free of >= size

• pthread_cond_broadcast wakes all threads

• This approach may be inefficient, but it may be necessary to
ensure progress.

Rules of thumb

• Shared state determines if condition is true or not

• Check the state in a while loop before waiting on condvar

• Use a mutex to protect:
• the shared state on which condition is based, and

• operations on the condvar

• Remember to acquire the mutex before calling cond_signal() and
cond_broadcast()

• Use different condvars for different conditions

• Sometimes, cond_broadcast() helps if you can’t find an elegant
solution using cond_signal()

42

• Applying Locks

• Concurrent Data Structures

• Ordering with Condition Variables

• Semaphores

Outline

Generalizing Synchronization

• Condvars have no state or lock, just a waiting queue
• The rest is handled by the programmer

• Semaphores are a generalization of condvars and locks
• Includes internal (locked) state

• A little harder to understand and use, but can do everything

43

Semaphores (by Edsger Dijkstra, 1965)

• Keeps an internal integer value that determines
what happens to a calling thread

• Init(val)
• Set the initial internal value
• Value cannot otherwise be directly modified

• Up/Signal/Post/V() (from Dutch verhogen “increase”)
• Increase the value. If there is a waiting thread, wake one.

• Down/Wait/Test/P() (from Dutch proberen “to try”)
• Decrease the value. Wait if the value is negative.

44

Semaphores vs Condition Variables

• Semaphores

• Up/Post: increase value and
wake one waiting thread

• Down/Wait: decrease value
and wait if it’s negative

• Condition Variables

• Signal: wake one waiting thread

• Wait: wait

• Compared to CVs, Semaphores add an integer value that controls
when waiting is necessary

• Value counts the quantity of a shared resource currently available
• Up makes a resource available, down reserves a resource
• Negative value -X means that X threads are waiting for the resource

Check your understanding

• How would we build a mutex out of a semaphore?
typdef struct {

sem_t sem;

} lock_t;

init(lock_t* lock){

}

acquire(lock_t* lock) {

}

release(lock_t* lock) {

}

46

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

value >= 0
sem_post(sem_t*): Increment value then

wake a single waiter

Check your understanding

• How would we build a mutex out of a semaphore?
typdef struct {

sem_t sem;

} lock_t;

init(lock_t* lock){
sem_init(&(lock->sem), 1);

}

acquire(lock_t* lock) {
sem_wait(&(lock->sem));

}

release(lock_t* lock) {
sem_post(&(lock->sem));

}

47

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait until

value >= 0
sem_post(sem_t*): Increment value then

wake a single waiter

Implementing a lock with a semaphore

• Choose an appropriate initial value for the semaphore

• To implement a Lock:
• Initialize to 1 (access to the critical section is the one shared resource)

• Lock → Down: (decreases the value and waits if negative)

• Will decrease the value to 0 if it lock is not already taken

• Will decrease the value to -1 and wait if the lock is taken (value was 0)

• Unlock → Up: (increases the value and wakes one waiting thread)

• If value was 0, then no thread was waiting, and no thread is woken

• If value was -1, then one thread was waiting, and it is woken

• If value was -x, then x threads are waiting, one is woken, value
becomes -(x-1).

• If value is already 1, Up should not be called. (Unlock before lock?!)

Semaphores reduce effort for numerical conditions
P
a
re

n
t

C
h
ild

• Note: sem_init(sem_t sem, int pshared, int value);

• Want parent to wait immediately so initialize to 0
• If child thread finishes first, semaphore increments to 1

Condition Variable

49

Semaphore

void thr_exit() {
sem_post(&s);

}

void thr_join() {
sem_wait(&s);

}

sem_init(&s, 0, 0);

Readers-Writers Problem

• Some resources don’t need strict mutual exclusion, especially if
they have many read-only accesses. (eg., a linked list)

• Any number of readers can be active simultaneously, but

• Writes must be mutually exclusive, and cannot happen during read

• API:
• acquire_read_lock(), release_read_lock()

• acquire_write_lock(), release_write_lock()

Reader-writer Lock

• “lock” semaphore used as
a mutex

Reader-writer Lock

• “writelock” must be held
during read to block writes
or during write to block
reads.

• During reads
• Number of active readers is

counted.

• First/last reader handles
acquiring/releasing
writelock.

Sensible Concurrency

• Mutual Exclusion
• Locks (mutexes)

• Built with atomic instructions

• Ordering
• Barriers

• Condition Variables

• Semaphores

53

54

• Applying Locks

• Concurrent Data Structures

• Ordering with Condition Variables

• Semaphores

Outline

