
Lecture 03: Concurrency
Sources and Challenges

CS343 – Operating Systems

Branden Ghena – Fall 2020

Some slides borrowed from:
Stephen Tarzia (Northwestern), and UC Berkeley CS61C and CS162

Today’s Goals

• Describe where and why concurrency and parallelism are involved
in computing.

• Be disappointed by performance limits on concurrency.

• Understand purpose and challenges of interrupts and signals.

• Introduce concept of data races as a concurrency problem.

2

Parallelism versus Concurrency Two processes A and B

3

BA

BA

B

A

B

A
OR

time

time

time time

Serial execution

Parallel execution

Concurrent execution

Parallelism versus Concurrency

• Parallelism
• Two things happen strictly simultaneously

• Concurrency
• More general term

• Two things happen in the same time window

• Could be simultaneous, could be interleaved

• Concurrent execution occurs whenever two processes are both active

4

B

A
OR

time time

OR

time

5

• Performance through concurrency

• Concurrency introduced by the processor

• Amdahl’s Law – limits on performance

• Interrupts and Signals

• A problem with concurrency: data races

Outline

6

• Performance through concurrency

• Concurrency introduced by the processor

• Amdahl’s Law – limits on performance

• Interrupts and Signals

• A problem with concurrency: data races

Outline

Moore’s Law

“Every two years,
the number of
transistors on a chip
of a fixed size
doubles”

7

Processors kept getting faster too

8

Denard Scaling

• Moore’s Law corollary: As transistors get smaller, the power
density stays the same.
• If Moore’s Law holds true, we also get a doubling of “performance per

watt” every two years!
• Manufacturers could raise the clock frequency between generations

without more power consumption

9

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years time or you’re
fired.

What do you do?

10

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years time or you’re
fired.

What do you do?

Take a vacation

11

Then they stopped getting faster

12

~2006: Leakage
current becomes
significant

Now smaller
transistors don’t
mean lower power

So… now what?

In summary:

• We can’t make transistors faster due to current leakage,

• and because of that, we can’t reliably make performance better by
waiting for clock speeds to increase,

• but we have literally billions of transistors available to use.

How do we continue to get better performing computation?

13

Exploit parallelism!

14

In reality the cause-and-effect
of parallelism isn’t so simple.

Key points:
• we can’t just increase

frequency
• we do have a lot of

transistors available
• parallelism is one

approach to improve
performance again

15

• Performance through concurrency

• Concurrency introduced by the processor

• Amdahl’s Law – limits on performance

• Interrupts and Signals

• A problem with concurrency: data races

Outline

Model of a processor

16

CPU

Instructions,
Registers,
Memory

Updated
Registers
and
Memory

Instruction
Fetch

Instruction
Decode

Execute Memory Writeback

CPU

But instructions don’t always have to be executed in order

movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
addq %rcx, %rbx

We can apply the multiprogramming approach of executing this
addq while the movq is waiting on memory.

17

Doesn’t have to go after the
movq instructions because it
uses different registers

Out-of-order machines

Fetch many
instructions at
once!

Read register file,
handle data
dependencies with
register renaming

Reorder instructions
to make best use of
CPU Commit, or

“write back”
data to memory
and regfile in
the order the
programmer
expects

Generally: looks for independent
instructions it can execute early

Out-of-order processors obey normal execution results

• Initial thoughts on out-of-order execution
• 😱

• The processor could be executing my program in order it feels like?!!

• How do I possibly reason about anything?

• Answer: the processor promises to have the same results as if
things were done in the normal order.

19

CPU

Instructions,
Registers,
Memory

Updated
Registers
and
Memory

Multiple processes might rely on memory ordering

• The processor can’t account for multiple processes though

• If memory results are shared by two threads, the processor might
mess something up for you.

• What will Thread 1 print?

20

while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

Multiple processes might rely on memory ordering

• The processor can’t account for multiple processes though

• If memory results are shared by two threads, the processor might
mess something up for you.

• What will Thread 1 print? Could be 42. Could be 0.

21

while (f == 0);
printf(“%d\n”, x);

x = 42;
f = 1;

f = 0;
x = 0;
// split into threads

Thread 1 Thread 2

This can be
addressed with
memory barriers

How else do processors employ concurrency?

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

22

How else do processors employ concurrency?

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

23

Multiprocessor Systems (in pictures)

24

Processor 0

Control

Datapath
PC

Registers

(ALU)

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers

(ALU)

Processor 1
Memory
Accesses

Multiprocessor Systems (in words)

• A computer system with at least 2 processors or cores
• Each core has its own PC and registers
• Each core executes independent instruction streams
• Processors share the same system memory

• But use different parts of it
• Communication possible through loads and stores to a common location

• Deliver high throughput for independent jobs via task-level
parallelism

25

Multiprocessor Example

Run Chrome and Minecraft simultaneously
• Each are separate programs
• Each has a different memory space
• Each can run on a separate core

Don’t even need to communicate...

Note: OS can fake this by interleaving processes,
but hardware can make it actually simultaneous

26

How else do processors employ concurrency?

Goal: Make computer faster by performing multiple tasks

Solutions:

1. Use multiple cores to run multiple tasks in parallel

2. Run multiple tasks on a single core concurrently

27

Multithreading processors

Basic idea: Processor resources are expensive and should not
be left idle

Long memory latency to memory on cache miss?
• Hardware switches threads to bring in other useful work while

waiting for cache miss

• Cost of thread context switch must be much less than cache miss
latency

• Switching threads is less expensive than processes because they
share memory

28

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

• Two copies of PC and Registers inside
processor hardware
• Looks like two processors to software
(hardware thread 0, hardware thread 1)
• Control logic decides which thread to
execute an instruction from next

29

Hardware support for multithreading

Multithreading versus Multicore

• Multithreading => Better utilization
• ≈5% more hardware for ≈1.3x better performance?

• Gets to share ALUs, caches, memory controller

• Multicore => Duplicate processors
• ≈50% more hardware for ≈2x better performance?

• Share some caches (L2 cache, L3 cache), memory controller

• Modern machines do both
• multiple cores with multiple threads per core

30

My desktop computer

31

4 total cores
Each capable of 2 threads

≈ 8 processors

Quad core processor

• One thread per core

• 3-way superscalar pipeline
• L1 Cache

• 32 KiB 2-way set associative data cache
• 48 KiB 3-way set associative instruction cache
• Per core

• L2 Cache
• 512 KiB to 4 MiB (shared)

• RAM 1-4 GB

$35
Literally all computers
are doing parallelism
these days

Raspberry Pi 4

32

Back up to the OS perspective

• Modern operating systems must manage concurrency
• Both parallel operation and interleaving operations

• Concurrency is worth it
• Performance gains are the reason

33

34

• Performance through concurrency

• Concurrency introduced by the processor

• Amdahl’s Law – limits on performance

• Interrupts and Signals

• A problem with concurrency: data races

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

35

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

36

Imagine a program that takes 100 seconds to run

• 95 seconds in the blue part
• 5 seconds in the green part

95 s 5 s

Speedup Example

37

95 s 5 s

Speedup from improvements

38

Speedup with
Improvement

=

Execution time without
improvement

Execution time with
improvement

5 s -> 2.5 s: Speedup = 100/97.5 = 1.026

5 s -> 1 s: Speedup = 100/96 = 1.042

5 s -> 0.001s: Speedup = 100/95.001 = 1.053

The impact of a performance improvement is relative
to the importance of the part being improved!

Speedup =

F = Fraction of execution time speed up
S = Scale of improvement

(1 - F) + F
SNon-speed-up part Speed-up part

1

1
0.75 + 0.25

2

1
0.75 + 0.125

= = 1.14

Example: 2x improvement to 25% of the program

Equivalent to
prior equationAmdahl’s Law

39

Parallel speedup example Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

40

• Consider an improvement which runs 20 times faster but is only
usable 15% of the time

Speedup with
improvement

=
1

0.85 + (0.15/20) = 1.166

Speedup with
improvement

=
1

0.75 + (0.25/20) = 1.311

• What if it’s usable 25% of the time?

Nowhere near
20x speedup!

Amdahl’s (heartbreaking) Law (in pictures)

• The amount of speedup that can be achieved through parallelism is
limited by the non-parallel portion of your program!

41

Parallel
portion

Serial
portion

Time

Number of Processors
1 2 3 4 5

Sp
e

e
d

u
p

Number of Processors

Amdahl’s (heartbreaking) Law (in words)

• Amdahl’s Law tells us that to achieve linear speedup with more
processors:

• none of the original computation can be serial (non-parallelizable)

• To get a speedup of 90 from 100 processors, the percentage of
the original program that could be scalar would have to be 0.1%
or less

Speedup = 1/(.001 + .999/100) = 90.99

42

Check your understanding

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?

43

Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Check your understanding

• Suppose a program spends 50% of its time in a square root routine.

• How much must you speed up square root to make the program run 2x faster?

44

Speedup with
improvement

=
1

1 − 𝐹 + (𝐹/𝑆)

10(A)

20(B)

100(C)

None of the above(D)

50% 50%

Speedup = 1 / [(1 - F) + (F/S)]

2 = 1 / [(1 - 0.5) + (0.5/S)]

S = 0.5 / ((1/2) – 0.5) = ∞

The square root would need to decrease
to nothing before you got 2x speedup

45

• Performance through concurrency

• Concurrency introduced by the processor

• Amdahl’s Law – limits on performance

• Interrupts and Signals

• A problem with concurrency: data races

Outline

Where else does concurrency come from?

• Processors introduce it for performance reasons by running
multiple processes and threads

• Interactions with the outside world introduce it because events
occur whenever they feel like it
• Network request arriving
• User presses a key
• Motion sensor triggers

• Also, we need some way to deal with errors the occur when
executing instructions
• No pathway for returning an error from an instruction

46

Interrupts

A way for the CPU to be, well, interrupted.

• CPU hardware switches to privileged mode
• Now any instruction can be executed, including privileged ones.

• Execution jumps to a predefined location
• Handler specified in the CPU’s interrupt vector table
• Lets the kernel deal with whatever the event was

• Used to support asynchronous I/O
• Lets a hardware device tell the CPU that some data is ready
• Remember that a disk operation is millions of times slower than an add.

• CPU has an electrical pin for hardware interrupts.

• There is also an instruction for software interrupts (like traps!)

Interrupt Vector Table

48

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Interrupt Vector Table

49

Table actually lives in
memory somewhere, with
function pointers for each
vector number

Example from Tock for SAM4L chip (in Rust)

Differences from traps

• When we performed a system call:
• We knew it was about to happen.

• Set up our registers in advance.

• Performed what looked sort of like a function call.

• Interrupts can happen whenever.
• This can get extremely complicated on modern systems with out-of-order

execution, multiple cores and threads, and caches

50

Interrupt handlers

• Interrupt context
• Can’t just enter the kernel like we did with system calls
• Interrupt could have occurred while we were in the kernel

• Handler code
• Execute some quick processing to deal with the interrupt
• Return so the hardware can bring us back to our normal operation
• Cannot pause to wait for something else to finish first because the entire

core jumped to handling this interrupt

• Handled by the operating system
• Processes are interrupted, but otherwise not normally involved

51

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

52

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

53

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Errors

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

54

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Termination

Sending signals

• OS sends signals when it needs to

• Processes can ask the OS send signals with a system call
• int kill(pid_t pid, int sig);

• Users send signals through OS from command line or keyboard
• Shell command: kill -9 pid (SIGKILL)

• CTRL-C (SIGINT)

55

Handling signals

• Programs can register a function to handle individual signals
• signal(int sig, sighandler_t handler);

• What are you supposed to do about it?
• Do some quick processing to handle it

• Be careful, not all functions are safe to call here
(re-entrant functions only)

• Reset the process and try again

• Quit the process (default handler)

56

Signals Examples

57

Examples: sending a signal

> kill -11 pid

58

Example: catching a signal

void sighandler (int signum) {

printf("HA HA You can't kill me!\n");

}

int main (void) {

signal(SIGINT, sighandler);

printf("Starting\n");

while(1) {

printf("Going to sleep for a second...\n");

sleep(1);

}

return(0);

}

59

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

Example: catching a segfault

int* pointer = 0x00000000;

void sighandler (int signum) {

printf("Oops, that pointer wasn't valid. Let's try a different one\n");

pointer++;

printf("About to read from pointer 0x%08lX\n", (long)pointer);

}

int main (void) {

signal(SIGSEGV, sighandler);

printf("About to read from pointer 0x%08lX\n", (long)pointer);

int test = *pointer;

return(0);

}

60

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <signal.h>

Systems software needs to deal with concurrency

• Reliable processes need to handle signals

• OS kernels need to handle interrupts

• This time it’s not just about performance
• It’s also about handling errors
• And interacting with the outside world

• Challenges are similar
• Processor concurrency: shared state between multiple processes/threads
• Interrupts/Signals: shared state between a process and interrupt context

61

62

• Performance through concurrency

• Concurrency introduced by the processor

• Amdahl’s Law – limits on performance

• Interrupts and Signals

• A problem with concurrency: data races

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

63

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

64

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count += 1;

}

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

These instructions could be interleaved in any way.
65

Thread 1:

void main(){
mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

}

Thread 2:

void main(){
mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

}

Assuming “count” is
in memory location
0x8049a1c

Data race example

66

Thread 1 Thread 2

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

Time

Thread 1 Thread 2

mov 0x8049a1c, %eax

mov 0x8049a1c, %eax

add $0x1, %eax

mov %eax, 0x8049a1c

add $0x1, %eax

mov %eax, 0x8049a1c

Final value of count: 2 Final value of count: 1

Assuming “count” is
in memory location
0x8049a1c

Data race explanation

• Thread scheduling is non-deterministic
• There is no guarantee that any thread will go first or last or

not be interrupted at any point

• If different threads write to the same variable
• The final value of the variable is also non-deterministic
• This is a data race

67

Check your understanding: data races with multiple threads

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?

68

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count -= 1;

}

Thread 3:

void main(){
count += 2;

}

Check your understanding: data races with multiple threads

Consider three threads with a shared global variable: int count = 0

What are the possible values of count? -1, 0, 1, 2, 3

How are you supposed to reason about this?!
Need mechanisms for sharing memory.

69

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count -= 1;

}

Thread 3:

void main(){
count += 2;

}

70

• Performance through concurrency

• Concurrency introduced by the processor

• Amdahl’s Law – limits on performance

• Interrupts and Signals

• A problem with concurrency: data races

Outline

