
Lecture 2:
Processes and Threads

CS343 – Operating Systems

Branden Ghena – Fall 2020

Some slides borrowed from:
Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), Harsha Madhyastha (Michigan), and UC Berkeley CS61C and CS162

Today’s Goals

• Understand the operating system’s view of a process.

• How does a process communicate with the OS?

• Explore a few process creation system calls.

• What are threads and why are they useful?

2

3

• Processes

• System Calls

• Process Creation Calls

• Threads

Outline

4

• Processes

• System Calls

• Process Creation Calls

• Threads

Outline

Definitions

• Program
• Code (instructions + data)

• Process
• A program in execution

• Program code, execution context, one or more threads

5

Process Contents

• Address Space

6

• Registers (x86-64 pictured)

• Program Countercode

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

PC

This is all an illusion of course…

POSIX processes have file descriptors

• Integers specifying a file the process is interacting with
• Process contains a table linking integers to files (and permissions)

• Default file descriptors
• 0 - Standard input (stdin)
• 1 - Standard output (stdout)
• 2 - Standard error (stderr)

• Function calls to interact with files
• int open (const char *path, int oflag, ...);
• ssize_t read (int fildes, void *buf, size_t nbyte);
• ssize_t write (int fildes, const void *buf, size_t nbyte);

7

Example file descriptors

8

Also all of the code in the address space

9

Additional Process Contents

• Whatever else the OS thinks is useful
• Process ID

• Priority

• Time Used

• Process State

10

Check your understanding

• Is it safe for two processes to have the same code section?

11

Check your understanding

• Is it safe for two processes to have the same code section?

Usually yes!

The code section is marked read-only.

Multiple instances of a terminal all share the same code.

Self-modifying code would be a problem…

12

Processes don’t run all the time

• OS schedules processes
• Decides which of many competing

processes to run.

• A blocked process is not ready to
run.

• I/O means input/output –
anything other than computing.
• For example, reading/writing disk,

sending network packet, waiting for
keystroke, updating display.

• While waiting for results, the
process often cannot do anything,
so it blocks, telling the OS to let
someone else run.

The three basic
process states:

Multiprogramming processes

14

• When one process is Blocked, OS
can schedule a different process
that is Ready

• Even with a single processor, the
OS can provide the illusion of
many processes running
simultaneously

• OS usually sets a maximum
runtime before switching limit for
processes (timeslice)

The three basic
process states:

Key difference between kernel and processes: privilege

• Processes have limited access to the computer
• Hardware supports different “modes” of execution (kernel and user)

• They run when the OS lets them

• They have access to the memory the OS gives them

• They cannot access many things directly
• Must ask the OS to do so for them

15

16

• Processes

• System Calls

• Process Creation Calls

• Threads

Outline

Things a program cannot do itself

• Print “hello world”
• because the display is a shared resource.

• Download a web page
• because the network card is a shared resource.

• Save or read a file
• because the filesystem is a shared resource, and the OS wants to check

file permissions first.

• Launch another program
• because processes are managed by the OS

• Send data to another program
• because each program runs in isolation, one at a time

How does a process ask the OS to do something?

• Certain things can only be accessed from kernel mode
• All of memory, I/O devices, etc.

• Bad Idea to allow processes to switch into kernel mode
• We do NOT trust processes

• Requirements
1. Switch execution to the kernel

2. Change into kernel mode

3. Inform the kernel what you want it to do

18

Hardware can save us!

• Solution: hardware instruction – trap
• Also known as exception or fault

• When instruction runs:
1. PC is moved to a known location in the kernel

2. Mode is changed to kernel mode

• Same mechanism is used for other exceptions
• Division by zero, invalid memory access

• Also very similar to hardware interrupts

19

System call steps (simplification)

1. Process loads parameters into registers (just like a function call)

2. Process executes trap instruction (int, syscall, svc, etc.)

3. Hardware changes PC to “handler” and switches to kernel mode

4. OS checks what the process wants to do from registers

5. OS decides whether the process is allowed to do so

6. OS sets process state to blocked

20

Returning from a system call (simplification)

• After OS finishes whatever operation it was asked to do
• And when the process is scheduled to run again

1. OS places return result in a register (just like a function call)

2. OS sets process state to running

3. OS changes mode to user mode (and sets virtual memory stuff)

4. OS sets PC to instruction after the system call

21

Check your understanding

• After OS finishes whatever operation it was asked to do
• And when the process is scheduled to run again

1. OS places return result in a register (just like a function call)

2. OS sets process state to running

3. OS changes mode to user mode (and sets virtual memory stuff)

4. OS sets PC to instruction after the system call

• Why doesn’t the OS need a special instruction to change mode and run
the process?

22

Returning from a system call (simplification)

• After OS finishes whatever operation it was asked to do
• And when the process is scheduled to run again

1. OS places return result in a register (just like a function call)

2. OS sets process state to running

3. OS changes mode to user mode (and sets virtual memory stuff)

4. OS sets PC to instruction after the system call

• Why doesn’t the OS need a special instruction to change mode and run
the process?
• It has privilege to change mode and is trusted to start the process

23

System calls trigger context switches

Diagram from Bryant & O’Hallaron book

Example Linux system calls

• https://man7.org/linux/man-pages/man2/syscalls.2.html

• Managing processes
• Fork
• Exec
• Waitpid
• Exit

• Managing files
• Open
• Close
• Read
• Write
• Seek

25

https://man7.org/linux/man-pages/man2/syscalls.2.html

26

• Processes

• System Calls

• Process Creation Calls

• Threads

Outline

Process system calls

pid_t fork(void);

• Create a new process that is a copy of the current one

• Returns either PID of child process (parent) or 0 (child)

void _exit(int status);

• Exit the current process (exit(), the library call cleans things up first)

pid_t waitpid(pid_t pid, int *status, int options);

• Suspends the current process until a child (pid) terminates

int execve(const char *filename, char *const argv[], char *const envp[]);

• Execute a new program, replacing the existing one

27

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

printf("Child!\n");
} else {

printf("Parent!\n");
}

printf("Both!\n");
return 0;

}

28

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

printf("Child!\n");
} else {

printf("Parent!\n");
}

printf("Both!\n");
return 0;

}

29

Existential crisis

Executing a new program

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

execve("/bin/python", ...);
} else {

printf("Parent!\n");
}

printf("Only parent!\n");
return 0;

}

30

Creating your own shell

void execute(char** args) {

if (strcmp(args[0], "exit") == 0) {

exit(); // exit the shell when requested

}

pid_t cpid = fork();

if (cpid == 0) {

if (execvp(args[0], args) < 0) { // child, execute new process

printf("command not found: %s\n", args[0]);
}

} else {

waitpid(cpid, & status, WUNTRACED); // parent, wait for process to be complete

}}

int main(){

char** args;

while(1){

printf("> ");

args = parse_incoming_text(); // complicated in C unfortunately

execute(args);

}}
31

https://danishpraka.sh/2018/01/15/write-a-shell.html

https://danishpraka.sh/2018/01/15/write-a-shell.html

Creating your own shell

void execute(char** args) {

if (strcmp(args[0], "exit") == 0) {

exit(); // exit the shell when requested

}

pid_t cpid = fork();

if (cpid == 0) {

if (execvp(args[0], args) < 0) { // child, execute new process

printf("command not found: %s\n", args[0]);
}

} else {

waitpid(cpid, & status, WUNTRACED); // parent, wait for process to be complete

}}

int main(){

char** args;

while(1){

printf("> ");

args = parse_incoming_text(); // complicated in C unfortunately

execute(args);

}}
32

https://danishpraka.sh/2018/01/15/write-a-shell.html

https://danishpraka.sh/2018/01/15/write-a-shell.html

Many other system calls

• POSIX contains many others, for example time()
• And especially lots of old ones

• Windows or other operating systems will have entirely different
system call infrastructures

33

34

• Processes

• System Calls

• Process Creation Calls

• Threads

Outline

Software Tasks: Threads

Unit of execution within a process

Processes discussed so far have a single thread
• They “have a single thread of execution”
• They “are single-threaded”

But a single process could have multiple threads

35

Thread Memory

Threads have separate:

• PC
• Registers
• Stack memory

Threads share:

• Code memory
• Global variables (static memory)
• File descriptors

36

Process address space with threads

37

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Data

Segment

Thread use case: web browser

Let’s say you’re implementing a web browser:

You want a tab for each web page you open:
• The same code loads each website (shared code section)

• The same global settings are shared by each tab (shared static section)

• Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, browsers use separate processes for each tab for a variety
of reasons including performance and security

38

Thread use case: web server

40

• Example: Web server
• Receives multiple simultaneous requests

• Reads web pages from disk to satisfy each request

Web server option 1: handle one request at a time

Request 1 arrives

Server reads in request 1

Server starts disk I/O for request 1

Request 2 arrives

Disk I/O for request 1 finishes

Server responds to request 1

Server reads in request 2

• Easy to program, but slow
• Can’t overlap disk requests with computation

• Can’t overlap either with network sends and receives

41

time

Web server option 1: event-driven model

• Issue I/Os, but don’t wait for them to complete
Request 1 arrives
Server reads in request 1
Server starts disk I/O for request 1
Request 2 arrives
Server reads in request 2
Server starts disk I/O for request 2
Disk I/O for request 1 completes
Server responds to request 1

• Fast, but hard to program
• Must remember which requests are in flight and which I/O goes where
• Lots of extra state

42

time

Web server option 3: multi-threaded web server

• One thread per request. Thread handles only that request.

• Easy to program (maybe), and fast!
• State is stored in the stacks of each thread and the thread scheduler

• Simple to program if they are independent…
43

Main Thread
Request 1 arrives
Create thread

Request 2 arrives
Create thread

Thread 1

Read in request 1
Start disk I/O

Disk I/O finishes
Respond to request 1
Exit

Thread 2

Read in request 2
Start disk I/O

time

More Practical Motivation

9/19/2020 Kumar CS 162 at UC Berkeley, Summer 2020 44

Back to Jeff Dean’s
“Numbers
Everyone Should
Know”

Handle I/O in
separate thread,
avoid blocking
other progress

Models for thread libraries: user threads

• Thread scheduling is implemented within the process
• OS only knows about the process, not the threads

• Upsides
• Works on any hardware or OS
• Performance is better when

creating and switching

• Downsides
• A system call in any thread

blocks all threads

45

Scheduler

OS
Kernel

Processes

Thread
Library

Models for thread libraries: kernel threads

• Thread scheduling is implemented by the operating system
• OS manages the threads within each process

• Upsides
• Other threads can continue while

one blocks on I/O
• No additional scheduler

• Downsides
• Higher overhead

• Hybrid models are possible

46

Scheduler

OS
Kernel

Processes

Threads versus Processes

Threads

• pthread_create()
• Creates a thread
• Shares all memory with all

threads of the process.
• Scheduled independently of

parent

• pthread_join()
• Waits for a particular thread to

finish

• Can communicate by
reading/writing (shared)
global variables.

Processes

• fork()
• Creates a single-threaded process
• Copies all memory from parent

• Can be quick using copy-on-write
• Scheduled independently of parent

• waitpid()
• Waits for a particular child process to

finish

• Can communicate by setting up
shared memory, pipes,
reading/writing files, or using
sockets (network).

POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

• thread is created executing start_routine with arg as its sole argument.
• return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);

• terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);

• suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

48

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Pthread system call example

• What happens when pthread_create() is called in a process?

49

Library:

int pthread_create(…) {
Do some work like a normal function

asm code … syscall # into %eax
put args into registers %ebx, …
special trap instruction

get return values from regs
Do some more work like a normal function

};

get args from regs
do the work to spawn the new thread
store return value in %eax

Kernel:

Linux uses the clone() syscall
to do this

Threads Example

50

Threads Example

• Reads N from process
arguments

• Creates N threads

• Each one prints a
number, then
increments it, then exits

• Main process waits for
all of the threads to
finish

51

Threads Example

52

Check your understanding

1. How many threads are in this
program?

2. Does the main thread join with
the threads in the same order
that they were created?

3. Do the threads exit in the
same order they were
created?

4. If we run the program again,
would the result change?

53

Check your understanding

1. How many threads are in this
program? Five

2. Does the main thread join with
the threads in the same order
that they were created? Yes

3. Do the threads exit in the
same order they were
created? Maybe??

4. If we run the program again,
would the result change?
Possibly!

54

55

• Processes

• System Calls

• Process Creation Calls

• Threads

Outline

