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Today’s Goals

• Welcome to Operating Systems!

• How will this class operate?

• What is an Operating System?

• What will you learn in this course?
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Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech
• Master’s: University of Michigan
• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems
• Low-energy wireless networks
• Embedded operating systems

• Teaching
• Computer Systems

• Intro to Computer Systems
• Operating Systems
• Microprocessor System Design
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Things I love



Course Staff

• Teaching Assistant
• Conor Hetland

• PhD student working with Peter Dinda
• TA’d for W20 version of OS

• Peer Mentors
• Calypso McDonnell

• Senior, Computer Science
• Michael Cuevas

• Senior, Computer Science

• Both took W20 version of OS
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Class Format

• Lecture
• Pre-recorded and available on canvas

• Questions and Answer Sessions
• Zoom call during class time

• Come having watched lecture already

• Ask questions and get more in-depth on topics
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Staff Roles

• Office Hours
• 12 hours per week (3 per person including professor)

• At a variety of times to work for many timezones

• Lab Discussion
• 1 hour per week

• Focused on tools and tips for doing the labs

• C, Unix tools, Debugging, Specific lab advice

• Piazza
• All week long, but not necessarily any time of the day
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Course Grade

• 20% Midterm (first half of the course)

• 20% Final (second half of the course)

• 60% Labs

• This class is NOT curved
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Lab Logistics

• Getting Started Lab – 05%
• Learn how everything works

• Producer-Consumer Lab – 10%
• Concurrency and locks

• Queuing/Scheduling Lab – 10%
• OS application scheduling

• Device Driver Lab – 20%
• Driver for a GPU

• Paging Lab – 15%
• Memory management
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• Getting started lab is special
• One week deadline (due 09/24)

• Must do alone

• All-or-nothing grading

• Normally teams of 2 or 3 
students
• Find partners now!



Lab Deadlines

• Labs are normally due at 11:59:59 pm Central Time
• 20% lost points per day late

• Slip days
• Everyone gets two slip days

• Used to extend a project deadline by a full 24 hours with no penalty

• Automatically applied as best helps your grade

• Warning: cannot be used on Getting Started Lab
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These labs can be very challenging

• Dealing with C code

• Handling a large code base

• Dealing with concurrency!!

• Give yourself enough time to get the lab done on time

• You’ll learn a lot through the challenge
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Quarantine quarters continue

• I am new to remote teaching 
• Let us know what could change to help you learn

• If you are having a hard time keeping up with the class for any 
reason, let us know
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Computers come in incredible diversity

15

years

Ratio of 
Computers 
to People

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Motes

Bell’s Law:
New computer 
class every 10 
years

Number 
crunching, Data 
Storage, Massive 
Internet Services,
ML, …

Productivity,
Interactive

Streaming 
from/to the 
physical world

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8


Computing timescales are increasingly large
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Jeff Dean
(Google AI):
“Numbers Everyone 
Should Know”



Operating systems are at the heart of these challenges

• OSes make advancing technology available to rapidly evolving 
applications.
• Provide abstractions to applications to enable hardware compatibility

• Manage sharing of resources across many applications

• Good operating systems do these quickly, efficiently, and securely
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What’s part of the OS?

• OS kernel – the only code 
without security restrictions

• Process scheduling
(who uses CPU)

• Memory allocation
(who uses RAM)

• Accesses hardware devices
• Outputs graphics
• Reads/writes to network
• Read/write to disks
• Handles boot-up and power-

down

• OS distribution – the kernel + 
lots of other useful stuff

• GUI / Window manager

• Command shell

• Software package manager
• “app store”, yum, apt, brew

• Common software libraries

• Useful apps:
• Text editor, compilers, web 

browser, web server, SSH, anti-
virus, file-sharing, media libraries, 



Before operating systems

• User could only run one program at a 
time.

• Had to insert the program disk before 
booting the machine.

• Program had to control the hardware 
directly
• This is a nuisance because hardware is 

complicated
• Program will only be compatible with one set 

of hardware

• For example (at right) 1983 “King’s Quest” 
game for IBM PC Jr.



Embedded systems often run without operating systems

• “Bare-metal” embedded systems

• Application must handle:
• Boot and initialization

• All hardware it wants to interact with

• Applications are not portable
• Rewrite, mostly from scratch, for new microcontroller

• No malloc, no segfaults
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What is an Operating System?

• Referee
• Manage protection, isolation, and sharing of resources
• Resource allocation and communication

• Illusionist
• Provide clean, easy-to-use abstractions of physical resources

• Infinite memory, dedicated machine
• Higher level objects: files, users, messages
• Masking limitations, virtualization

• Glue
• Common services

• Storage, Window system, Networking
• Sharing, Authorization
• Look and feel
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Example: File Systems

• Referee
• Prevent users from accessing other’s files without permission

• Illusionist
• Files can grow infinitely large

• Where a file exists in memory or disk isn’t important!

• Glue
• Default file system types, named directories
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Computer History

• Actually check out the textbook!
• In-depth history

• Entertaining writing with just the right amount of sarcasm

• This isn’t a computer history course
• But there is a good reason to understand the lineage of the techniques we 

explore in this course
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Early evolution of computing systems – Batch

• 1955: Batch systems
• Collect a bunch of program punch cards and write them all one magnetic 

tape.

• Run the tape through the mainframe to execute all the jobs in sequence.

• OS responsibility
• Libraries for I/O

• Problems
• I/O is VERY slow. 80-90% of total time just waiting.



Early evolution of computing systems – Multiprogramming

• 1960s: Multiprogramming (IBM OS/360)
• Keep multiple runnable jobs in memory at once.
• Allows overlap I/O of one job with computing of another.

• Uses asynchronous I/O and interrupts or polling to detect I/O 
completion

• OS responsibility
• Schedule jobs
• Monitor I/O

• Problems
• Still need to submit all jobs in advance



Early evolution of computing systems – Timesharing

• 1960s-70s: Timesharing (MULTICS, Unix)
• Multiple user terminals connected to one machine

• Allows interactive use of machine to be efficient (because another user’s 
job can run while you’re thinking).

• OS responsibility
• Multiple users (with permissions!)

• Scheduling processes

• Application interface

• Shell tools



Later evolution of computer systems – PC

• 1980s-90s: Personal Computers (IBM PC, Macintosh)
• Graphical user interfaces were developed

• Mainframe OS concepts (like networking) were applied to PCs

• Magnetic disks (hard drives) become huge, but still slow

• OS responsibility
• Look and feel of a system, particularly for non-experts

• Tools that were distributed with the OS had significant business results



Later evolution of computer systems – Mobile and Cloud

• 2000s-10s: Mobile and pervasive computing, Cloud Computing
• Slow hardware is once again common (phones & wearables)

• OS manages sensitive information like location and internet behavior

• Fast flash storage is common.

• Server hardware is shared by many different cloud computing customers

• OS responsibility
• Diverse hardware drivers

• Security

• Massive parallelism



Operating systems have evolved with hardware in a cycle

• Sophisticated operating 
systems first arose on 
mainframes.

• OS ideas migrated to smaller 
machines as those machines 
became more powerful.

• In 2019, a smart watch has
1gb RAM, 16gb SSD storage,
two CPU cores, and a real OS.



Simplified 
History of 
Unix-like 
Operating 
Systems

Operating 
systems are very 
interconnected



36

• Course Overview

•What is an OS?

•Operating Systems History

• CS343 Focus



Schedule for first half of the course

1. Concurrency
• Dealing with the realities of modern-day computing

• Sources, Control, Challenges

2. Scheduling
• Managing CPU utilization

• Workload, Queuing, Real-time

37



Schedule for second half of the course

3. Device Drivers
• Management and abstraction of devices

• Interrupts, DMA, Abstractions

4. Virtual Memory
• Management and abstraction of memory

• Paging, Allocation, Security

5. File Systems
• Management and abstraction of data

• Principles, Examples
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Why do we care about OS?

• Performance
• Speed is influenced by

• Parallelism, resource contention, memory management

• Generally OS overhead

• Security
• Process and data isolation when actually all running together

• The biggest security vulnerabilities break abstractions

• Meltdown and Spectre
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Your first tasks

1. Getting Started Lab (due Thursday, September 24)

2. Fill out survey on Piazza

3. Find project partners for future labs
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