
Lecture 1:
Introduction

CS343 – Operating Systems

Branden Ghena – Fall 2020

Some slides borrowed from:
Stephen Tarzia (Northwestern), Jaswinder Pal Singh (Princeton), and UC Berkeley CS162



Today’s Goals

• Welcome to Operating Systems!

• How will this class operate?

• What is an Operating System?

• What will you learn in this course?

2



3

• Course Overview

•What is an OS?

•Operating Systems History

• CS343 Focus



4

• Course Overview

•What is an OS?

•Operating Systems History

• CS343 Focus



Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech
• Master’s: University of Michigan
• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems
• Low-energy wireless networks
• Embedded operating systems

• Teaching
• Computer Systems

• Intro to Computer Systems
• Operating Systems
• Microprocessor System Design

5

Things I love



Course Staff

• Teaching Assistant
• Conor Hetland

• PhD student working with Peter Dinda
• TA’d for W20 version of OS

• Peer Mentors
• Calypso McDonnell

• Senior, Computer Science
• Michael Cuevas

• Senior, Computer Science

• Both took W20 version of OS

6



Class Format

• Lecture
• Pre-recorded and available on canvas

• Questions and Answer Sessions
• Zoom call during class time

• Come having watched lecture already

• Ask questions and get more in-depth on topics

7



Staff Roles

• Office Hours
• 12 hours per week (3 per person including professor)

• At a variety of times to work for many timezones

• Lab Discussion
• 1 hour per week

• Focused on tools and tips for doing the labs

• C, Unix tools, Debugging, Specific lab advice

• Piazza
• All week long, but not necessarily any time of the day

8



Course Grade

• 20% Midterm (first half of the course)

• 20% Final (second half of the course)

• 60% Labs

• This class is NOT curved

9



Lab Logistics

• Getting Started Lab – 05%
• Learn how everything works

• Producer-Consumer Lab – 10%
• Concurrency and locks

• Queuing/Scheduling Lab – 10%
• OS application scheduling

• Device Driver Lab – 20%
• Driver for a GPU

• Paging Lab – 15%
• Memory management

10

• Getting started lab is special
• One week deadline (due 09/24)

• Must do alone

• All-or-nothing grading

• Normally teams of 2 or 3 
students
• Find partners now!



Lab Deadlines

• Labs are normally due at 11:59:59 pm Central Time
• 20% lost points per day late

• Slip days
• Everyone gets two slip days

• Used to extend a project deadline by a full 24 hours with no penalty

• Automatically applied as best helps your grade

• Warning: cannot be used on Getting Started Lab

11



These labs can be very challenging

• Dealing with C code

• Handling a large code base

• Dealing with concurrency!!

• Give yourself enough time to get the lab done on time

• You’ll learn a lot through the challenge

12



Quarantine quarters continue

• I am new to remote teaching 
• Let us know what could change to help you learn

• If you are having a hard time keeping up with the class for any 
reason, let us know

13



14

• Course Overview

• What is an OS?

•Operating Systems History

• CS343 Focus



Computers come in incredible diversity

15

years

Ratio of 
Computers 
to People

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Motes

Bell’s Law:
New computer 
class every 10 
years

Number 
crunching, Data 
Storage, Massive 
Internet Services,
ML, …

Productivity,
Interactive

Streaming 
from/to the 
physical world

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8


Computing timescales are increasingly large

16

Jeff Dean
(Google AI):
“Numbers Everyone 
Should Know”



Operating systems are at the heart of these challenges

• OSes make advancing technology available to rapidly evolving 
applications.
• Provide abstractions to applications to enable hardware compatibility

• Manage sharing of resources across many applications

• Good operating systems do these quickly, efficiently, and securely

17



What is an operating system?

Hardware

Steam Chrome

Powerpoint

QEMU

Spotify
User 
processes

Physical 
computer



What is an operating system?

Hardware

Steam Chrome

Powerpoint

QEMU

Spotify
User 
processes

Operating 
System

Physical 
computer



What is an operating system?

Hardware

Steam Chrome

Powerpoint

QEMU

Spotify
User 
processes

File 
System

Process 
Manager

NetworkVirtual 
MemoryOperating 

System
Device Drivers Interrupt Handlers Boot and Init

Physical 
computer



What is an operating system?

Hardware

Steam Chrome

Powerpoint

QEMU

Spotify
User 
processes

File 
System

Process 
Manager

NetworkVirtual 
MemoryOperating 

System
Device Drivers Interrupt Handlers Boot and Init

Hardware Abstraction Layer

Application Interface

Physical 
computer



What’s part of the OS?

• OS kernel – the only code 
without security restrictions

• Process scheduling
(who uses CPU)

• Memory allocation
(who uses RAM)

• Accesses hardware devices
• Outputs graphics
• Reads/writes to network
• Read/write to disks
• Handles boot-up and power-

down

• OS distribution – the kernel + 
lots of other useful stuff

• GUI / Window manager

• Command shell

• Software package manager
• “app store”, yum, apt, brew

• Common software libraries

• Useful apps:
• Text editor, compilers, web 

browser, web server, SSH, anti-
virus, file-sharing, media libraries, 



Before operating systems

• User could only run one program at a 
time.

• Had to insert the program disk before 
booting the machine.

• Program had to control the hardware 
directly
• This is a nuisance because hardware is 

complicated
• Program will only be compatible with one set 

of hardware

• For example (at right) 1983 “King’s Quest” 
game for IBM PC Jr.



Embedded systems often run without operating systems

• “Bare-metal” embedded systems

• Application must handle:
• Boot and initialization

• All hardware it wants to interact with

• Applications are not portable
• Rewrite, mostly from scratch, for new microcontroller

• No malloc, no segfaults

24



What is an Operating System?

• Referee
• Manage protection, isolation, and sharing of resources
• Resource allocation and communication

• Illusionist
• Provide clean, easy-to-use abstractions of physical resources

• Infinite memory, dedicated machine
• Higher level objects: files, users, messages
• Masking limitations, virtualization

• Glue
• Common services

• Storage, Window system, Networking
• Sharing, Authorization
• Look and feel

25



Example: File Systems

• Referee
• Prevent users from accessing other’s files without permission

• Illusionist
• Files can grow infinitely large

• Where a file exists in memory or disk isn’t important!

• Glue
• Default file system types, named directories

26



27

• Course Overview

•What is an OS?

• Operating Systems History

• CS343 Focus



Computer History

• Actually check out the textbook!
• In-depth history

• Entertaining writing with just the right amount of sarcasm

• This isn’t a computer history course
• But there is a good reason to understand the lineage of the techniques we 

explore in this course

28



Early evolution of computing systems – Batch

• 1955: Batch systems
• Collect a bunch of program punch cards and write them all one magnetic 

tape.

• Run the tape through the mainframe to execute all the jobs in sequence.

• OS responsibility
• Libraries for I/O

• Problems
• I/O is VERY slow. 80-90% of total time just waiting.



Early evolution of computing systems – Multiprogramming

• 1960s: Multiprogramming (IBM OS/360)
• Keep multiple runnable jobs in memory at once.
• Allows overlap I/O of one job with computing of another.

• Uses asynchronous I/O and interrupts or polling to detect I/O 
completion

• OS responsibility
• Schedule jobs
• Monitor I/O

• Problems
• Still need to submit all jobs in advance



Early evolution of computing systems – Timesharing

• 1960s-70s: Timesharing (MULTICS, Unix)
• Multiple user terminals connected to one machine

• Allows interactive use of machine to be efficient (because another user’s 
job can run while you’re thinking).

• OS responsibility
• Multiple users (with permissions!)

• Scheduling processes

• Application interface

• Shell tools



Later evolution of computer systems – PC

• 1980s-90s: Personal Computers (IBM PC, Macintosh)
• Graphical user interfaces were developed

• Mainframe OS concepts (like networking) were applied to PCs

• Magnetic disks (hard drives) become huge, but still slow

• OS responsibility
• Look and feel of a system, particularly for non-experts

• Tools that were distributed with the OS had significant business results



Later evolution of computer systems – Mobile and Cloud

• 2000s-10s: Mobile and pervasive computing, Cloud Computing
• Slow hardware is once again common (phones & wearables)

• OS manages sensitive information like location and internet behavior

• Fast flash storage is common.

• Server hardware is shared by many different cloud computing customers

• OS responsibility
• Diverse hardware drivers

• Security

• Massive parallelism



Operating systems have evolved with hardware in a cycle

• Sophisticated operating 
systems first arose on 
mainframes.

• OS ideas migrated to smaller 
machines as those machines 
became more powerful.

• In 2019, a smart watch has
1gb RAM, 16gb SSD storage,
two CPU cores, and a real OS.



Simplified 
History of 
Unix-like 
Operating 
Systems

Operating 
systems are very 
interconnected



36

• Course Overview

•What is an OS?

•Operating Systems History

• CS343 Focus



Schedule for first half of the course

1. Concurrency
• Dealing with the realities of modern-day computing

• Sources, Control, Challenges

2. Scheduling
• Managing CPU utilization

• Workload, Queuing, Real-time

37



Schedule for second half of the course

3. Device Drivers
• Management and abstraction of devices

• Interrupts, DMA, Abstractions

4. Virtual Memory
• Management and abstraction of memory

• Paging, Allocation, Security

5. File Systems
• Management and abstraction of data

• Principles, Examples

38



Why do we care about OS?

• Performance
• Speed is influenced by

• Parallelism, resource contention, memory management

• Generally OS overhead

• Security
• Process and data isolation when actually all running together

• The biggest security vulnerabilities break abstractions

• Meltdown and Spectre

39



40

• Course Overview

•What is an OS?

•Operating Systems History

• CS343 Focus



Your first tasks

1. Getting Started Lab (due Thursday, September 24)

2. Fill out survey on Piazza

3. Find project partners for future labs

41


