CS 343 Operating Systems, Fall 2020
Producer-Consumer Lab: Concurrency Control

1 Introduction

The purpose of this lab is for you to engage with the challenges of concurrency control in the context of an
important problem in every concurrent system: the producer-consumer problem. The framework of the lab,
while user-level, attempts to emulate the environment of a modern kernel, for example Linux.

You may work in a group of up to three people in this lab. Clarifications and revisions will be posted to
the course discussion group.

2 Setup

You can work on this lab on any modern Linux system, although we will test your work on the class
server (Moore). We will describe the details of how to access the lab repo via Github Classroom on Pi-
azza. Use this information to clone the repo. At this point you should will have a subdirectory named
something like pclab. If this is on a shared machine, you probably want to mark the directory as private
(chmod 700 pclab).

Looking in your cloned directory, you’ll see the following files:

* atomics. [ch]: A small (and incomplete) set of primitives for concurrency control that are built
on top of hardware mechanisms.

* ring. [ch]: A ring buffer implementation that has no concurrency control and thus will not work
correctly but will do so very fast.

* harness.c: A test harness that evaluates your implementation for correctness and performance.
* Makefile: Makefile for the project.

* README .md: More information.

* config.h: Configuration information including DEBUG printing.

Please be sure to read the README file.
To compile the lab, just run make. This will build the program harness (the test harness). harness
has numerous options, which you can see by running it, but here is a simple invocation:

S ./harness 2 4 16 1024



This will create an environment in which there are 2 producer threads feeding 4 consumer threads using a
16 element queue, and then it will operate it for 1024 uses (the producers will push 1024 elements onto the
queue, and the consumers will pull 1024 elements from it). After everything is done, harness will check
for correctness and also tell you the throughput.

Note that, out of the box, there is no synchronization at all and thus the code has numerous race condi-
tions. As a consequence, harness will indicate failure, unless you are very lucky. Harness may even segfault
due to its race conditions.

The harness.c and ring. [ch] makes use of the macro DEBUG for debugging output. It is im-
portant to note that when you do performance testing, this macro needs to be disabled so that no debug
output occurs. You can disable debug printing by setting #DEFINE DEBUG_OUTPUT O in config.h.
It may seem like printing things out is a fast operation, but, in fact, it’s glacial and can severely reduce the
throughput you see here.

3 Ring buffers

A ring buffer is a fixed size queue that connects one or more producers with one or more consumers. In this
lab, the elements in the queue are void pointers, meaning that anything can be pushed into the queue by
reference. You can consult ring.h to see the specific details of the interface required of a ring buffer for
this lab, but here are the core operations:

* Push: This pushes one element into the queue, waiting until it is possible to do so.

* Try Push: This pushes one element into the queue, if possible. If not possible, because the queue is
full, it returns immediately.

Pull: This pulls one element from the queue, waiting until it is possible to do so.

Try Pull: This pulls one element from the queue, if possible. If not possible, because the queue is
empty, it returns immediately.

As you might guess, producers use Push and Try Push, while consumers use Pull and Try Pull. Note that
the default implementations do not check if there is room in the queue before pushing or items in the queue
before pulling. You’ll do that when implementing waiting.

4 Task 0: Run the code, including in gdb

Get it, build it, run it. Run it again in gdb. Learn about gdb’s support for threads and signal handlers. Note
that info threads will show you the threads in the program, while thread 3 will switch to thread 3
of the program. Breakpoints and watchpoints apply in all threads and signal handlers.

Note that all the DEBUG statements print to STDERR. Which means that if you are attempting to capture
the output of running harness, it won’t work properly. To save the output to a file, you’ll also need to
redirect STDERR to STDOUT. For example:

S ./harness 2 4 16 1024 > OUTPUT.txt 2>&l



S Task 1: Build synchronization primitives

Your overall job in this lab is to make the ring buffer implementation perform correctly by introducing
synchronization as needed. At the same time, your synchronization should strive to minimize performance
impact. That is, you want to achieve the highest possible throughput, while being correct.

To begin with you need to build or select to use a synchronization primitive from among the various ones
described in class. We suggest you build a spinlock. Take a look in atomics . h to see some of the tools you
can work with. You are welcome to use any other primitives. You can also build synchronization primitives
on top of pthread library synchronization primitives (e.g. pthread_mutex_t, pthread_cond_t,
etc.) or Linux-level primitives (e.g. futex).

6 Task 2: Apply your synchronization primitives

Use your synchronization primitives within ring. [ch] to make the four operations described earlier
correct under all conditions involving threads.

7 Task 3: Consider interrupts

Within a kernel, concurrency due to hardware interrupts is unavoidable, and must be dealt with. In some
cases, user-level code faces a similar situation. The user-level analog to an interrupt is a signal. The combi-
nation of signals and threads at user-level exhibits most of the same special concerns that the combination
of interrupts and threads within a kernel does. The harness . c code emulates the kernel environment of
kernel threads and interrupts using preemptable user threads and signals.

A key issue with interrupts and the producer-consumer problem occurs when an interrupt handler can be
a producer or consumer. Consider producers. A producer thread can wait to acquire a lock on the queue, and
wait for the queue to drain enough to make room for new data. Depending on the synchronization primitive,
the way in which it waits may be more or less efficient, but it can wait indefinitely. The thread scheduler can
assure that other threads can make progress. For example, it can switch to the thread that currently holds the
lock, or a consumer thread that will drain the queue.

In contrast, an interrupt handler cannot wait indefinitely. On x64 machines, for example, interrupts are
disabled on entry to the interrupt handler. Even if the programmer reenables them, the interrupt controller
will only allow in interrupts of higher priority than the one currently active. The interrupt handler is also
not a thread, and so is not schedulable. In other words, for the duration of the interrupt handler, nothing else
will happen on the CPU on which the interrupt is running.

Note also that there is an entirely new opportunity for deadlock when interrupt handlers are considered.
If, for example, a thread is holding a simple lock, and then is interrupted by a handler that then needs to
acquire the same lock, the handler will wait forever trying to acquire it.

Your next task is to enhance your solution for synchronizing the ring buffer assuming that producers and
consumers can run within interrupt handlers. You can create this scenario using a command like this:

$ ./harness -1 pc -t 100000 2 4 16 1024

As before, this indicates 2 producer threads, 4 consumer threads, a 16 element ring, and 1024 operations.
In addition, both the producer and consumer threads will see interrupts (-1 pc), and these will occur at
random points in time with an average of 100000 us apart. The interrupt handlers will themselves also
produce and consume items using the Try Push and Try Pull interfaces.



8 Task 4: Enhance performance for simultaneous threads

A common use case for producer-consumer is to allow threads running on separate CPUs to communicate
efficiently. In this scenario, we know the producer and consumer threads are running simultaneously. You
can create this scenario using a command like this:

$ ./harness -p 2 -c 4 2 4 16 1024

In this version of our running sample command, the 2 producer threads will run on CPUs 0 and 1, while the
4 consumer threads will run on CPUs 2 through 5.

How can you revisit synchronization to make such a scenario have higher throughput? Document what
makes you believe the current approach will have good throughput in the STATUS file described below.

9 Grading

Your group should regularly push commits to Github. You also should create a file named STATUS in which
you regularly document (and push) what is going on, todos, what is working, etc. Your commits are visible
to us, but not to anyone else outside of your group. The commits that we see up to deadline will constitute
your hand-in of the code. The STATUS file should, at that point, clearly document that state of your lab
(what works, what doesn’t, etc). Make sure the STATUS file includes the names and NetIDs of everyone
working on the project.

We will test your code on the class server (moore) using similar commands to those given above, but
with different parameters. This will constitute correctness. We will replace harness.c, config.h,
and Makefile with their default initial versions as included in your starter code. Be sure to only make
modifications to ring. [ch] and atomic. [ch]. We will also disable debug printing when testing your
code. Make sure that you do not add print f statements, which won’t be disabled, or else your performance
could be severely impacted.

The breakdown in score will be as follows:

* 20% Task 1—Functional and sensible implementation of a synchronization primitive.

* 30% Task 2—Sensible implementation of ring buffer concurrency using your primitive that passes
concurrency tests that only involve threads.

* 30% Task 3—Sensible implementation of ring buffer concurrency using your primitive that passes
concurrency tests that use both threads and interrupts.

* 20% Task 4—Good faith effort to try to specialize for the simultaneous threads scenario.

Reasonable performance is expected, but correctness is essential. We will provide a place for students
to report their performance numbers, for those students who would like to have a friendly competition.



10 Extra credit

We will allow up to 20% extra credit in this lab. If you would like to do extra credit, please complete the
main part of the lab first, then reach out to the instructor and TAs with a plan. You should implement your
additional mechanism in branches on your Github repo and document them in your STATUS file.

Some possible extra credit concepts are the following:

* Implement a second form of synchronization and compare. For example, you might also implement a
ticket lock or MCS lock.

* Specialize your synchronization for single-producer, single-consumer, single-producer, multiple-consumer,
and/or multiple-producer/single-consumer. Can you make these special cases of the producer-consumer
problem faster?

* Implement a lock-free scheme for the ring buffer. A lock-free data structure does not use synchro-
nization primitives. Instead, it directly uses atomic primitives to manipulate the data structure in such
a way that no races exist. Even more interestingly, there exist wait-free data structures which can
guarantee that no computation is ever blocked.

* Build a synchronized, linked-list-based producer-consumer queue.



