
CS 343 Operating Systems Fall 2020

 Page 1 of 10

Operating Systems

Syllabus

Special Note

Emergency remote instruction continues in Fall 2020. This is not what we would

all prefer, but we can work together and succeed. Please bear with us as we adapt

to remote teaching. We will support you as you deal with remote learning.

This course was completely redesigned in Winter 2020. There is minimal overlap

with previous instances of the course in terms of reading, labs, codebases, and

exams. Because it is a new design, we are very interested in student feedback

and will be, to some extent, adaptive to it.

Class Resources

• Course Website https://northwesternos.org: All course details and schedule.

• Canvas: Grade reports, class recordings, and zoom links. Already enrolled.

• Piazza: Class discussions, questions, and messages. We will enroll you.

• Github Classroom: Lab access and submission. We will enroll you.

Instructor

 Branden Ghena

 branden@northwestern.edu

Teaching Assistance

Conor Hetland (TA)

ConorHetland2015@u.northwestern.edu

Calypso McDonnell (PM)

calypsomcdonnell2021@u.northwestern.edu

Michael Cuevas (PM)

cuevas@u.northwestern.edu

Location and Time

 Lectures: Videos available on Canvas.

 Q&A Sessions: Tuesdays/Thursdays 11:20-12:40 on Zoom (also recorded).

 Lab Discussions: TBD on Zoom (also recorded).

 Office Hours: See web page.

 Midterm Exam: TBD, mid-quarter. Details to come.

 Final Exam: Thursday, December 03, 12:00-2:00. Details to come.

https://northwesternos.org/
https://northwesternos.org/
https://canvas.northwestern.edu/courses/122309
https://piazza.com/class/kevrip407ue2xc
https://classroom.github.com/classrooms

CS 343 Operating Systems Fall 2020

 Page 2 of 10

Prerequisites

 Required CS 213 or CE 205 or equivalent

 Required CS 214 or equivalent

 Required Experience with C or C++

 Required Some experience with programming in a Unix

environment (e.g., as in CS 211 and CS 213)

Any version of CS 213 or CE 205 is acceptable, but we will expect that you have

seen basic concepts such as the existence of exceptional control flow and virtual

memory, and the typical Unix system calls for processes, threads, and files+I/O.

The syllabus shown in pdinda.org/ics is a good starting point.

Any version of CS 214 is acceptable, but we will expect that you have seen basic

data structures, algorithms, and their implementation. These include linked lists,

balanced search trees, hashing and hash tables, heaps, graphs, sorting, etc.

Experience with C or C++ in part means familiarity with arrays, structs, unions,

and, most importantly, pointers and pointer-based data structures. Low-level

pointer-based mechanisms are used throughout an OS, and by the underlying

hardware.

Experience with programming on Unix means being able to navigate the Unix

command line, remote access, use/extend Makefiles, etc.

CS 343 satisfies one of the Systems Breadth, Tech Elective, and Project

requirements in in the Computer Science curriculum in both McCormick and

Weinberg. CS 343 can also be taken for credit within the Computer Engineering

curriculum.

Textbook

Andrew S. Tanenbaum and Herbert Bos, Modern Operating Systems, 4th Edition,

Pearson, 2014, (ISBN-13: 978-0133591620, ISBN-10: 013359162X)

We also considered several other books for this course, which may be useful as

further references:

• Abraham Silberschatz, Peter Galvin, and Greg Gange, Operating Systems

Concepts, 10th edition, Wiley, 2018.

• Remzi Arpaci-Dusseau, and Andrea Arpaci-Dusseau, Operating Systems:

Three Easy Pieces, 2018. [freely available]

• Thomas Anderson, and Michael Dahlin, Operating Systems: Principles

and Practice, Recursive, 2014.

• William Stallings, Operating Systems: Internals and Design Principles,

9th edition, Pearson, 2017.

http://pdinda.org/ics/

CS 343 Operating Systems Fall 2020

 Page 3 of 10

The choice of Tanenbaum as the textbook for this course is a compromise. All of

these books have strengths and weaknesses.

It is important to note that your CS 213 textbook (Randal Bryant, and David

O'Hallaron, Computer Systems: A Programmer's Perspective) has an excellent

“what every programmer should know” treatment of some of the topics we will

cover, including threads, processes, virtual memory, and the various Linux/Unix

system call interfaces.

There are also books on specific operating systems that advanced students might

be interested in, particularly on FreeBSD and Linux. Ask if you're curious.

Objectives, framework, philosophy, and caveats

This course introduces you to the basic, foundational concepts and principles of

operating systems, many of which generalize to other areas of computer science

and engineering. You will learn many of these concepts and principles by applying

them in practice on a modern machine though labs that are designed to put you in

the shoes of a systems-level developer. OS (and systems more broadly) is very

much a learn-by-doing kind of area.

The following concepts and principles are included:

• OS Structure: kernel, device drivers, file systems, network stacks,

schedulers, system calls, libraries, toolchains, language virtual machines,

user interface/shell, applications, etc.

• OS Models: monolithic kernel, microkernel, virtual machine

monitor/hypervisor, jail/zone/container, exokernel, unikernel, ...

• OS Abstractions: thread, name space, address space, process, IPC, virtual

machine, container, file, directory stream, plus abstraction design within

the kernel (devices, file systems, ...)

• Concurrency Sources: multiprocessors, devices, interrupts, threads,

processes, horror stories, ...

• Concurrency Challenges: memory system coherence/consistency, race

conditions, deadlock, livelock, horror stories, ...

• Concurrency Control: interrupt control, atomics, spinlocks, critical

sections, blocking vs waiting, mutexes, semaphores, condvars, monitors,

barriers, lockfree/waitfree models, plus typical synchronization problems

such as producer-consumer, reader-writer, and dining philosophers.

• Scheduling and Resource Management: theory, FCFS, GPS, SRPT,

dynamic priority (e.g. Unix), lottery, fixed priority, preemptive vs non-

preemptive, real-time vs non-real-time, horror stories, ...

• Virtual Memory: hardware-software co-design, paging, swapping,

segmentation and (possibly) current alternatives.

• Device Drivers: interrupts, DMA vs PIO, MMIO vs PMIO, atomics,

hardware memory barriers, software memory barriers.

CS 343 Operating Systems Fall 2020

 Page 4 of 10

• Protection and Security: kernel/user mode, mode/ring transitions, role of

encryption, interaction with virtual memory, horror stories.

• Memory management: page allocation versus heap allocation, garbage

collection, allocation in special contexts (e.g. interrupt context), page

replacement, working set.

• File systems: issues/interfaces, data structures on block devices, examples

(V7, FAT+, ext2+)

• Principles: policy versus mechanism, orthogonality, worse-is-better, lazy

evaluation, caching, end-to-end argument, mythical man-month, no silver

bullet, hardware/software co-design

The hardware environment that we will focus on is Intel/AMD machines running

in 64 bit mode ("x64"), which is the commonplace platform for systems ranging

from laptops to supercomputers today.1 Your lab work will be done on Linux in the

C programming language.2 Two of your labs (on concurrency and scheduling) will

be done in user-level Linux. The remaining labs will be in the context of the

Nautilus kernel framework ("NK"), a research kernel develop at Northwestern and

other institutions. The experience you gain in NK will generalize to the Linux

kernel, for the most part.3

Lectures / Q&A Sessions / Attendance

Lectures will be recorded and made available on Canvas in advance of the

scheduled date for that material. Question and Answer sessions will take place

during the normal course time synchronously over zoom. It is important that you

review the readings and lecture recording before each scheduled Q&A session so

that you can ask questions during the session. You should prepare at least one

question for each Q&A session.

Q&A sessions will be recorded, but if no one shows up there are not going to be

very many answers. The synchronous sessions are our chance to build a class

community and gain a deeper understanding together. Please attend them.

1 Most of what you learn about x64 vis a vis OS will generalize to the other main platform, ARM, which is

the basis for phones and tablets.
2 Linux is the common OS on everything except laptops and desktops. It is also the OS underlying Android.

C is the lingua franca of low-level software development.
3 In the design of this course, we considered several other options. The most desirable would have been to

have you work within the Linux kernel itself. This proved to be intractable from a pedagogical point of

view. The complexity we would have to shield you from, particularly in a lab based on paging, would have

been overwhelming to manage. We also considered the teaching OS xv6 for IA32 and for RISC-V. IA32

and RISC-V both would require revisiting material students have already learned, for x64, in CS 213, plus

xv6 for IA32 would have made a device driver lab particularly challenging to pull off. Another

consideration was to use CMU's Pebbles OS specification and have students build Pebbles from scratch as

in CMU's course. This was also limited to IA32, and seemed intractable to execute in a single quarter. The

intent behind using NK is to give a view inside a modern, x64 codebase with clear internal interfaces that

has a development model (e.g., Kbuild, C, etc) that is similar to Linux.

CS 343 Operating Systems Fall 2020

 Page 5 of 10

What I am asking of you is: Read. Watch. Attend. Ask. There is no such thing as a

dumb question (or too esoteric of a question) - we will try our best to answer or

comment on all questions.

Other Ways of Getting Help

Your TAs and peer mentors will run an optional weekly discussion focused on labs,

which we will schedule, with your input, during the first week. The goal of the

optional weekly discussion is to provide a place to learn more and to get help in a

more structured way than office hours.

Your instructor, TAs, and peer mentors will also have regularly scheduled office

hours and be available by appointment if these do not work. We will schedule office

hours in the first week to maximize opportunities to attend.

We will use an online discussion group on Piazza as well. We will enroll you. The

link is on the course web page. The intent is to have multiple venues for discussion

with different styles so that all students feel comfortable participating. If you have

a question, answer, or comment, please put it forward. We will try our best to

answer.

Labs will be done using GitHub Classroom. One goal here is to make it

straightforward for us to see the current state of your lab work, so that we do not

have to spend a lot of time reconstructing setups during office hours, etc. Push early

and often!

Computing Resources

You will have Linux accounts on the Wilkinson machines, and it should be possible

to do some of your work on them, or other 64-bit Linux machines. You will also

have access to a newly purchased high-end server which has a range of software

set up for use by this course. This is the easiest option and is also where we will

grade labs. The very first lab is intended to get you familiar with this environment

by having you build and run a kernel on it.

It is also possible to work on your own machine. Generally speaking, using Linux

will be easiest. I often do development with Ubuntu installed in a VirtualBox VM

on my Mac or PC. We will provide instructions in Piazza for those who would like

to set up their own environment.

CS 343 Operating Systems Fall 2020

 Page 6 of 10

Grading

60% Programming labs (breakdown as below)

20 % Midterm (covers first half of the course)

20 % Final (covers second half of the course)

There is extra credit in many of the programming labs.

Your score in the course is the weighted average of your scores on each of the

components. You can view all currently graded material, and your score, at any

time on Canvas. Final grades are based on the course score (the weighted average),

with the basic model being that the 90s are A territory, 80s are B territory, and so

on. This model will be adapted toward lower thresholds if necessary based on

overall class performance. That is, this is NOT a curved class.

The instructor ultimately assigns scores and grades in consultation with the TAs

and peer mentors. If you have a problem with a score on an assignment/exam or

your grade, you are welcome to bring it up with him or the TAs, but only the

instructor is empowered to change grades.

Labs

We will have five programming labs. Except for the first lab, labs should be done

in groups of up to three. Start looking for a partner on day one. You cannot

change groups after they are formed.

In the current design, there are five labs. 60% of the grade in the class will be based

on lab work, with a breakdown as follows:

5% Getting Started Lab (done individually, no slip-days!)

10% Producer-Consumer Lab

10% Queueing/Scheduling Lab

20% Device Driver Lab

15% Paging Lab

We will use GitHub Classroom for disseminating and handing in labs. It is

important that you and your partners make sure that your repositories are private.

Only your group and the course staff should be able to see your repos.

The Producer-Consumer Lab and Queueing/Scheduling Lab are user-level Linux

labs. The others are all done within a research kernel developed at Northwestern.

All hardware is x64. All code is in C.

CS 343 Operating Systems Fall 2020

 Page 7 of 10

Lab Late Policy

For each calendar day or portion thereof after the due date for a lab, 20% is lost.

After 1 day, the maximum score is 80%, after 2 days, 60%, etc, for a maximum of

5 days.

Lab Slip Days

To help you handle any issues that arise from remote instruction, we give you

two slip-days, which allow you to submit a lab late without penalty. Slip-days may

only be applied towards labs, and not any other assignments. Slip days are in used

in units of entire “days” meaning a lab submitted one minute after the deadline

consumes one entire slip day. Please plan accordingly as there is no grace period.

We will track the total number of late days for your submissions and automatically

apply slip days to optimize their usage. Slip-days will not be assessed against labs

you did not submit. No extra credit is awarded for avoiding the use of slip-days.

However, it is in your best interest to avoid turning labs in late. Usually, a new lab

will be released very shortly after the current lab is due.

Example slip-day usage:

• Use two slip-days to receive no penalty on a lab submitted two days late

• Use two slip-days to receive no penalty for two separate labs each submitted

one day late

• Use two slip-days to receive just a one-day late penalty on a lab submitted

three days late

Exams

There will be a midterm exam and a final exam. The final exam will not be

cumulative. We will schedule midterm and final exam review sessions. Details on

how exams will be handled remotely will come soon.

Cheating and Inadvertent Disclosures

Since cheaters are mostly hurting themselves, we do not have the time or energy to

hunt them down. We much prefer that you act collegially and help each other to

learn the material and to solve problems than to have you live in fear of our wrath

and not talk to each other. Nonetheless, if we detect blatant cheating, we will deal

with the cheaters as per Northwestern guidelines.

As we note above, it is important that you control access to your GitHub repos.

Please do not place class materials from on any public site. If it's on the course web

site, it's already public and will remain public. If it's from the discussion group or

from the handout directory on the course servers, it should not be shared publicly.

CS 343 Operating Systems Fall 2020

 Page 8 of 10

Accessibility

Any student requesting accommodations related to a disability or other condition is

required to register with ANU (accessiblenu@northwestern.edu; 847-467-5530)

and provide professors with an accommodation notification from AccessibleNU,

preferably within the first two weeks of class. All information will remain

confidential.

Should you need them, additional campus resources are available, including, but

not limited to:

• Accessible NU www.northwestern.edu/accessiblenu/

• CAPS www.northwestern.edu/counseling/index.html

• Student Enrichment Services www.northwestern.edu/enrichment/

I believe in providing reasonable accommodations that allow for full access to

learning for all. Please contact me if there is anything that I should be aware of that

might have an impact on your participation in this course (documented disability,

language challenges, absences for religious observations, etc.)

Diversity and Inclusion

I consider this classroom to be a place where you will be treated with respect, and

I welcome individuals of all ages, backgrounds, beliefs, ethnicities, genders, gender

identities, gender expressions, national origins, religious affiliations, sexual

orientations, ability—and other visible and nonvisible differences. All members of

this class are expected to contribute to a respectful, welcoming, and inclusive

environment for every other member of the class.

file:///C:/Users/Branden/Dropbox/class/cs343/cs343-materials/handouts/www.northwestern.edu/accessiblenu/
file:///C:/Users/Branden/Dropbox/class/cs343/cs343-materials/handouts/www.northwestern.edu/counseling/index.html
file:///C:/Users/Branden/Dropbox/class/cs343/cs343-materials/handouts/www.northwestern.edu/enrichment/

CS 343 Operating Systems Fall 2020

 Page 9 of 10

 Schedule

Lecture Date Topics Readings Labs

1 09/17 Th Introduction, OS Structure, OS

Models, HW/SW interface,

History

Chapter 1,

8.1.2, 10.1,

10.2

Start lab out

2 09/22 Tu Concurrency Sources: hw,

interrupts, threads, processes, ...

2.1, 2.2, 5.1.5,

8.1.1

9/22 is the last day for adding courses or changing sections.

3 09/24 Th Concurrency Sources:

continued

2.1, 2.2, 5.1.5,

8.1.1

Start lab in,

PC lab out

4 09/29 Tu Concurrency Challenges and

Control: races, mutual

exclusion, critical sections

2.3,

Concurrency,

5 10/01 Th Concurrency Challenges and

Control: blocking, mutexes,

spinlocks, semaphores,

condvars, barriers, monitors,

etc.

2.3 (cont.),

8.1.3, Therac

6 10/06 Tu Concurrency Challenges and

Control: deadlocks, detection,

avoidance, prevention,

starvation, lockfree/waitfree

data structures

6, 2.5

7 10/08 Th Scheduling: classic treatment 2.4, 10.3, 8.1.4 PC lab in,

Queue lab out

8 10/13 Tu Scheduling: workload,

queueing, and real-time

perspectives

Workload,

Queueing,

Mars

9 10/15 Th Special topic or Slack

10 10/20 Tu Devices and drivers: principles 5.1-5.3, 10.5

Midterm Exam Review: TBD

Midterm Exam: Around here, time+location TBD

11 10/22 Th Devices and drivers: examples 5.4-5.8 Queue Lab

in, Driver lab

out

12 10/27 Tu OS design principles Chapter 12

13 10/29 Th Virtual memory with paging

and segmentation

3.1, 3.2, 3.3,

3.7

14 11/03 Tu Paging and swapping policies

and their effects, working set,

allocation

3.4-3.6

15 11/05 Th Paging on x64 and Linux 10.4

11/06 is the last day to drop a class.

CS 343 Operating Systems Fall 2020

 Page 10 of 10

16 11/10 Tu Security and Protection 9.1-9.6,

Spectre

Driver lab in,

Paging lab

out

17 11/12 Th File systems: principles and

issues

4.1-4.4

18 11/17 Tu File systems: examples 4.5, 10.6

19 11/19 Th Virtualization, containerization,

the cloud, etc

Chapter 7

20 11/24 Tu Special topic or Slack Paging lab in

Finals week – Exam is Thursday, December 03, 12-2pm

Readings are from the textbook, with these exceptions:

Therac THERAC-25 article

Mars Mars Pathfinder article

Spectre Meltdown/Spectre article

Unix Unix Systems Programming in a Nutshell Handout

Workload Workload Characterization Handout

Queueing Queueing Theory Handout

Concurrency Concurrency Handout

