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Administrivia

• Homework 4
• Due today

• SETI Lab
• Due next week Tuesday

• See pinned Piazza posts on Getting Started

• Test with just one thread before testing with many!!

• If it doesn’t work for one thread, it’ll never work with more than one
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Today’s Goals

• Understand goals and application of virtual memory

• Explore how virtual memory resolves memory problems

• Practice translating virtual addresses to physical addresses

• Bonus: Practice problems at the end
• Also some bonus details on caching page table entries and on

multi-level page tables that we won’t test you on
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• Virtual Memory Concept

• Virtual Memory Process

• Solving Memory Problems with Virtual Memory

• Address Translation

• Virtual Memory Summary

Outline



The reality of memory in a computer
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A process’s view of the memory

• The Address Space of the process

• The illusion:
• Processes run alone on the computer

• They have full access to every memory 
address

• 264 bytes of memory available to them

• The reality:
• There are many processes

• There is only so much RAM available
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Virtual memory enables this illusion

7

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

Virtual Addresses Physical Addresses

OS

Process A

~ FFFF FFFFhex

~ 0hex

Process B

A
d
d
re

ss
 S

p
a
ce

R
A
M



Virtual memory concept

• Disconnect reality of RAM from illusion of main memory

• Processes work with the illusion
• They use virtual addresses to reference where their memory is

• Computer (and OS) work with the reality
• They use physical addresses that are real locations in RAM

• The hardware/OS translates virtual addresses into physical 
addresses
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A system using physical addresses

• Main memory - An array of M contiguous byte-sized cells, 
each with a unique physical address

• Physical addressing
• Most natural way to access it

• Addresses used by the
CPU correspond to bytes
in memory

• Used in simple systems like
early PCs and embedded
microcontrollers

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4
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A system using virtual addresses

• The CPU generates virtual address
• Address translation is done by dedicated hardware (memory management 

unit) via OS-managed lookup table (a Page Table)

• Resulting physical address is used to access memory hierarchy

• Modern processors use virtual addresses
• All addresses

your programs
work with are
virtual!

0:
1:

M-1:

Main memory

Memory
Management

Unit

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100
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Your experiences with Virtual Memory

• In Attack Lab, what was the address of touch2?
• 0x40000-ish, right?

• The same each time you run it too

• But multiple of you were running separate ctarget processes at the 
same time on Moore
• 0x40000-ish was a Virtual Address

• Really, each process’s code was at a totally different Physical 
Address in Moore’s actual RAM
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Virtual Memory

• From here on out, we’ll be working with two different memory 
spaces:
• Virtual Memory (VM): A large (~infinite) space that a process 

believes it, and only it, has access to

• Physical Memory (PM): The limited RAM space your computer must 
share among all processors

• This idea is independent of physical caches
• There are still multiple layers of memory caches in the CPU
• They might use virtual or physical addresses

• We’ll usually assume caches use physical addresses for this class
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Break + Review

13https://wizardzines.com/comics/virtual-memory/ → generally: https://wizardzines.com/comics/

https://wizardzines.com/comics/virtual-memory/
https://wizardzines.com/comics/
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The Operating Systems manages the computer

• The OS is in charge of a computer
• Manages hardware

• Allocates resources to processes

• Enforces restrictions and security

• One resource the OS manages is memory
• For example: a “SEGFAULT” is a message from the OS when a process 

tries to access memory it wasn’t allocated
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We translate between entire pages of memory

• If we want to translate memory from virtual to physical,
the OS is going to need some kind of table with each mapping

• Mapping every virtual byte to some physical byte would require our 
mapping to contain one address per byte
• 8 bytes (one address) of data per byte of data…
• That’s not going to work

• Instead, we organize memory into Pages: contiguous chunks of 
memory (virtual or physical)
• Each virtual page will map to a physical page
• Page size is usually 4 kB or so, occasionally larger (2 MB or 1 GB on x86-64)
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Page Tables list Virtual-to-Physical Translations

• A page table maps virtual pages to physical pages for a process
• One page table entry (PTE) per page of virtual memory

• A separate Page Table exists for each running process
• Each has its own mappings

• Page Table Entries could have three possible values
1. An address for the page in physical memory

2. An address for the page on disk

3. Invalid (no actual data exists at this address, SEGFAULT)
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Why did disk get involved here?

• Physical Memory size: usually a number of GBs these days
• RAM size is usually tens of GBs (8 or 16 GB is common), more on servers

• Users have a lot more data than that though!
• Data and programs are stored on the disk (measured in thousands of GBs)

• When needed we’ll load them into RAM and then work with them

• We can also partially load things into RAM
• Focus on the important parts of data: whatever we’re using right now

• Even programs can be partially loaded into RAM

• Essentially: use RAM as a cache for the disk!
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Example Page Table

• The Page Table has an entry (PTE) for every virtual page
• Valid entries point to memory

• Invalid entries point to disk, or to nowhere at all
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null

null

Page table
(Memory resident - DRAM)

Physical memory

VP 7
VP 4

Disk Memory

Valid
0

1

0
1

0

1

0

1

Physical page number
or  disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Some pages are unallocated 
(i.e., no data there)



Page Hit

• Page hit: reference to a VM word that is in physical memory

null

null

Memory resident
page table

(DRAM)

Physical memory (DRAM)

VP 7
VP 4

Disk memory

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

VPN Offset
VP 2

Page table has an entry for each 
virtual page, so you can jump 
straight to the row that matters
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Page Fault

• Page fault: reference to VM word that is not in physical memory

null

null

Memory resident
page table

(DRAM)

VP 7
VP 4

Valid
0

1

1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

VPN Offset

0
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Handling Page Fault

• Page miss causes page fault (a HW exception, OS code kicks in to handle)

null

null

Memory resident
page table

(DRAM)

VP 7
VP 4

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

VPN Offset
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Handling Page Fault

• Page miss causes page fault (a HW exception, OS code kicks in to handle)

• Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

VP 7
VP 4

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

VPN Offset

Eviction decision is made by software. So can be 
pretty sophisticated! (Beyond scope of this class)
→ fewer page faults (if we do it right) 23
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Handling Page Fault

• Page miss causes page fault (a HW exception, OS code kicks in to handle)

• Page fault handler selects a victim to be evicted (here VP 4)

• The victim page is swapped with the disk block of the requested address

null

null

Memory resident
page table

(DRAM)

VP 7
VP 3

Valid
0

1

1
0

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

VPN Offset

Requires a disk read! (Slow!)
OS suspends process in the meantime.
Resumes it once memory access finishes. 24
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Handling Page Fault

• Offending instruction is restarted: page hit this time!

null

null

Memory resident
page table

(DRAM)

VP 7
VP 3

Valid
0

1

1
0

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

VPN Offset
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Break + Question

• Computer has:
• 8 pages of Virtual Memory

• 4 pages of Physical Memory

• How many entries (rows) does a page table have?

• How many entries can be valid at any time?

26



Break + Question

• Computer has:
• 8 pages of Virtual Memory

• 4 pages of Physical Memory

• How many entries (rows) does a page table have?    8 entries

• How many entries can be valid at any time?     4 valid

• Page Table translates Virtual to Physical
• It needs an entry for each virtual page, so 8 entries

• Rows are valid if they point at physical memory

• So only four entries can be valid (unless they share a physical page)
27
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The Illusion!
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The Reality!
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Memory problems

• What are the challenges to supporting this reality?

1. Which addresses does each process get?
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Problem: How do multiple applications share RAM?

32

CPU
RAM

Process A

Process B

Both processes 
assume they start 
at the beginning of 
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Problem: How do multiple applications share RAM?
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Problem: How do multiple applications share RAM?
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Problem: How do multiple applications share RAM?
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Problem: How do multiple applications share RAM?
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CPU
RAM

Process A

Process B

There’s enough 
RAM for both. 
Why should we 
have to swap?

Challenge here 
is that programs 
are compiled 
with specific 
addresses…

Process A

Process B



Solution: virtual addresses allow RAM sharing

• Programs can use 
whatever virtual 
addresses they want
• Usually, there’s a fixed 

mapping for a given OS

• OS controls physical 
addresses
• Decides which parts of 

RAM are used for which 
things
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Shared libraries

Heap

Code (text)

Data

User stack
%rsp

Process
virtual
memory

brk

Kernel Virtual 
Memory

0x400000
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Dynamic segments
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0x0000000000000000



Memory problems

• What are the challenges to supporting this reality?

1. Which addresses does each process get?

2. How do we move memory around?
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Problem: memory fragmentation
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Problem: memory fragmentation
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Problem: memory fragmentation
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Problem: memory fragmentation
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Problem: memory fragmentation
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Solution: page tables allow for memory to be moved

• Just change the page 
table entry!
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null

null

Page table
(Memory resident - DRAM)

Physical memory (DRAM Cache)

Disk Memory

Valid
0

1

0
1

0

1

0

1

Physical page number
or  disk address
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VP 1

VP 2
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VP 6
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VP 3
null

null
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Solution: page tables allow for memory to be moved

• Just change the page 
table entry!
• Same virtual address 

points at a different 
physical address

• Usually only happens 
when pages are 
swapped to disk and 
then later brought 
back
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null

null

Page table
(Memory resident - DRAM)

Physical memory (DRAM Cache)

Disk Memory

Valid
0

1

0
1

0

1

0

1

Physical page number
or  disk address

PP 0
VP 2

VP 1
PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3
null

null

null



Memory problems

• What are the challenges to supporting this reality?

1. Which addresses does each process get?

2. How do we move memory around?

3. How do we support processes bigger than RAM?
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Problem: processes might be bigger than RAM
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Solution: some pages can be left on disk

• Just leave some 
pages for that 
process on disk

• Page table entry 
still exists for each 
virtual page

• Hopefully working 
set is smaller than 
program memory
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null

null

Page table
(Memory resident - DRAM)

Physical memory (DRAM Cache)

VP 7
VP 4

Disk Memory

Valid
0

1

0
1

0

1

0

1

Physical page number
or  disk address

PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3



Memory problems

• What are the challenges to supporting this reality?

1. Which addresses does each process get?

2. How do we move memory around?

3. How do we support processes bigger than RAM?

4. How do we protect processes from each other?
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Problem: processes can’t be trusted
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Solution: virtual memory isolates process memory

• Each process has separate virtual memory spaces
• No way to access another process’s physical memory unless it is mapped 

to one of your virtual addresses
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Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

Virtual 
Address 
Space for 
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2...

PP 2

PP 6

PP 8

PP 12
...

0

M-1

Address 
translation



Virtual memory can still share memory if desired

• We could share some physical pages across processes to enable 
shared libraries or shared memory
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Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation



VM as a Tool for Memory Protection

• What if we want better 
protection?
• Mark a page as read-only
• Keep a page in memory, but 

only the OS can touch it

• Extend Page Table Entries 
with permission bits!
• Page fault handler checks 

these before remapping

• HW enforces this protection 
(trap into OS if violation 
occurs)
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Process i

AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical 
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11
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kernel (supervisor 
mode)

EXEC

Yes

No

•
•
•

No

EXEC

No
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Memory problems

• What are the challenges to supporting this reality?

1. Which addresses does each process get?

2. How do we move memory around?

3. How do we support processes bigger than RAM?

4. How do we protect processes from each other?

5. How do we deal with how incredibly slow disk is?
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Computing timescales

• Assuming 4 GHz processor, Instruction (with registers):                      0.25 ns
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Jeff Dean
(Google AI):
“Numbers Everyone 
Should Know”

Jim Gray’s analogy:

• Registers are in your 
apartment

• Disk is on Mars



Caching disks

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 

and 
cheaper 

(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

off-chip L2
cache (SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 

costlier
(per byte)
storage 
devices
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Main memory should act 
as a cache for disk!



VM as a Tool for Caching

• We use physical memory as a sort of cache! (called: DRAM cache)
• Store the bulk of your data on disk (very large, very cheap, but very slow)

• And store the currently-used data in main memory (very fast by 
comparison)

• Get the best of both worlds! Large capacity and fast access!

• DRAM cache organization driven by the enormous miss penalty
• DRAM is about 100x slower than SRAM

• Disk is about 100,000x slower than DRAM
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Problem: most things are NOT in RAM

• Disk is MUCH larger than RAM is, so most data will not actually be 
in RAM

• But handling Page Faults takes a long time
• Has to read a page of memory from disk

• So how is our system not incredibly slow?
• Locality to the rescue!
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Locality saves the day (as usual)

• At any point in time, programs tend to access a small set of active virtual pages 
called the working set
• Programs with higher temporal locality will have smaller working sets

• If (working set size < main memory size) 
• High performance for one process after compulsory misses (i.e., the program is loaded)
• Any page can go anywhere in RAM, so no conflicts. Only capacity matters.
• Life is good!

• If ( SUM(working set sizes) > main memory size ) 
• Thrashing: Performance meltdown where pages are swapped to and from disk continuously

• When cache memory is thrashing, CPU runs at the speed of memory. Ow.
• When virtual memory is thrashing, CPU runs at the speed of disk. Yikes!

• Hope you enjoy the commute to Mars. Because that’s where your data is

62



Break + Review

• What are the challenges to supporting this reality?

1. Which addresses does each process get?

2. How do we move memory around?

3. How do we support processes bigger than RAM?

4. How do we protect processes from each other?

5. How do we deal with how incredibly slow disk is?

• Virtual memory addresses all of these problems!
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Address translation visually
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Virtual Memory Physical Memory
address 0x0 address 0x0

increasing 
addresses

increasing 
addresses

Mapping every byte individually 
would be too much bookkeeping



Collecting memory into pages
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Virtual Memory Physical Memory
address 0x0 address 0x0

increasing 
addresses

increasing 
addresses

Instead, we collect memory into 
chunks called “pages”

Each page is exactly the same 
size (usually 4 kB = 4096 bytes 
in real systems)



Mapping virtual pages to physical pages
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Virtual Memory Physical Memory
address 0x0 address 0x0

increasing 
addresses

increasing 
addresses

Each page of virtual memory will 
map to:
• A page of physical memory
• A page on disk
• Nowhere

In this example, the blue and 
green pages are in RAM



Accessing individual bytes within a page
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Virtual Memory Physical Memory
address 0x0 address 0x0

increasing 
addresses

increasing 
addresses

When accessing bytes within a 
page

First, you need to do the 
translation to figure out where 
that entire page is located



Accessing individual bytes within a page
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Virtual Memory Physical Memory
address 0x0 address 0x0

increasing 
addresses

increasing 
addresses

When accessing bytes within a 
page

First, you need to do the 
translation to figure out where 
that entire page is located

Second, you access the data at 
the same offset into the page
(if the mapping exists!)



Address Translation

• Goal: Given virtual address, find corresponding physical address
• (Or get a page fault if the page is not in memory)

• Translation done by Memory Management Unit (hardware)

• But mapping itself is maintained by OS (software)

• Just a table in memory!

• To do the actual translation, look at the address being accessed
• Split it into parts, just like we did with Caches

• Bottom bits of address: Page Offset (location of data within the page)

• Top bits of address: Virtual Page Number (which page to access)
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Breaking down virtual addresses

• Basic Parameters
• N = 2n : Number of addresses in virtual address space

• M = 2m : Number of addresses in physical address space. m ≤ n (usually much less)

• P = 2p : Page size (bytes)

• Components of the virtual address (VA)
• Virtual page number (VPN): n-p bits

• Page Offset: p bits

• Components of the physical address (PA)
• Physical page number (PPN): m-p bits

• Page Offset (same offset as VA): p bits
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Virtual page number (VPN) Page offset

Virtual address (n bits total)

0p-1pn-1

Physical page number (PPN) Page Offset

Physical address (m bits total)

0p-1pm-1



Address Translation With a Page Table

Virtual page number (VPN) Page offset

Physical page number (PPN) Page Offset

Virtual address

Physical address

Valid Physical page number (PPN)

Page table base 
register (PTBR)
CR3 on x86-64

(OS-only register)

Page table (in memory) Page table address 
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

If Valid bit = 1 &&
access mode allowed:
page in memory
(page hit)

VPN is the index 
into the page table 

Access

Access rights mismatch:
prohibited access by process

(protection violation fault)
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Virtual memory example

• Parameters
• Virtual addresses are 12-bits

• Physical addresses are 16-bits

• Page size is 64 bytes

1. How do we split Virtual Addresses into VPN and Offset?

73

Mapping can be anything, 
which is bigger doesn’t really 
matter!

11 10 9 8 7 6 5 4 3 2 1 0



Virtual memory example

• Parameters
• Virtual addresses are 12-bits

• Physical addresses are 16-bits

• Page size is 64 bytes

1. How do we split Virtual Addresses into VPN and Offset?
• Offset is based on page size: 64-bytes ⇨ 6 bits. All the rest are VPN

2. How big are Physical Page Numbers?

74

Mapping can be anything, 
which is bigger doesn’t really 
matter!

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset



Virtual memory example

• Parameters
• Virtual addresses are 12-bits

• Physical addresses are 16-bits

• Page size is 64 bytes

1. How do we split Virtual Addresses into VPN and Offset?
• Offset is based on page size: 64-bytes ⇨ 6 bits. All the rest are VPN

2. How big are Physical Page Numbers? 16-6 = 10 bits

75

Mapping can be anything, 
which is bigger doesn’t really 
matter!

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset



Virtual memory example

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x3F0
• Binary: 
• VPN:
• Offset:

76

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset
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Virtual memory example

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x3F0
• Binary: 0b001111110000
• VPN: 0b001111
• Offset: 0b110000
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11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset



Virtual memory example

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x3F0
• Binary: 0b001111110000
• VPN: 0b001111
• Offset: 0b110000
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VPN PPN Valid

0x00 0x123 1

0x01 0x156 1

0x02 0x143 1

0x03 0x16F 1

0x04 0x1FF 0

0x05 0x107 0

0x06 0x100 0

0x07 0x1C0 0

0x08 0x1D8 0

0x09 0x1BF 0

0x0A 0x000 1

0x0B 0x3FF 1

0x0C 0x308 0

0x0D 0x3FD 0

0x0E 0x111 1

0x0F 0x1F0 1

VPN PPN Valid

0x10 0x237 1

0x11 0x236 1

0x12 0x2B0 1

0x13 0x280 0

0x14 0x120 0

Continues on…

• PPN:

• Offset:    

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset



Virtual memory example

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x3F0
• Binary: 0b001111110000
• VPN: 0b001111
• Offset: 0b110000
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VPN PPN Valid

0x00 0x123 1

0x01 0x156 1

0x02 0x143 1

0x03 0x16F 1

0x04 0x1FF 0

0x05 0x107 0

0x06 0x100 0

0x07 0x1C0 0

0x08 0x1D8 0

0x09 0x1BF 0

0x0A 0x000 1

0x0B 0x3FF 1

0x0C 0x308 0

0x0D 0x3FD 0

0x0E 0x111 1

0x0F 0x1F0 1

VPN PPN Valid

0x10 0x237 1

0x11 0x236 1

0x12 0x2B0 1

0x13 0x280 0

0x14 0x120 0

Continues on…

• PPN: 0b01 1111 0000

• Offset:    0b110000

• Physical address:

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset



Virtual memory example

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x3F0
• Binary: 0b001111110000
• VPN: 0b001111
• Offset: 0b110000
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VPN PPN Valid

0x00 0x123 1

0x01 0x156 1

0x02 0x143 1

0x03 0x16F 1

0x04 0x1FF 0

0x05 0x107 0

0x06 0x100 0

0x07 0x1C0 0

0x08 0x1D8 0

0x09 0x1BF 0

0x0A 0x000 1

0x0B 0x3FF 1

0x0C 0x308 0

0x0D 0x3FD 0

0x0E 0x111 1

0x0F 0x1F0 1

VPN PPN Valid

0x10 0x237 1

0x11 0x236 1

0x12 0x2B0 1

0x13 0x280 0

0x14 0x120 0

Continues on…

• PPN: 0b01 1111 0000

• Offset:    0b110000

• Physical address:
• 0b0111110000110000
• 0x7C30

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset



Break + Question

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x500
• Binary:
• VPN: 
• Offset: 

81

VPN PPN Valid

0x00 0x123 1

0x01 0x156 1

0x02 0x143 1

0x03 0x16F 1

0x04 0x1FF 0

0x05 0x107 0

0x06 0x100 0

0x07 0x1C0 0

0x08 0x1D8 0

0x09 0x1BF 0

0x0A 0x000 1

0x0B 0x3FF 1

0x0C 0x308 0

0x0D 0x3FD 0

0x0E 0x111 1

0x0F 0x1F0 1

VPN PPN Valid

0x10 0x237 1

0x11 0x236 1

0x12 0x2B0 1

0x13 0x280 0

0x14 0x120 0

Continues on…

• PPN: 

• Offset:    

• Physical address:

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset



Break + Question

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x500
• Binary: 0b010100000000
• VPN: 0b010100
• Offset: 0b000000
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VPN PPN Valid

0x00 0x123 1

0x01 0x156 1

0x02 0x143 1

0x03 0x16F 1

0x04 0x1FF 0

0x05 0x107 0

0x06 0x100 0

0x07 0x1C0 0

0x08 0x1D8 0

0x09 0x1BF 0

0x0A 0x000 1

0x0B 0x3FF 1

0x0C 0x308 0

0x0D 0x3FD 0

0x0E 0x111 1

0x0F 0x1F0 1

VPN PPN Valid

0x10 0x237 1

0x11 0x236 1

0x12 0x2B0 1

0x13 0x280 0

0x14 0x120 0

Continues on…

• PPN: INVALID

• Offset:    

• Physical address:
• Page Fault

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset



Break + Practice again

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x0D6
• Binary: 
• VPN: 
• Offset: 
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VPN PPN Valid

0x00 0x123 1

0x01 0x156 1

0x02 0x143 1

0x03 0x16F 1

0x04 0x1FF 0

0x05 0x107 0

0x06 0x100 0

0x07 0x1C0 0

0x08 0x1D8 0

0x09 0x1BF 0

0x0A 0x000 1

0x0B 0x3FF 1

0x0C 0x308 0

0x0D 0x3FD 0

0x0E 0x111 1

0x0F 0x1F0 1

VPN PPN Valid

0x10 0x237 1

0x11 0x236 1

0x12 0x2B0 1

0x13 0x280 0

0x14 0x120 0

Continues on…

• PPN:

• Offset:    

• Physical address:

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset



Break + Practice again

• Parameters
• Virtual addresses are 12-bits
• Physical addresses are 16-bits
• Page size is 64 bytes

• Translate:

• Virtual address: 0x0D6
• Binary: 0b000011010110
• VPN: 0b000011
• Offset: 0b010110
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VPN PPN Valid

0x00 0x123 1

0x01 0x156 1

0x02 0x143 1

0x03 0x16F 1

0x04 0x1FF 0

0x05 0x107 0

0x06 0x100 0

0x07 0x1C0 0

0x08 0x1D8 0

0x09 0x1BF 0

0x0A 0x000 1

0x0B 0x3FF 1

0x0C 0x308 0

0x0D 0x3FD 0

0x0E 0x111 1

0x0F 0x1F0 1

VPN PPN Valid

0x10 0x237 1

0x11 0x236 1

0x12 0x2B0 1

0x13 0x280 0

0x14 0x120 0

Continues on…

• PPN: 0b010 110 1111

• Offset:    0b010110

• Physical address:
• 0b0101101111010110
• 0x5BD6

11 10 9 8 7 6 5 4 3 2 1 0

Virtual Page Number Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Physical Page Number Page Offset



How do we get the actual memory value?

• Same as prior questions in class
• We have a physical address, just read the data from memory

• Pay attention to endianness

• Always little-endian for x86-64 systems

• Pay attention to the size of the memory access

• 1, 2, 4, or 8 bytes

• Good news: this is the easy part of virtual memory questions
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Short Break + Reading values from memory

• What is the 2-byte value at 0x5BD6? (little-endian)

86

Address 0 1 2 3 4 5 6 7

0x5BC0 2E E2 BD 62 EF A0 CD 93

0x5BC8 A4 75 61 2F 0F DB 64 A4

0x5BD0 54 7A F2 60 6E 47 B0 92

0x5BD8 DA 72 8F A8 E5 15 18 CE

0x5BE0 86 BF 6A 6A 92 99 CF 6C



Short Break + Reading values from memory

• What is the 2-byte value at 0x5BD6? (little-endian)
• 0x92B0

87

Address 0 1 2 3 4 5 6 7

0x5BC0 2E E2 BD 62 EF A0 CD 93

0x5BC8 A4 75 61 2F 0F DB 64 A4

0x5BD0 54 7A F2 60 6E 47 B0 92

0x5BD8 DA 72 8F A8 E5 15 18 CE

0x5BE0 86 BF 6A 6A 92 99 CF 6C
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• Virtual Memory Concept

• Virtual Memory Process

• Solving Memory Problems with Virtual Memory

• Address Translation

• Virtual Memory Summary

Outline



Virtual memory idea

• Processes see Virtual Addresses
• Per-process representation of memory

• The OS and hardware see Physical Addresses
• Real locations in RAM

• The OS keeps a Page Table for each process
• Translates Virtual Pages (chunks of virtual memory)

into Physical Pages (chunks of physical memory)
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The MMU does address translation using a Page Table

Virtual page number (VPN) Page offset

Physical page number (PPN) Page Offset

Virtual address

Physical address

Valid Physical page number (PPN)

Page table base 
register (PTBR)
CR3 on x86-64

(OS-only register)

Page table (in memory) Page table address 
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

If Valid bit = 1 &&
access mode allowed:
page in memory
(page hit)

VPN is the index 
into the page table 

Access

Access rights mismatch:
prohibited access by process

(protection violation fault)
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Memory Access: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in cache/memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTE address

PTE
1

2

3

4

5
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Memory Access: Page Fault

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTE address

PTE

1

2

3

4

5

Disk

Page fault handler (OS code)

Victim page

New page

Exception

6

7
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93

• Virtual Memory Concept

• Virtual Memory Process

• Solving Memory Problems with Virtual Memory

• Address Translation

• Virtual Memory Summary

Outline



94

• Bonus: Memory System Practice Problems

Outline



Simple Memory System Example

• Addressing
• 14-bit virtual addresses

• 12-bit physical address

• Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset
95



Simple Memory System: Page Table

We only show a few entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

0-2E

ValidPPNVPN…

…
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Simple Memory System: TLB

• 16 entries

• 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet
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Simple Memory System: L1 Cache

• 16 lines, 4-byte block size

• Physically addressed

• Direct mapped
11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BOCICT

03DFC2111167

––––0316

36F0721D10D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B0B1B2B3ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B0B1B2B3ValidTagIdx
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Address Translation Example #1

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

 BO ___ CI___ CT ____      Hit? __              Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BOCICT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

0001010 11010

0 0x5 0x0D Y 0x36

(using the Page Table, TLB, and L1 cache shown in the preceding slides)

Address space: 14-bit VAddr, 12-bit PAddr, 64-byte page
TLB: 16 entries, 4-way 
L1 Cache: 16 lines, 4-byte block, direct mapped,

Physically addressed

movb (%rcx), %al
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Address Translation Example #2

Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

 BO ___ CI___ CT ____      Hit? __              Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

BOCICT

11110001110100

0x2E 2 0x0B N Y TBD

(using the Page Table, TLB, and L1 cache shown in the preceding slides)

Likely invalid page. Maybe needs to 
read from disk. Either way we don’t 
know the PPN.
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Address Translation Example #3

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

 BO___ CI___ CT ____      Hit? __              Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO
PPN

BOCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem

(using the Page Table, TLB, and L1 cache shown in the preceding slides)

Cache miss, so needs to read byte 
values from main memory
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102

• Bonus: Optimizing Page Table accesses with a TLB

Outline



Accessing page tables is slow

• Problem: page tables are in memory
• And we need to access them to find our address to access memory

• Two memory accesses per access!!! 

• Page table entries (PTEs) are cached in L1, L2, etc, like any other 
data in memory
• PTEs may be evicted by other data references. Oops.

• PTE access still requires average effective memory access delay

103



Speeding up Translation with a TLB

• Solution: Translation Lookaside Buffer (TLB)
• Small hardware cache memory inside MMU

• Contains page table entries for a small number of pages

• Maps virtual page numbers to physical page numbers

• Reduces issues with data kicking PTEs out of caches!

• Like cache memories, uses set indices, tags, and valid bits
• VPN split into: TLB tag and TLB index (just like caches, because it is one!)

• No need for a block offset equivalent (PTEs have a single value)
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TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3
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TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)

Fortunately, TLB misses are rare. Why? Locality. It’s always locality.
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hardware
hardware or OS software
OS software

Virtual Address

TLB
Lookup

Page Table
Access

Update 
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access 
Permitted

Protection
Fault

SEGFAULT

Page 
in Mem

Check cacheFind in Disk Find in Mem

Address translation process
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• Bonus: Multi-level Page Tables

Outline



Multi-Level Page Tables

• Suppose:
• 4KB (212) page size, 48-bit address space, 8-byte PTE 

• How big is the page table?
• Would need a 512 GB page table!

• 248 * 2-12  * 23 = 239 bytes
• That’s just meta-data!

Where does the data go?

• Common solution:
• Multi-level page tables
• Split the VPN into multiple pieces, 1 per level
• Example: 2-level page table

• Level 1 table: each PTE points to a level 2 page table
(always memory resident)

• Level 2 table: each PTE points to a page 
(paged in and out like any other data, maybe not even allocated!)

Level 1

Table

...

Level 2

Tables

...
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A Two-Level Page Table Hierarchy

Level 1 page table

...

Level 2 page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023 
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs 

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

If you’re not using most of the address space
(which you’re not), don’t need most level 2 
page tables! So don’t allocate them!

1 table
1024 entries

3 tables, NOT 1024!
1024 entries each
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Multi-level page table: Core i7

CR3

Physical  

address

of page

Physical 

address

of L1 PT

9

VPO

9 12 Virtual 

address

L4 PT

Page 

table

L4 PTE

PPN PPO

40 12 Physical 

address

Offset into 

physical and 

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40*
/

40*
/

40*
/

40*
/

40*
/

12/

512 GB 
region 

per entry

1 GB 
region 

per entry

2 MB 
region 

per entry

4 KB
region 

per entry

*aligned to a 4K-boundary 111



End-to-end Core i7 Data Address Translation
CPU

VPN VPO

36 12

TLBT TLBI

630

...

L1 d-TLB (64 sets, 4 
entries/set)

VPN1 VPN2

99

PTE

CR
3

PPN PPO

40 12

Page tables

L1 d-TLB miss

L1 d-TLB
hit

Physical

address 

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and 

main memory

L1 d-cache 

(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

L2 TLB

L2 TLB hit

L2 TLB miss
VPNVPN

data

112
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