
Lecture 12
Cache Memories

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2025

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Deadline reminders
• Homework 3 on Thurday

• Attack Lab next week Tuesday

• Next week
• Homework 4 & SETI Lab come out

• No lecture next week Thursday

• Enjoy the break

2

Today’s Goals

• Understand how locality makes a cache useful

• Discuss organization of various cache designs
• Direct-mapped caches

• N-way set-associative caches

• Fully-associative caches

3

Caching in a memory hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Level k:

Level k+1:

Blocks cannot be stored in an arbitrary location!
They can only live at one of a fixed set of locations.
In this example: they must be in the same
“column” for both levels.

4

Request
14

General caching concepts

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
 k:

Level
k+1:

1414

14

4*

5

• Program needs object d, which is stored in some
block b

• Cache hit

• Program finds b in the cache at level k
e.g., block 14

12 Request
12

General caching concepts

• Program needs object d, which is stored in some
block b

• Cache hit

• Program finds b in the cache at level k
e.g., block 14

• Cache miss

• b is not at level k, so the level k cache must
fetch it from level k+1,
e.g., block 12

• If the level-k cache is full, then some current
block must be replaced (evicted). Which one is
the “victim”?

• Here, we pick 4; same column as 12

• 4 is “dirty”, need to write back to k+1

• More on this next lecture

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
 k:

Level
k+1:

14

12

4*

Request
12

4*4*12
12

“ * ” means the block is dirty
(i.e., it has been modified)

6

7

• Locality of Reference

• Cache Organization

• Associativity

Outline

Caching speeds up code

• Cache: smaller, faster storage device that keeps copies of a subset
of the data in a larger, slower device
• If the data we access is already in the cache, we win!

• Can get access time of faster memory, with overall capacity of larger

• But how do we decide which data to keep in the cache?
• Can we predict which data is likely to be necessary in the future?

8

Locality

• Goal: predict which data the CPU will want to access
• So we can bring it to (and keep it in!) fast memory
• Problem: memory is huge! (billions of bytes) how do you decide which to save?

• Principle of Locality
• Programs tend to access data in predictable ways

1. Temporal locality
• Recently referenced items are likely to be referenced in the near future

2. Spatial locality
• Items with nearby addresses tend to be referenced close together in time

9

Types of locality practice

• Temporal locality
• Recently referenced items are likely to be referenced in the near future

• Spatial locality
• Items with nearby addresses tend to be referenced close together in time

• Quiz: what kind of locality?
• Data

• Reference array elements in succession:

• Reference sum each iteration:

• Instructions

• Execute instructions in sequence:

• Cycle through loop repeatedly:

10

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality

Locality example

• Can get a sense for whether a function has good locality just by looking at its
memory access patterns

• Does this function have good locality?

• Yes!
• Array is accessed in same row-major order in which it is stored in memory
• a through a+3 , a+4 through a+7, a+8 through a+11, etc.

int sumarrayrows(int a[M][N]){

 int sum = 0;

 for (int i = 0; i < M; i++) {

 for (int j = 0; j < N; j++) {

 sum += a[i][j];

 }

 }

 return sum;

}

Temporal or spatial locality?

11

Spatial: accesses to array
Temporal: accesses to sum

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

Locality example

• Does this function have good locality?

• No!
• Scans array column-wise instead of row-wise
• a through a+3, then a+4*N through a+4*N+3, etc.
• Holy jumping around memory Batman!

• More on that in a later lectures

int sumarraycols(int a[M][N]){

 int sum = 0;

 for (int j = 0; j < N; j++) {

 for (int i = 0; i < M; i++) {

 sum += a[i][j];

 }

 }

 return sum;

}

12

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

Locality to the Rescue!

• How can we exploit locality to bridge the CPU-memory gap?
• Use it to determine which data to put in a cache!

• Spatial locality
• When level k needs a byte from level k+1, don’t just bring one byte
• Bring neighboring bytes as well!
• Good chances we’ll need them too in the near future

• Temporal locality
• Anything accessed goes in the cache, and we’ll try to keep it there for a while
• Good chances we’ll need it again in the near future

• Result: most accesses should be cache hits!
• Memory system: size of largest memory, with speed close to that of fastest

memory

13

Cache misses will still happen

• Only 1%-0.1% of memory is in the cache
• So we’ll sometimes need to access the other 99%

• When evaluating system performance, the most important part is
understanding why a cache miss occurred

14

What causes a cache miss?

• Cold (compulsory) miss
• Cold misses occur when a block is accessed for the first time

• No one ever accessed it, so there wasn’t any reason to bring it into cache

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger than the cache

• There’s no way the working set can all fit in the cache, so there will be misses

• Conflict miss
• In most caches, blocks cannot be stored in any available slot

• If two blocks need to go in the same slot, need to evict the old one to store the new!

• If after that, we need to access the old block, conflict miss!

• We had a conflict, evicted a block, and now we miss trying to access that block

• Note: can happen even when there is “room” elsewhere in the cache!

• We’ll show examples of this next lecture

15

Break + Question

• When you first start up a program, it runs really slowly for a few
seconds. What kind of cache misses are occurring?

• When you have too many browser tabs open and active, all of the
tabs run more slowly. What kind of cache misses are occurring?

16

Miss types: Cold, Capacity, Conflict

Break + Question

• When you first start up a program, it runs really slowly for a few
seconds. What kind of cache misses are occurring?

• Cold (aka Compulsory) misses. The data has never been loaded before!

• When you have too many browser tabs open and active, all of the
tabs run more slowly. What kind of cache misses are occurring?

• Capacity misses. You have too much data to fit it all in the cache

• Could be Conflict misses as well, but probably not

17

Miss types: Cold, Capacity, Conflict

18

• Locality of Reference

• Cache Organization

• Associativity

Outline

Cache memories

• A specific instance of the general principle of caching
• Small, fast SRAM-based memories between CPU and main memory

• Can include multiple levels

• L1 = small, but really fast, L2 = larger, slower, L3, etc.

• CPU looks for data in caches first
• e.g., L1, then L2, then L3, then finally in main memory as a last resort

• Mechanisms we’ll see today are implemented in hardware

19

How You Probably Thought a Memory Access Worked

Some memory address

Address of word:

Memory:

%rax

%rdx

%rcx

%rbx

%rsi

%rdi

%rsp 0x104

20

...

return var;

...

...

movq -12(%rsp),%rax

...

How a Memory Access Actually Works

Some memory address

Address of word:

Memory:

%rax

%rdx

%rcx

%rbx

%rsi

%rdi

%rsp 0x104

L1 Cache:L2 Cache:

...

...

21

...

return var;

...

...

movq -12(%rsp),%rax

...

General Cache Organization (S, A, B)

A blocks per set (associativity)

K = 2s sets

cache set

B-1 2 1 0tagv

B = 2b bytes per cache block (the data)

Cache size:
C = K x A x B data bytes

valid bit

cache block
(aka cache line)

Set ≈ column
from last lecture.
Specific data can
go in only one
set!

22

tag identifies which data
is in this cache block

Cache Access

Some memory address

Address of word:

Cache:

%rax

%rdx

%rcx

%rbx

%rsi

%rdi

%rsp 0x104

t bits s bits b bits

23

...

return var;

...

...

movq -12(%rsp),%rax

...

Cache Read (1): Locate Set

A blocks per set

K = 2s sets

t bits s bits b bits

Address of word:

tag set
index

block
offset

• Locate set

0xFF

0xFF

Each address maps to a particular set!
Data has to be stored at that particular set!

Even if that set is full and there would be space elsewhere!
(That’s where conflict misses come from.)

24

Cache Read (2): Tag Match + Valid

A blocks per set

K = 2s sets

tagv

valid bit

t bits s bits b bits

Address of word:

tag set
index

block
offset

• Locate set
• Locate block in set
• Tag matches + valid bit set
→ Cache Hit!

0xFF

0xFF

0x1E45

0x1E451

Within a set, could be anywhere! So, need
to check all blocks!

But if it’s not in that set, it’s not in the
cache at all! (It’s the only place it could be.)

25

Cache Read (3): Block Offset

A blocks per set

K = 2s sets

012B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

data begins at this offset

• Locate set
• Locate block in set
• Tag matches + V bit set
→ Cache Hit!
• Locate data starting at offset

block
offset

0xFF

0xFF

0x1E45

0x1E451

0x2

2

26

00…01

Example: 128 sets, 64 bytes per block

63 2 1 0

127 66 65 64

191 130 129 128

Memory:

t bits s bits b bits

6510 = 100 00012

00...0 0000001 000001

64 bytes per block → b = 6 bits
128 sets → s = 7 bits
remaining address bits → t bits

address of a byte in memory

A blocks per set

set 0:

set 1:

set 2:

set 127:

Goal: Get byte M[65] from cache

QUIZ #1: which set
should we look in?

QUIZ #2: which tag
are we looking for?

QUIZ #3: which byte
within the block is the
one that we want?

27

Cache access overview

A blocks per set

2s sets

012B-1tagv

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

data begins at this offset

block
offset

Address of word:
%rax

%rdx

%rcx

%rbx

%rsi

%rdi

%rsp 0x104

28

...

return var;

...

...

movq -12(%rsp),%rax

...

valid bit

tag identifies which data
is in this cache block

Break + Question

• 64-bit, byte-addressed system

• 32 kB cache
• 512 sets and 64-byte blocks

• How many bits for Tag?

• A: 6 bits

• B: 9 bits

• C: 17 bits

• D: 49 bits

29

t bits s bits b bits

Address of word:

tag set
index

block
offset

s bits

Break + Question

• 64-bit, byte-addressed system

• 32 kB cache
• 512 sets and 64-byte blocks

• How many bits for Tag? (6 bits for block, 9 bits for set)

• A: 6 bits

• B: 9 bits

• C: 17 bits

• D: 49 bits (Tag is remaining bits. 64 - 6 - 9 = 49)

30

t bits s bits b bits

Address of word:

tag set
index

block
offset

s bits

What about writes?

• Multiple copies of data exist:
• L1, L2, Main Memory, Disk

• Don’t want them to get (or at least not to stay) out of sync!

• Otherwise, who do you believe?

• Multiple configuration options that a cache could have

31

Write configurations

• What to do on a write-hit?
• Write-through (write immediately to memory)
• Write-back (delay write until we evict this cache block)

• Need a dirty bit (indicate if block differs from memory)
• We had an example of that last lecture

• What to do on a write-miss?
• Write-allocate (load into cache, update block in cache)

• Good if more writes to the location follow
• No-write-allocate (writes immediately to memory, doesn’t bring into cache)

• Typical combinations
• Write-back + Write-allocate ← by far the most common
• Write-through + No-write-allocate

32

33

• Locality of Reference

• Cache Organization

• Associativity

Outline

Cache memory associativity

• When designing a cache, a number of parameters to choose
• Total size (C), cache block size (B), number of sets (K), …

• The most interesting one: associativity (A)
• i.e., how many cache blocks per set

• Has a significant impact on effectiveness (and complexity!)

34

Associativity choices

• Associativity 1 → direct-mapped caches
• One cache block per set, data blocks can only go in that one cache block

• Whenever we place data in a set, must evict whatever is there

• Associativity >1 → set-associative caches
• Can keep multiple blocks that would map to the same set

• Single set → fully-associative caches
• Any block can go anywhere, 1 big set, tag is all that matters

• Very rare for cache memories due to expensive hardware

35

Direct-mapped cache (associativity = 1)

K = 2s sets

Direct mapped: One block per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

find set

36

Direct-mapped cache (associativity = 1)

Direct mapped: One block per set
Assume: cache block size 8 bytes

t bits 0…01 100

7 6 5 0tagv 4 123

tag match? if yes → hitvalid? +

block offset

tag

37

Address of int:

Direct-mapped cache (associativity = 1)

Direct mapped: One block per set
Assume: cache block size 8 bytes

t bits 0…01 100

7 6 5 0tagv 4 123

tag match? if yes → hitvalid? +

int is here (4 bytes)

block offset

38

Address of int:

Direct-mapped cache (associativity = 1)

K = 2s sets

Direct mapped: One block per set
Assume: cache block size 8 bytes

t bits 0…01 100

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

find set

If tag doesn’t match or valid bit is not set: cache miss!
→ old block is evicted and replaced with currently requested one

XX tag1 7 6 5 04 123

39

Address of int:

Direct-mapped cache simulation

x
t=1 s=2 b=1

xx x

M=16 addresses,
 byte-addressable
B=2 bytes/block
K=4 sets
A=1 blocks/set

40

offset 0 1 2 3

0x0 m[0] m[1] m[2] m[3]

0x4 m[4] m[4] m[6] m[7]

0x8 m[8] m[9] m[10] m[11]

0xC m[12] m[13] m[14] m[16]

Memory

m[0] is the
value of
memory at
address 0

The actual
values are
irrelevant for
this problem

Direct-mapped cache simulation

x
t=1 s=2 b=1

xx x

M=16 addresses,
 byte-addressable
B=2 bytes/block
K=4 sets
A=1 blocks/set

41

m[0] is the
value of
memory at
address 0

The actual
values are
irrelevant for
this problem

Every Block in the cache holds two bytes, so
we can split memory into blocks

Every two bytes is a block. And blocks are
aligned (so bytes 1 and 2 are separate blocks)

offset 0 1 2 3

0x0 m[0] m[1] m[2] m[3]

0x4 m[4] m[4] m[6] m[7]

0x8 m[8] m[9] m[10] m[11]

0xC m[12] m[13] m[14] m[16]

Memory

Direct-mapped cache simulation

7 [0 11 12]

8 [1 00 02]

1 [0 00 12]

1 [0 00 12]

x
t=1 s=2 b=1

xx x

blockv tag

0 [0 00 02]

1 0 m[1] m[0]1 0 m[1] m[0]

1 0 m[7] m[6]

1 1 m[9] m[8]1 0 m[1] m[0]

1 0 m[7] m[6]
miss

hit

miss

miss

miss

M=16 addresses,
 byte-addressable
B=2 bytes/block
K=4 sets
A=1 blocks/set

Address trace
(reads, one byte per read):

set 002

set 012

set 102

set 112

1 1 m[9] m[8]0
0
0
0

47

offset 0 1 2 3

0x0 m[0] m[1] m[2] m[3]

0x4 m[4] m[4] m[6] m[7]

0x8 m[8] m[9] m[10] m[11]

0xC m[12] m[13] m[14] m[16]

Memory

What are the types of each miss here?

7 [0 11 12]

8 [1 00 02]

1 [0 00 12]

1 [0 00 12]

x
t=1 s=2 b=1

xx x

Conflict misses:
There is “room” in the cache,
but two blocks map to the same set;
one evicts the other!

blockv tag

0 [0 00 02] miss

hit

miss

miss

miss

M=16 addresses,
 byte-addressable
B=2 bytes/block
K=4 sets
A=1 blocks/set

Address trace
(reads, one byte per read):

set 002

set 012

set 102

set 112

0
0

48

Compulsory
Miss

Compulsory
Miss

Compulsory
Miss

Conflict
Miss

1 0 m[7] m[6]

Options:
• Compulsory
• Capacity
• Conflict

1 0 m[1] m[0]

offset 0 1 2 3

0x0 m[0] m[1] m[2] m[3]

0x4 m[4] m[4] m[6] m[7]

0x8 m[8] m[9] m[10] m[11]

0xC m[12] m[13] m[14] m[16]

Memory

Pause for questions on direct-mapped caches

49

Associativity choices

• Associativity 1 → direct-mapped caches
• One cache block per set, blocks can only go in that one block

• Whenever we place data in a set, must evict whatever is there

• Associativity >1 → set-associative caches
• Can keep multiple cache blocks that would map to the same set

• Single set → fully-associative caches
• Any cache block can go anywhere, 1 big set, tag is all that matters

• Very rare for cache memories due to expensive hardware

50

2-way set-associative cache (associativity = 2)

A = 2: Two blocks per set
Assume: block size 8 bytes

t bits 0…01 100

Address of short:

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

find set

51

2-way set-associative cache (associativity = 2)

A = 2: Two blocks per set
Assume: block size 8 bytes

t bits 0…01 100

Address of short:

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

compare both

valid? + tag match? if yes → hit

block offset

tag

The data we want is either on the left, or on the right, or not in the cache at all.
It can’t be anywhere else! Addresses map to a single set!

52

2-way set-associative cache (associativity = 2)

A = 2: Two blocks per set
Assume: block size 8 bytes

t bits 0…01 100

Address of short:

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

compare both

valid? + tag match? if yes = hit

block offset

short is here (2 bytes)

If no match:
• One block in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

• More clever → lower miss rate, but harder to implement in hardware

53

2-way set-associative cache simulation

Address trace (reads, one byte per read):
 0 [00 0 02]
 1 [00 0 12]
 7 [01 1 12]
 8 [10 0 02]
 0 [00 0 02]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0 Set 1

The same address sequence in the
direct mapped cache resulted in:
miss
hit
miss
miss
miss

M=16 addresses, byte-addressable,
B=2 bytes/block, K=2 sets, A=2 blocks/set

Higher associativity =
Less likely to have to evict!

Temporal locality: want data
in cache to stay in cache!

v Tag Block

Same total size and block size as before.
Associativity (and thus # of sets) changed.

54

Pause for questions on set-associative caches

55

Fully-associative caches

• What changes with fully-associative caches?
• Anything can go anywhere

• Only one set (s = 0 bits)

• Otherwise, same steps as for a set-associative cache
• Compare tag against all blocks in the set

56

Fully-Associative Cache Practice

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

57

??
t=?? s=0 b=??

??

Fully-Associative Cache Practice

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

58

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Fully-Associative Cache Practice

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400

• 0x0410

• 0xC002

• 0xC048

59

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Fully-Associative Cache Practice

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400⇨0b0000 0100 0000 0000

• 0x0410⇨0b0000 0100 0001 0000

• 0xC002⇨0b1100 0000 0000 0010

• 0xC048⇨0b1100 0000 0100 1000

60

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Fully-Associative Cache Practice

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400⇨0b0000 0100 0000 0000

• 0x0410⇨0b0000 0100 0001 0000

• 0xC002⇨0b1100 0000 0000 0010

• 0xC048⇨0b1100 0000 0100 1000

61

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400⇨0b0000 0100 0000 0000

• 0x0410⇨0b0000 0100 0001 0000

• 0xC002⇨0b1100 0000 0000 0010

• 0xC048⇨0b1100 0000 0100 1000

62

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

You figure out
the rest!

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400⇨0b0000 0100 0000 0000 → Tag 0x010 HIT

• 0x0410⇨0b0000 0100 0001 0000 → Tag 0x010 (same block!) HIT

• 0xC002⇨0b1100 0000 0000 0010

• 0xC048⇨0b1100 0000 0100 1000

63

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400⇨0b0000 0100 0000 0000 → Tag 0x010 HIT

• 0x0410⇨0b0000 0100 0001 0000 → Tag 0x010 (same block!) HIT

• 0xC002⇨0b1100 0000 0000 0010 → Tag 0x300 HIT

• 0xC048⇨0b1100 0000 0100 1000 → Tag 0x301 (different block!) MISS

64

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Associativity Pros and Cons

• Direct-mapped
• Simplest to implement: look-up compares tag with 1 cache block

→ requires fewer transistors, which can be used elsewhere on the chip
• Conflicts can easily lead to thrashing

• Two cache blocks map to the same set, program needs both, and they keep kicking
each other out of the cache. Lots of misses. Bad times.

• Set-associative
• More complex implementation: requires more (HW) tag comparators
• Lower miss rate than direct-mapped caches (fewer conflict misses)

• 2-way is a significant improvement over direct-mapped
• 4-way is a more modest improvement over 2-way, and so on

• Fully-associative
• One comparator per cache block in the cache means a LOT of hardware. Ouch.

• Often a deal-breaker for hardware
• Very low miss rate!

65

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

Keep separate caches for instructions and
data. Don’t want them to step on each
other’s toes!

L2 unified cache:
 256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Last resort before going to main memory
(slow!) So want this large and highly-
associative, to have very few misses.

Block size: 64 bytes for all caches.

66

67

• Locality of Reference

• Cache Organization

• Associativity

Outline

	Default Section
	Slide 1: Lecture 12 Cache Memories

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Caching in a memory hierarchy
	Slide 5: General caching concepts
	Slide 6: General caching concepts

	Locality of Reference
	Slide 7: Outline
	Slide 8: Caching speeds up code
	Slide 9: Locality
	Slide 10: Types of locality practice
	Slide 11: Locality example
	Slide 12: Locality example
	Slide 13: Locality to the Rescue!
	Slide 14: Cache misses will still happen
	Slide 15: What causes a cache miss?
	Slide 16: Break + Question
	Slide 17: Break + Question

	Cache Organization
	Slide 18: Outline
	Slide 19: Cache memories
	Slide 20: How You Probably Thought a Memory Access Worked
	Slide 21: How a Memory Access Actually Works
	Slide 22: General Cache Organization (S, A, B)
	Slide 23: Cache Access
	Slide 24: Cache Read (1): Locate Set
	Slide 25: Cache Read (2): Tag Match + Valid
	Slide 26: Cache Read (3): Block Offset
	Slide 27: Example: 128 sets, 64 bytes per block
	Slide 28: Cache access overview
	Slide 29: Break + Question
	Slide 30: Break + Question
	Slide 31: What about writes?
	Slide 32: Write configurations

	Associativity
	Slide 33: Outline
	Slide 34: Cache memory associativity
	Slide 35: Associativity choices
	Slide 36: Direct-mapped cache (associativity = 1)
	Slide 37: Direct-mapped cache (associativity = 1)
	Slide 38: Direct-mapped cache (associativity = 1)
	Slide 39: Direct-mapped cache (associativity = 1)
	Slide 40: Direct-mapped cache simulation
	Slide 41: Direct-mapped cache simulation
	Slide 47: Direct-mapped cache simulation
	Slide 48: What are the types of each miss here?
	Slide 49: Pause for questions on direct-mapped caches
	Slide 50: Associativity choices
	Slide 51: 2-way set-associative cache (associativity = 2)
	Slide 52: 2-way set-associative cache (associativity = 2)
	Slide 53: 2-way set-associative cache (associativity = 2)
	Slide 54: 2-way set-associative cache simulation
	Slide 55: Pause for questions on set-associative caches
	Slide 56: Fully-associative caches
	Slide 57: Fully-Associative Cache Practice
	Slide 58: Fully-Associative Cache Practice
	Slide 59: Fully-Associative Cache Practice
	Slide 60: Fully-Associative Cache Practice
	Slide 61: Fully-Associative Cache Practice
	Slide 62: Break + Question
	Slide 63: Break + Question
	Slide 64: Break + Question
	Slide 65: Associativity Pros and Cons
	Slide 66: Intel Core i7 Cache Hierarchy

	Wrapup
	Slide 67: Outline

