Lecture 06 Arithmetic Instructions

CS213 – Intro to Computer Systems Branden Ghena – Winter 2025

Slides adapted from:

St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

- Pack Lab due Tuesday by midnight
 - Expect office hours to start getting very busy

- Homework 2
 - Releases later today
 - Covers material through today's lecture
 - Due in 1 week (Thursday, January 30th)
- Bomb Lab
 - Comes out next week
 - Partnership survey sometime this weekend

Administrivia

- Midterm exam
 - Exactly two weeks from today (February 6th)
 - Taken here in the classroom
 - Details next week

Instruction Set Architecture sits at software/hardware interface

Three Basic Kinds of Instructions

- 1. Transfer data between memory and register
 - Load data from memory into register
 - %reg = Mem[address]
 - Store register data into memory
 - Mem[address] = %reg

Remember: Memory is indexed just like an array of bytes!

2. Perform arithmetic operation on register or memory data

•
$$c = a + b;$$
 $z = x << y;$ $i = h \& g;$

- 3. Control flow: what instruction to execute next
 - Unconditional jumps to/from procedures
 - Conditional branches

In x86-64 these basic types can often be combined

Operand Combinations

Cannot do memory-memory transfer with a single instruction

Today's Goals

- Continue exploring x86-64 assembly
 - Arithmetic
- Discuss real-world x86-64
 - Special cases
 - Generating assembly
- Understand condition codes
 - Method for testing Boolean conditions

Outline

Arithmetic Instructions

- Special Cases
 - Non 64-bit Data
 - Load Effective Address

Condition Codes

Viewing x86-64 Assembly

Some arithmetic operations

Two-operand instructions

Instru	ction	Effect	Description
addq	S, D	D ← D + S	Add
subq	S, D	D ← D − S	Subtract
imulq	S, D	D ← D * S	Multiply
xorq	S, D	D ← D ^ S	Exclusive or
orq	S, D	D ← D S	Or
andq	S, D	D ← D & S	And

Operand types

- Immediate
- Register
- Memory (Only one can be memory)

Shifts

Instruction	Effect	Description
sarq k, D	D ← D >> k	Shift arithmetic right
shrq k, D	D ← D >> k	Shift logical right
salq k, D	D ← D << k	Shift left
shlq k, D	D ← D << k	Shift left (same as salq)

Be careful with operand order!!! (Matters for some operations)

A note on instruction names

- Instruction names can look somewhat arcane
 - shlq? movzbl?

rlwbv - Rotate Left Wheel and Buy a Vowel

The youth still get Wheel of Fortune jokes, right?

- But, good news: names (usually) follow conventions
 - Common prefixes (add), suffixes (b, w, 1, q), etc.
 - So you can understand pieces separately
 - Then combine their meanings

Some Arithmetic Operations

• Unary (one-operand) Instructions:

Instruction	Effect	Description
incq D	D ← D + 1	Increment
decq D	D ← D − 1	Decrement
negq D	D ← -D	Negate
notq D	D ← ~D	Complement

• See textbook Section 3.5.5 for more instructions: mulq, cqto, idivq, divq

op src, dst

• Suppose a → %rax, b → %rbx, c → %rcx Convert the following C statement to x86-64:

$$a = b + c;$$

op src, dst

• Suppose a → %rax, b → %rbx, c → %rcx Convert the following C statement to x86-64:

op src, dst

• Suppose a → %rax, b → %rbx, c → %rcx Convert the following C statement to x86-64:

$$a = b + c;$$

```
movq $0, %rax addq %rbx, %rax addq %rcx, %rax
```

Is this okay?

op src, dst

• Suppose a → %rax, b → %rbx, c → %rcx Convert the following C statement to x86-64:

$$a = b + c;$$

```
movq $0, %rax addq %rbx, %rax addq %rcx, %rax
```

Is this okay?

Yes: just a little slower

op src, dst

• Suppose $a \rightarrow \text{%rax}$, $b \rightarrow \text{%rbx}$, $c \rightarrow \text{%rcx}$ Convert the following C statement to x86-64:

$$a = b + c;$$

addq %rbx, %rcx movq %rcx, %rax

Is this okay?

op src, dst

• Suppose a → %rax, b → %rbx, c → %rcx Convert the following C statement to x86-64:

$$a = b + c;$$

addq %rbx, %rcx movq %rcx, %rax

Is this okay?

Probably not: it overwrites C which might still be needed later in code!

Question + Break

Reminder

addq, src, $dst \rightarrow dst = dst + src$

Suppose a → %rax, b → %rbx, c→ %rcx
 Convert the following C statement to x86-64:

$$c = (a-b) + 5;$$

```
[A] [B] movq %rax, %rcx movq %rax, %rcx subq %rbx, %rcx addq $5, %rcx movq $5, %rcx [C] subq %rcx, %rax, %rbx addq %rcx, %rcx, $5 addq $5, %rax movq %rax, %rcx
```

Question + Break Reminder: addq, src, $dst \rightarrow dst = dst + src$

• Suppose a → %rax, b → %rbx, c→ %rcx Convert the following C statement to x86-64:

$$c = (a-b) + 5;$$

```
movq %rax, %rcx
subq %rbx, %rcx
addq $5, %rcx

[C]
subq %rcx, %rax, %rbx
addq %rcx, %rcx, $5
Not x86
```

```
[B]
movq %rax, %rcx
subq %rbx, %rcx
movq $5, %rcx
[D]
```

[D]
subq %rbx, %rax
addq \$5, %rax
movq %rax, %rcx

c = 5

Overwrites a

Outline

Arithmetic Instructions

- Special Cases
 - Non 64-bit Data
 - Load Effective Address

Condition Codes

Viewing x86-64 Assembly

Moving data of different sizes

- "Vanilla" move can only move between source and dest of the same size
 - Larger → smaller: use the smaller version of registers
 - Smaller → larger: extension! We have two options: zero-extend or sign-extend

Instruction	Effect	Description
movX S,D $X \in \{q, 1, w, b\}$	D ← S	Copy quad-word (8B), long-word (4B), word (2B) or byte (1B)
$movsXX S,D$ $XX \in \{bw, bl, wl, bq, wq, lq\}$	$D \leftarrow SignExtend(S)$	Copy sign-extended byte to word, byte to long-word, etc.
$movzXX S,D$ $XX \in \{bw, bl, wl, bq, wq, lq\}$	D ← ZeroExtend(S)	Copy zero-extended byte to word, byte to long-word, etc.
cltq (convert long to quad)	%rax ← SignExtend(%eax)	Sign-extend %eax to %rax Identical to movslq %eax, %rax

Example: moving byte data

op src, dst

• Note the differences between movb, movsbl and movzbl

• Assume %dl = 0xCD, %eax = 0x98765432

```
movb %dl,%al %eax = 0x987654CD

movsbl %dl,%eax %eax = 0xFFFFFCD

movzbl %dl,%eax %eax = 0x000000CD
```

32-bit Instruction Peculiarities

op src, dst

 Instructions that move or generate 32-bit values also set the upper 32 bits of the respective 64-bit register to zero, while 16 or 8 bit instructions don't.

• This includes 32-bit arithmetic! (e.g., addl)

Outline

Arithmetic Instructions

- Special Cases
 - Non 64-bit Data
 - Load Effective Address

Condition Codes

Viewing x86-64 Assembly

Complete Memory Addressing Modes

General:

```
D(Rb,Ri,S)
Rb: Base register (any register)
Ri: Index register (any register except %rsp)
S: Scale factor (1, 2, 4, 8) (sizes of common C types)
D: Constant displacement value (a.k.a. immediate)
```

```
• Mem[ Reg[Rb] + Reg[Ri]*S + D ]
```

Saving computed addresses

- Generally, any instruction with () in it, accesses memory
 - Address is computed first
 - Loads from memory if in a source operand
 - Stores into memory if in a destination operand
- But what if what you really want is the address?
 - lea load effective address
 - Exception to () rule. Does NOT access memory
 - Also used for arbitrary arithmetic
 - This is the compiler's favorite instruction

Address computation instruction

• leaq src, dst

- "lea" stands for *load effective address*
- src MUST be an address expression (any of the formats we've seen)
- dst is a register
- Sets dst to the address computed by the src expression (does not go to memory! it just does math)
- Example: leaq (%rdx,%rcx,4), %rax

• Uses:

- Computing addresses without a memory reference
 - *e.g.* translation of p = &x[i];
- Computing arithmetic expressions of the form x+k*i+d
 - Though k can only be 1, 2, 4, or 8

Registers %rax %rbx %rcx 0x2 %rdx 0x100 %rdi %rsi


```
leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi
```

Registers %rax 0x108 %rbx %rcx 0x2 %rdx 0x100 %rdi %rsi


```
leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi
```

Registers

%rax	0x108
%rbx	0x10
%rcx	0x2
%rdx	0x100
%rdi	
%rsi	

Memory Word Address

0x400	0x120
0xF	0x118
0x8	0x110
0x10	0x108
0x1	0x100

```
leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi
```

Registers

%rax	0x108
%rbx	0x10
%rcx	0x2
%rdx	0x100
%rdi	0x100
%rsi	

Memory Word Address

0x400	0x120
0xF	0x118
0x8	0x110
0x10	0x108
0x1	0x100

```
leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi
```

Registers

%rax	0x108
%rbx	0x10
%rcx	0x2
%rdx	0x100
%rdi	0x100
%rsi	0x1

Memory Word Address

0x400	0x120
0xF	0x118
0x8	0x110
0x10	0x108
0x1	0x100

```
leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi
```

Why does the compiler love lea?

- Sometimes it's good for computing addresses
- But usually, the compiler uses it to do math in fewer instructions
 - addq only adds a source and a destination, and overwrites destination
 - leaq adds up to two registers and an immediate, AND stores to a different register!

Compiling Arithmetic Operations

```
int arith (long x, long y, long z) {
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  ....
}
```

- Compiler can reorder operations
- Can have one statement take multiple instructions
- Can have one instruction handle multiple statements
- Don't expect a 1-1 mapping

```
# rdi = x
# rsi = y
# rdx = z
```

```
int arith (long x, long y, long z) {
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  ....
}
```

```
leaq (%rsi,%rdi),%rcx
```

- Compiler can reorder operations
- Can have one statement take multiple instructions
- Can have one instruction handle multiple statements
- Don't expect a 1-1 mapping

```
# rdi = x
# rsi = y
# rdx = z
# rcx = x+y (t1)
```

```
int arith (long x, long y, long z) {
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  ....
}
```

```
leaq (%rsi,%rdi),%rcx
leaq (%rsi,%rsi,2),%rsi
salq $4,%rsi
```

- Compiler can reorder operations
- Can have one statement take multiple instructions
- Can have one instruction handle multiple statements
- Don't expect a 1-1 mapping

```
# rdi = x
# rsi = y
# rdx = z
# rcx = x+y (t1)
# rsi = y + 2*y = 3*y
# rsi = (3*y)*16 = 48*y (t4)
```

```
int arith (long x, long y, long z) {
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  ....
}
```

```
leaq (%rsi,%rdi),%rcx
leaq (%rsi,%rsi,2),%rsi
salq $4,%rsi
addq %rdx,%rcx
```

- Compiler can reorder operations
- Can have one statement take multiple instructions
- Can have one instruction handle multiple statements
- Don't expect a 1-1 mapping

```
# rdi = x
# rsi = y
# rdx = z
# rcx = x+y (t1)
# rsi = y + 2*y = 3*y
# rsi = (3*y)*16 = 48*y (t4)
# rcx = z+t1 (t2)
```

```
int arith (long x, long y, long z) {
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  ....
}
```

```
leaq (%rsi,%rdi),%rcx
leaq (%rsi,%rsi,2),%rsi
salq $4,%rsi
addq %rdx,%rcx
leaq 4(%rsi,%rdi),%rdi
```

- Compiler can reorder operations
- Can have one statement take multiple instructions
- Can have one instruction handle multiple statements
- Don't expect a 1-1 mapping

```
# rdi = x
# rsi = y
# rdx = z
# rcx = x+y (t1)
# rsi = y + 2*y = 3*y
# rsi = (3*y)*16 = 48*y (t4)
# rcx = z+t1 (t2)
# rdi = t4+x+4 (t5)
```

```
int arith (long x, long y, long z) {
  long t1 = x+y;
  long t2 = z+t1;
  long t3 = x+4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  ....
}
```

```
leaq (%rsi,%rdi),%rcx
leaq (%rsi,%rsi,2),%rsi
salq $4,%rsi
addq %rdx,%rcx
leaq 4(%rsi,%rdi),%rdi
imulq %rcx,%rdi
```

- Compiler can reorder operations
- Can have one statement take multiple instructions
- Can have one instruction handle multiple statements
- Don't expect a 1-1 mapping

```
# rdi = x
# rsi = y
# rdx = z
# rcx = x+y (t1)
# rsi = y + 2*y = 3*y
# rsi = (3*y)*16 = 48*y (t4)
# rcx = z+t1 (t2)
# rdi = t4+x+4 (t5)
# rdi = t2*t5 (rval)
```

Address	0	1	2	3	4	5	6	7
0x2000	B5	В7	DC	ED	7D	59	08	93
0x2008	1D	23	58	46	9C	22	2F	5D
0x2010	C6	83	75	00	41	19	87	1 C
0x2018	24	0C	26	АА	C7	BD	03	1E
0x2020	E3	00	00	00	00	00	00	00
0x2028	8B	DB	66	D7	21	23	6B	99

Register	Value
%rax	0x2000
%rbx	0x20
%rcx	0x8

Operation	Address Loaded	%rcx Value
movq (%rax, %rbx), %rcx		

First, determine whether an address is loaded, and if so, which address?

Address	0	1	2	3	4	5	6	7
0x2000	B5	В7	DC	ED	7D	59	08	93
0x2008	1D	23	58	46	9C	22	2F	5D
0x2010	C6	83	75	00	41	19	87	1 C
0x2018	24	0C	26	АА	C7	BD	03	1E
0x2020	E3	00	00	00	00	00	00	00
0x2028	8B	DB	66	D7	21	23	6B	99

Register	Value
%rax	0x2000
%rbx	0x20
%rcx	0x8

Operation	Address Loaded	%rcx Value
movq (%rax, %rbx), %rcx	0x2020	

Second, determine the final value in %rcx

Address	0	1	2	3	4	5	6	7
0x2000	B5	B7	DC	ED	7D	59	08	93
0x2008	1D	23	58	46	9C	22	2F	5D
0x2010	C6	83	75	00	41	19	87	1 C
0x2018	24	0C	26	АА	C7	BD	03	1E
0x2020	E3	00	00	00	00	00	00	00
0x2028	8B	DB	66	D7	21	23	6B	99

Register	Value
%rax	0x2000
%rbx	0x20
%rcx	0x8

Operation	Address Loaded	%rcx Value
movq (%rax, %rbx), %rcx	0x2020	0xE3

Address	0	1	2	3	4	5	6	7
0x2000	B5	В7	DC	ED	7D	59	08	93
0x2008	1D	23	58	46	9C	22	2F	5D
0x2010	C6	83	75	00	41	19	87	1 C
0x2018	24	0C	26	АА	C7	BD	03	1E
0x2020	E3	00	00	00	00	00	00	00
0x2028	8B	DB	66	D7	21	23	6B	99

Register	Value
%rax	0x2000
%rbx	0x20
%rcx	0x8

Operation	Address Loaded	%rcx Value
leaq (%rax, %rbx), %rcx		

First, determine whether an address is loaded, and if so, which address?

Address	0	1	2	3	4	5	6	7
0x2000	B5	В7	DC	ED	7D	59	08	93
0x2008	1D	23	58	46	9C	22	2F	5D
0x2010	C6	83	75	00	41	19	87	1 C
0x2018	24	0C	26	АА	C7	BD	03	1E
0x2020	E3	00	00	00	00	00	00	00
0x2028	8B	DB	66	D7	21	23	6B	99

Register	Value
%rax	0x2000
%rbx	0x20
%rcx	0x8

Operation	Address Loaded	%rcx Value
leaq (%rax, %rbx), %rcx	None	

Second, determine the final value in %rcx

Address	0	1	2	3	4	5	6	7
0x2000	B5	В7	DC	ED	7D	59	08	93
0x2008	1 D	23	58	46	9C	22	2F	5D
0x2010	C6	83	75	00	41	19	87	1 C
0x2018	24	0C	26	АА	C7	BD	03	1 E
0x2020	E3	00	00	00	00	00	00	00
0x2028	8B	DB	66	D7	21	23	6B	99

Register	Value
%rax	0x2000
%rbx	0x20
%rcx	0x8

Operation	Address Loaded	%rcx Value	
leaq (%rax, %rbx), %rcx	None	0x2020	

Break + Say hi to your neighbors

- Things to share
 - Name
 - Major
 - One of the following
 - Favorite Candy
 - Favorite Pokemon
 - Favorite Emoji

Break + Say hi to your neighbors

- Things to share
 - Name -Branden
 - Major Electrical and Computer Engineering, and Computer Science
 - One of the following
 - Favorite Candy Twix
 - Favorite Pokemon Eevee
 - Favorite Emoji 🔪

Outline

Arithmetic Instructions

- Special Cases
 - Non 64-bit Data
 - Load Effective Address

Condition Codes

Viewing x86-64 Assembly

What can instructions do?

- Move data: √
- Arithmetic: ✓
- Transfer control: X
 - Instead of executing next instruction, go somewhere else
- Let's back out. Why do we want that?

```
if (x > y)
    result = x-y;
else
    result = y-x;
```

```
while (x > y)
    result = x-y;
return result;
```

- Sometimes we want to go from the red code to the green code
- But the blue code is what's next!
- Need to transfer control! Execute an instruction that is not the next one
- And conditionally, too! (i.e., based on a condition)

Control relies on "conditions"

- Equality
 - Equals and not equals
- Comparison
 - Greater than, less than
- Others C doesn't support
 - Negative/Positive

x86 tracks conditions with condition codes

- Whenever a comparison occurs
 - Modify some "flags" based on what happened
 - Flags are one-bit fields
 - Terminology:
 - A bit is set if it is 1
 - A bit is *cleared* (or *reset*) if it is 0

 x86 "condition codes" are a set of one-bit flags for tracking conditions

What are the x86 condition codes?

- Zero Flag (ZF)
 - Result is zero
- Sign Flag (SF)
 - MSb of result is one
- Overflow Flag (OF)
 - Overflow occurred during arithmetic
- Carry Flag (CF)
 - Carry occurred during arithmetic
- Parity Flag (PF) (rarely used in practice)
 - Result has an ever number of 1 bits

Each of these is a one-bit register

 We can't write or read these manually, they're interacted with via specific assembly instructions

How are condition codes set?

- Zero Flag
 - Result is:

00000000000...0000000000

- Sign Flag
 - Result is:

How are condition codes set?

Overflow Flag

Either:

 Both numbers positive but result is negative

Or:

 Both numbers negative but result is positive

 Detects overflow for two's complement numbers

$$w == y \&\& w != z$$

How are condition codes set?

- Carry Flag
 - An extra bit is produced or borrowed in calculation

- Detects overflow for unsigned numbers
 - Below zero
 - Above max

How are condition codes useful?

- The conditions we care about are boolean algebra combinations of the x86 condition codes
 - These combinations assume a subtraction operation set the condition codes

If you subtract two values, the condition codes let you compare the two values:

Condition	Condition
Equal / Zero	ZF
Not Equal / Not Zero	~ZF
Negative	SF
Nonnegative	~SF
Greater (Signed)	~(SF^OF) &~ZF
Greater or Equal (Signed)	~(SF^OF)
Less (Signed)	(SF^OF)
Less or Equal (Signed)	(SF^OF) ZF
Above (unsigned)	~CF&~ZF
Below (unsigned)	CF

How are condition codes used?

- At machine level, conditional operations are a 2-step process:
 - Perform an operation that sets or clears condition codes (ask questions)
 - Then *observe* which condition codes are set
- Can use this observation for Boolean operations, conditionals, loops, etc.
 - We will see the first today, and more control next lecture
- So now we need two things:
 - 1. Instructions that compare values and set condition codes
 - 2. Instructions that observe condition codes and do something (or not)

Explicitly Setting Condition Codes: Compare

- cmp{b,w,l,q} Src2, Src1
- cmpq src, dst computes dst-src, then throws away the result
 - And sets condition codes along the way as a "subtraction" operation
 - Does NOT modify the destination register though
 - Beware the order of the cmp operands!

- Compare instruction is like 90% of all condition code usage
 - Often used for if statement conditions or loop conditions

Explicitly Setting Condition Codes: Test

- test{b,w,1,q} Src2, Src1
- testq src, dst computes dst&src, then throws away the result!
 - And sets condition codes like an "and" operation
 - Again, doesn't modify either register (not really a destination)
 - Order of arguments doesn't matter here
- Useful when doing bit masking
 - E.g., x & 0x1, to know whether x is even or odd
 - If the result of the & is 0, it's even, if 1, it's odd

Arithmetic instructions implicitly set condition codes

- All* arithmetic instructions set (and reset) condition codes in addition to producing a result
 - Not a different instruction, just the arithmetic instructions we learned earlier
 - They do still update destination register
 - But also, they update the condition codes based on the result
 - We rarely care about this, but it matters occasionally

- *Exception: the lea instruction does not set condition codes
 - It's not "officially" an arithmetic instruction

Using condition codes to set registers

- setX family of instructions
 - Write single-byte destination register based on combinations of condition codes
 - set D where D is a 1-byte register
 - Example: **sete** %al means: %al=1 if the previous condition was "equal"

SetX	Description	Condition
sete	Equal / Zero	ZF
setne	Not Equal / Not Zero	~ZF
sets	Negative	SF
setns	Nonnegative	~SF
setg	Greater (Signed)	~(SF^OF) &~ZF
setge	Greater or Equal (Signed)	~(SF^OF)
setl	Less (Signed)	(SF^OF)
setle	Less or Equal (Signed)	(SF^OF) ZF
seta	Above (unsigned)	~CF&~ZF
setb	Below (unsigned)	CF

Note: suffixes do not indicate operand sizes, but rather conditions

These same suffixes will come back when we see other instructions that read condition codes.

Expect to be run after a cmp or else they won't make sense

Explaining the set instructions

- Example setle Less than or equal (signed)
 - Combination of condition codes: (SF^OF) | ZF
 - SF Sign Flag (true if negative)
 - OF Overflow Flag (true if signed overflow occurred)
 - ZF Zero Flag (true if result is zero)
- All of the combos expect to be run after a cmp src, dst
 - dst <= src (runs dst-src)
 - If:
 - The result is zero src and dst were equal
 - OR if one but not both:
 - The result is negative (and didn't overflow) src was larger than dst
 - The result overflowed (and is positive) dst is negative, src is positive

What do you need to know?

- 90%+ of the time
 - cmp instruction followed by setx instruction (or a jump, next lecture)
 - Don't have to think about condition codes at all!
 - Think of as dst X src
- 10% or less of the time
 - Arbitrary arithmetic instruction sets the condition codes
 - Or testq sets the condition codes
 - Followed by a setX or branch (next lecture)
 - And you actually have to think about which condition codes are set to figure out what the assembly is doing, which can be challenging

Example of checking a Boolean condition

- Example: function that checks if first value is greater than the second value
 - Returns True or False
 (1 or 0 in a one-byte register)

```
bool gt (int x, int y)
{
  return x > y;
}
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rax	Return value

```
cmpq %rsi, %rdi # Compare x:y
setg %al # Set when x > y (i.e., %rdi > %rsi)
ret
```

Two-Step Conditional Process: Boolean Operations

- Step 1, cmpq: compare quad words
 - compare the values in %rsi and %rdi, setting condition codes based on a subtraction

```
bool gt (int x, int y)
{
  return x > y;
}
```

- Are the two equal? Set the condition codes that records they were equal
- Was the right one greater? Or less? Etc.
- We don't know yet which answer we are going to need! So just save them all.

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rax	Return value

```
cmpq %rsi, %rdi # Compare x:y
setg %al # Set when x > y (i.e., %rdi > %rsi)
ret
```

Two-Step Conditional Process: Boolean Operations

- Step 2, setX: set destination register to 1 if condition is met
 - setg = set if the 2nd operand is *greater* than the 1st (careful about the order!)
 - Reads the condition codes that encodes the answer to that question
 - Set the 1-byte register %al to 1 if true

```
bool gt (int x, int y)
{
  return x > y;
}
```

Register	Use(s)
%rdi	Argument x
%rsi	Argument y
%rax	Return value

Understanding conditions

- setX (and others) read the current state of condition codes
 - Whatever it is, and whichever instruction changed it last
- So when you see (for example) setne, work backwards!
 - Look at previous instructions, to find the last one to change conditions
 - Then you'll know the two values that were compared
 - Ignore instructions that don't touch condition codes (like moves or lea)
- Usually you'll see a cmpX (or testX, or arithmetic) right before
 - But not always, so know what to do in general

Outline

Arithmetic Instructions

- Special Cases
 - Non 64-bit Data
 - Load Effective Address

Condition Codes

Viewing x86-64 Assembly

How to Get Your Hands on Assembly

- From C source code, using a compiler
 - gcc -01 -s sum.c
 - Produces file sum.s
 - Warning: May get very different results on different machines due to different versions of gcc and different compiler settings

C Code: sum.c

Generated x86-64 assembly: sum.s

```
sum:
   pushq %rbx
   movq %rdx, %rbx
   call plus
   movq %rax, (%rbx)
   popq %rbx
   ret
```

How to Get Your Hands on Assembly

- From machine code, using a disassembler
 - objdump -d sum.o
 - Within the gdb Debugger
 linux> gdb prog
 (gdb) disassemble sum
 - gdb tutorial coming soon!
 - *Warning*: Disassemblers are approximate; some information is lost during translation from assembly to machine code
 - Label names are lost, what is just data (vs code) is lost, etc.
 - Useful if you don't have the source

```
0000000000400595 <sum>:
 400595: 53
                                 %rbx
                          push
 400596: 48 89 d3
                                 %rdx,%rbx
                          mov
 400599: e8 f2 ff ff ff
                          callq 400590 <plus>
 40059e: 48 89 03
                                 %rax, (%rbx)
                          mov
 4005a1: 5b
                                 %rbx
                          pop
 4005a2: c3
                           retq
```

Godbolt

Ignore section labeled: "_dl_relocate_static_pie"

Play around with this to try stuff on your own

https://godbolt.org/

• Godbolt example!

Outline

Arithmetic Instructions

- Special Cases
 - Non 64-bit Data
 - Load Effective Address

Condition Codes

Viewing x86-64 Assembly