Lecture 13 Cache Performance

CS213 – Intro to Computer Systems Branden Ghena – Winter 2024

Slides adapted from: St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Today's Goals

• Explore impacts of cache and code design

• Calculate cache performance based on array accesses

• Understand what it means to write "cache-friendly code"

Outline

- Memory Mountain
- Cache Metrics
- Cache Performance for Arrays
- Improving code
 - Rearranging Matrix Math
 - Matrix Math in Blocks

Writing Cache-Friendly Code

- Caches are key to program performance
 - CPU accessing main memory = CPU twiddling its thumbs = bad
 - Want to avoid as much as possible
- Minimize cache misses in the inner loops of core functions
 - That's usually where your program spends most of its time ("hot" code)
 - Programmers are notoriously bad at guessing these spots
 - Use a profiler to find them (e.g., gprof)
 - Repeated references to variables are good (*temporal locality*)
 - Stride-1 reference patterns are good (*spatial locality*)
 - I.e., accessing array elements in sequence, not jumping around
- Now that we know how cache memories work
 - We can quantify the effect of locality on performance

The Memory Mountain

- *Read throughput* (read bandwidth)
 - Number of bytes read from the memory subsystem per second (MB/s)
 - The higher it is, the less likely your CPU is to be waiting on memory
- *Memory mountain*: Measures read throughput as a function of spatial and temporal locality.
 - We run variants of the same program with different levels of spatial and temporal locality, then measure read throughput
 - Compact way to characterize memory system performance
 - Different systems (with different caches) have different mountains!
- Observation: if you decrease locality, bandwidth drops
 - As we'd expect; locality is key to having the right data in the cache
 - And if data is not in the cache, need to get it from next level down

A Memory Mountain

throughput (MB/s) Read

Intel Core i7 32 KB L1 i-cache 32 KB L1 d-cache 256 KB unified L2 cache 8M unified L3 cache

All caches on-chip

A Memory Mountain

Intel Core i7 32 KB L1 i-cache 32 KB L1 d-cache 256 KB unified L2 cache 8M unified L3 cache

All caches on-chip

Outline

- Memory Mountain
- Cache Metrics
- Cache Performance for Arrays
- Improving code
 - Rearranging Matrix Math
 - Matrix Math in Blocks

Cache Performance Metrics

- Miss Rate
 - Fraction of memory references not found in cache (misses / accesses) = 1 hit rate
 - Typical numbers (in percentages):
 - 3-10% for L1
 - Can be quite small (e.g., < 1%) for L2, depending on dataset size, etc.
 - However, many applications have >30% miss rate in L2 cache

• Hit Time

- Time to deliver a block in the cache to the processor
 - Includes time to determine whether the block is in the cache
 - Assumption: always check first cache *before* going to the next level
- Typical numbers:
 - 1-2 clock cycles for L1
 - 5-20 clock cycles for L2
- Miss Penalty
 - Additional time required because of a miss
 - Typically 50-200 cycles for main memory
 - Not really a "penalty", just how long it takes to read from memory

Let's think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if comparing L1 and main memory
- Would you believe a 99% hit rate is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

97% hits: 100 instructions: 100*1 (L1 accesses) + 3*100 (misses) on average: 1 cycle/instr. + 0.03 * 100 cycles/instr. = 4 cycles/instruction
99% hits: on average: 1 cycle/instr. + 0.01 * 100 cycles/instr. = 2 cycles/instruction

- This is why "miss rate" is used instead of "hit rate"
 - In our example, 1% miss rate vs. 3% miss rate
 - Makes the radical performance difference more obvious
 - "Computation is what happens between cache misses."

Average Memory Access Time (AMAT)

- AMAT = Hit time + Miss rate × Miss penalty
 - Generalization of previous formula
- Can extend for multiple layers of caching
 - AMAT = Hit Time L1 + Miss Rate L1 \times Miss Penalty L1
 - Miss Penalty L1 = Hit Time L2 + Miss Rate L2 \times Miss Penalty L2
 - Miss Penalty L2 = Hit Time Main Memory

• Generally: multi-level caching helps minimize AMAT

Example Memory Access Time Problem

- Computer specs: One layer of cache plus main memory
 - Cache Hit Time: 5 nanoseconds
 - Cache Miss Rate: 2%
 - Memory Access Time: 100 nanoseconds

- Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)
 - 5 ns + 0.02 * 100 ns
 - = 5 ns + 2 ns
 - = 7 ns

Break + Practice

- Computer specs: Two layers of cache plus main memory
 - L1 Cache Hit Time: 4 nanoseconds
 - L1 Cache Miss Rate: 10%
 - L2 Cache Hit Time: 8 nanoseconds
 - L2 Cache Miss Rate: 2%
 - Memory Access Time: 100 nanoseconds
- Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)

Break + Practice

- Computer specs: Two layers of cache plus main memory
 - L1 Cache Hit Time: 4 nanoseconds
 - L1 Cache Miss Rate: 10%
 - L2 Cache Hit Time: 8 nanoseconds
 - L2 Cache Miss Rate: 2%
 - Memory Access Time: 100 nanoseconds
- Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)
 - 4 ns + 0.10 * (8 ns + 0.02 * 100 ns)
 - = 4 ns + 0.10 * (8 ns + 2 ns)
 - = 4 ns + 0.10 * 10 ns
 - = 5 ns

Outline

- Memory Mountain
- Cache Metrics

Cache Performance for Arrays

- Improving code
 - Rearranging Matrix Math
 - Matrix Math in Blocks

Contiguous Memory vs Indirection

- The rest of this lecture will focus on loops over arrays
 - I.e., operating on contiguous blocks of memory
- Not all programs are like that
 - "Pointer-chasing" is common
 - E.g., traversing a linked list, following a pointer for every node
 - (Usually) terrible for locality
 - See earlier comment about some programs having >30% L2 misses
 - A good allocator (malloc) can help some, but no miracles
- Specialized data structures can improve locality while still having a linked structure, e.g., for trees
 - E.g., ropes, B-trees, HAMTs, etc.

Understanding cache layout

- Cache parameters
 - Direct-mapped data cache
 - 256-byte total size
 - 16-byte blocks
 - Blocks per set: 1 (because direct mapped)
 - Sets: 256/16 = 16

• Assume data starts at address 0 and the cache starts empty

Set	Valid	Tag	Block
0000	0	??	
0001	0	??	
0010	0	??	
0011	0	??	
0100	0	??	
0101	0	??	
0110	0	??	
0111	0	??	
1000	0	??	
1001	0	??	
1010	0	??	
1011	0	??	
1100	0	??	
1101	0	??	
1110	0	??	
1111	0	??	

Understanding cache layout

- Cache parameters
 - Direct-mapped data cache
 - 256-byte total size
 - 16-byte blocks
 - Blocks per set: 1 (because direct mapped)
 - Sets: 256/16 = 16

- Assume data starts at address 0 and the cache starts empty
 - Valid & Tag bits don't really matter here, so let's remove them from the diagram

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - Each row in contiguous memory locations

- Stepping through columns in one row:
 - Accesses successive elements
 - Good spatial locality!
 - Miss rate \approx 1 miss / Elements in a Block
- Stepping through rows in one column:
 - Accesses distant elements
 - Bad spatial locality!
 - Miss rate \approx 1 (i.e. 100%) if the data is large enough

How do 1D arrays map to caches?

- How would an array of int map to this cache?
 - int -> 4 bytes. So, 4 int values per block
 - Example: int array[100]
- Where do the items go?
 - First four (0-3) go in set 0
 - Next four (4-7) go in set 1
 - Next four (8-11) go in set 2
 - etc.
- What if there are more elements in the array than there are blocks in the cache?
 - It wraps around and starts at set 0 again!
 - Indexes 60-63 go in set 15
 - Indexes 64-67 go in set 0 -> possible conflict!!

Set	Block (16 byte)
0000	[0-3]
0001	[4-7]
0010	[8-11]
0011	[12-15]
0100	[16-19]
0101	[20-23]
0110	[24-27]
0111	[28-31]
1000	[32-35]
1001	[36-39]
1010	[40-43]
1011	[44-47]
1100	[48-51]
1101	[52-55]
1110	[56-59]
1111	[60-63]

How do 2D arrays map to caches?

- How would a 2D array of int map to this cache?
 - int -> 4 bytes
 - So, 4 int values per block
- Breakdown of indexes depends on the shape of the array
 - If there are 4 values per row, entire row fits in a block
 - Example: int array[16][4]

Set	Block (16 byte)
0000	[0][0-3]
0001	[1][0-3]
0010	[2][0-3]
0011	[3][0-3]
0100	[4][0-3]
0101	[5][0-3]
0110	[6][0-3]
0111	[7][0-3]
1000	[8][0-3]
1001	[9][0-3]
1010	[10][0-3]
1011	[11][0-3]
1100	[12][0-3]
1101	[13][0-3]
1110	[14][0-3]
1111	[15][0-3]

How do 2D arrays map to caches?

- How would a 2D array of int map to this cache?
 - int -> 4 bytes
 - So, 4 int values per block
- Breakdown of indexes depends on the shape of the array
 - If there are 4 values per row, entire row fits in a block
 - If there are 16 values per row, $\frac{1}{4}$ of row fits in a block
 - Example: int array[4][16]

Set	Block (16 byte)
0000	[0][0-3]
0001	[0][4-7]
0010	[0][8-11]
0011	[0][12-15]
0100	[1][0-3]
0101	[1][4-7]
0110	[1][8-11]
0111	[1][12-15]
1000	[2][0-3]
1001	[2][4-7]
1010	[2][8-11]
1011	[2][12-15]
1100	[3][0-3]
1101	[3][4-7]
1110	[3][8-11]
1111	[3][12-15]

Example cache performance problem

- Cache parameters
 - Direct-mapped data cache
 - 256-byte total size
 - 16-byte blocks
 - Blocks per set: 1
 - Sets: 256/16 = 16

• Assume data starts at address 0 and cache starts empty

- First, think about how array maps to the cache
 - Element size: 4 bytes
 - Array size: 384 bytes (too big)
 - 4 elements per cache block
 - Array row takes up 4 cache blocks
 - First 4 rows * 16 cols fit in cache without overlap
 - Next 2 rows overlap with first 2 rows

?	?	?	?						

Set	Block (16 byte)
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Example: accessing elements in a row

int mat[6][16];

- First, think about how array maps to the cache
 - Element size: 4 bytes
 - Array size: 384 bytes (too big)
 - 4 elements per cache block
 - Array row takes up 4 cache blocks
 - First 4 rows * 16 cols fit in cache without overlap
 - Next 2 rows overlap with first 2 rows

```
for (int i = 0; i < 6; i = i+1) {
  for (int j = 0; j < 16; j = j+4) {
    mat[i][j] = 0;
    mat[i][j+1] = 1;
    mat[i][j+2] = 2;
    mat[i][j+3] = 3;
  }
}</pre>
```

• Calculate miss rate

Example: accessing elements in a row

int mat[6][16];

- First, think about how array maps to the cache
 - Element size: 4 bytes
 - Array size: 384 bytes (too big)
 - 4 elements per cache block
 - Array row takes up 4 cache blocks
 - First 4 rows * 16 cols fit in cache without overlap
 - Next 2 rows overlap with first 2 rows

for (int i = 0; i < 6; i = i+1) {
 for (int j = 0; j < 16; j = j+4) {
 mat[i][j] = 0;
 mat[i][j+1] = 1;
 mat[i][j+2] = 2;
 mat[i][j+3] = 3;
 }
}</pre>

• Calculate miss rate

Example: accessing elements in a row

- First, think about how array maps to the cache
 - Element size: 4 bytes
 - Array size: 384 bytes (too big)
 - 4 elements per cache block
 - Array row takes up 4 cache blocks
 - First 4 rows * 16 cols fit in cache without overlap
 - Next 2 rows overlap with first 2 rows


```
for (int i = 0; i < 6; i = i+1) {
  for (int j = 0; j < 16; j = j+4) {
    mat[i][j] = 0;
    mat[i][j+1] = 1;
    mat[i][j+2] = 2;
    mat[i][j+3] = 3;
  }
}</pre>
```

- Calculate miss rate
 - All four accesses within loop fit in a cache block!
 - 1 miss, 3 hits
 - The next set of columns repeat pattern
 - The next row repeats pattern
 - Nothing already in cache from before
 - Never reference old cells again
 - Miss rate: 25%

Example: reordering element access

- First, think about how array maps to the cache
 - Element size: 4 bytes
 - Array size: 384 bytes (too big)
 - 4 elements per cache block
 - Array row takes up 4 cache blocks
 - First 4 rows * 16 cols fit in cache without overlap
 - Next 2 rows overlap with first 2 rows


```
for (int i = 0; i < 6; i = i+1) {
  for (int j = 0; j < 16; j = j+4) {
    mat[i][j+2] = 2;
    mat[i][j] = 0;
    mat[i][j+3] = 3;
    mat[i][j+1] = 1;
  }
}</pre>
```

- Does this change anything?
 - No! First access brings in entire block
 - Later accesses within block are hits

Example: accessing elements by column

int mat[6][16];

- First, think about how array maps to the cache
 - Element size: 4 bytes
 - Array size: 384 bytes (too big)
 - 4 elements per cache block
 - Array row takes up 4 cache blocks
 - First 4 row * 16 cols fit in cache without overlap
 - Next 2 rows overlap with first 2 rows

```
for (int j = 0; j < 16; j = j+1) {
  for (int i = 0; i < 6; i = i+1) {
    mat[i][j] = 7;
  }
}</pre>
```

Calculate miss rate

Remember, some rows are in conflict

Example: accessing elements by column (graphically)

Grey blocks are loaded into the cache, but not accessed at this time

Example: accessing elements by column

int mat[6][16];

- First, think about how array maps to the cache
 - Element size: 4 bytes
 - Array size: 384 bytes (too big)
 - 4 elements per cache block
 - Array row takes up 4 cache blocks
 - First 4 row * 16 cols fit in cache without overlap
 - Next 2 rows overlap with first 2 rows


```
for (int j = 0; j < 16; j = j+1) {
  for (int i = 0; i < 6; i = i+1) {
    mat[i][j] = 7;
  }
}</pre>
```

- Calculate miss rate
 - 6 misses for 1st load of each row
 - 4 misses for 2nd column in the row (2 hits)
 - 4 misses for 3rd column in the row (2 hits)
 - 4 misses for 4th column in the row (2 hits)
 - Repeat
 - Miss rate = (6+4+4+4)/24 = 75%

```
Break + Question
```

```
int mat[4][16];
```

- Same cache from before:
 - Direct-mapped data cache

```
for (int j = 0; j < 16; j = j+1) {
  for (int i = 0; i < \frac{4}{4}; i = i+1) { // 4!
    mat[i][j] = 7;
```

Calculate miss rate

- 256-byte total size
- 16-byte blocks
- Change matrix to be 4 rows of 16 columns (not 6 rows)

Break + Question

```
int mat[4][16];
```

- Same cache from before:
 - Direct-mapped data cache
 - 256-byte total size
 - 16-byte blocks
- Change matrix to be 4 rows of 16 columns (not 6 rows)

- Calculate miss rate
 - Entire array fits in cache!No conflicts
 - 1 miss per four accesses
 - Miss rate = 25%

Outline

- Memory Mountain
- Cache Metrics
- Cache Performance for Arrays
- Improving code
 - Rearranging Matrix Math
 - Matrix Math in Blocks

Our Benchmark: Matrix Multiplication

• Review from your linear algebra class

$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \times \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 26 & 30 \\ 38 & 44 \end{bmatrix}$$

- $1 \times 5 + 3 \times 7 = 26$
- $1 \times 6 + 3 \times 8 = 30$
- $2 \times 5 + 4 \times 7 = 38$
- $2 \times 6 + 4 \times 8 = 44$

When is matrix multiplication important?

• ML and AI algorithms!!

Miss Rate Analysis for Matrix Multiply

- Assume:
 - Block size = 32B (big enough for four 64-bit longs)
 - Matrix dimension (N) is very large
 - Cache is not big enough to hold even one row
- Analysis Method:
 - Look at access pattern of inner loop

• From a performance standpoint that is

Matrix Multiplication (ijk)

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1	0

Remember: Block size = 32B (big enough for four 64-bit longs)

Total misses/iteration: 1.25

Matrix Multiplication (kij)

Misses per inner loop iteration:

Remember: Block size = 32B (big enough for four 64-bit longs)

Total misses/iteration: 0.5

Matrix Multiplication (jki)

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1	0	1

Remember: Block size = 32B (big enough for four 64-bit longs)

Total misses/iteration: 2

Core i7 Matrix Multiply Performance

Core i7 Matrix Multiply Performance

Break + Open Question

• What about those writes? Do they have additional costs?

Break + Open Question

- What about those writes? Do they have additional costs?
 - Assumption: write-back cache such that they don't cost more than reads until evicted
 - As long as evictions of modified (dirty) data happen once per array cell, we're equivalent to the one write outside of the for loop
 - This is not the case here since entire row doesn't fit in cache
 - If evictions of modified (dirty) data happen multiple times per array cell, question becomes complicated
 - How much does that hurt compared to extra cache misses?
 - Writes can happen in the background (while processor is running)
 - Likely need to measure real-world performance to understand

Outline

- Memory Mountain
- Cache Metrics
- Cache Performance for Arrays

• Improving code

- Rearranging Matrix Math
- Matrix Math in Blocks

Example: Matrix Multiplication

Cache Miss Analysis (approximate)

- Assume:
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size C <<< n (much smaller than n)

Cache Miss Analysis (approximate)

- Assume:
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size C <<< n (much smaller than n)

Total misses:

- Every iteration: 9n/8 + 1
- # iterations: n²
- $(9n/8+1)*n^2 = (9/8)*n^3 + n^2$

• Again: n/8 + n + 1 = 9n/8+1 misses

Enter Blocking Algorithms

- Special class of algorithms designed specifically to have excellent temporal and spatial locality
- Key idea: don't operate on individual elements; instead operate on *blocks* !
 - Treat the overall matrices as containing submatrices as elements
 - See next slide
- General principle: use a piece of data as much as we can
 - Then it's ok to kick it out of the cache
 - As opposed to using, kicking out, using again later, and so on
- Same result, but much nicer locality!
 - And thus can leverage the cache better (more hits, fewer misses)
 - Still same computational complexity
- May get a bit mind bending
 - I want you to understand the general principle
 - But you don't need to fully understand the details of the algorithm

Matrices as Matrices of Submatrices

- But rather smaller matrices
- To compute a result submatrix
 - Just do a smaller matrix multiplication!

2

9

10

TAHFAKS

Blocked Matrix Multiplication

double * c = (double *) malloc(sizeof(double)*n*n); /* Multiply n x n matrices a and b */ void mmm(double *a, double *b, double *c, int n) { for (int i = 0; i < n; i+=B) { for (int j = 0; j < n; j+=B) { for (int k = 0; k < n; k+=B) { /* B x B mini matrix multiplications */ for (int i1 = i; i1 < i+B; i1++) { for (int j1 = j; j1 < j+B; j1++) { double sum = 0.0; for (int k1 = k; k1 < k+B; k1++) { sum += a[i1*n + k1] * b[k1*n + j1];c[i1*n + j1] = sum; $\}$ $\}$ $\}$ $\}$ $\}$

j1

Cache Miss Analysis (approximate)

- Assume:
 - Cache block = 8 doubles
 - Cache size <<< n (much smaller than n)
 - Three blocks fit into cache: 3B² < Cache size
- First (block) iteration:
 - B²/8 misses for any given block
 - 2B²/8 misses for each BxB-block multiplication (only counting A, B misses)
 - # BxB multiplications: n/B
 - B²/8 misses for C[] block total
 - $2B^2/8*n/B+B^2/8 = nB/4+B^2/8$
 - Afterwards in cache
 - No waste! We used all that we brought in!

Cache Miss Analysis (approximate)

- Assume:
 - Cache block = 8 doubles
 - Cache size << n (much smaller than n)
 - Three blocks fit into cache: $3B^2$ < Cache size
- Second (block) iteration:
 - Same as first iteration
 - misses = $nB/4+B^2/8$

- Total misses:
 - #block iterations: (n/B)²
 - $(nB/4 + B^2/8)^* (n/B)^2 = n^3/(4B) + n^2/8$

Performance Impact

- Misses without blocking: $(9/8) * n^3 + n^2$
- Misses with blocking: $1/(4B) * n^3 + 1/8 * n^2$
- Largest possible block size B, but limit $3B^2 < C \rightarrow B = \left| \sqrt{C/3} \right|$ (so it all fits in the cache)
 - e.g., Cache size = 32K = 32,768 Bytes, then pick B = 104
 - Results:
 - No blocking: $1.125*n^3 + n^2$ 468x
 - Blocking: 0.0024*n³ + 0.125*n²
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality
 - But program has to be written properly to take advantage of it

Takeaways

- Writing code to take advantage of the cache is challenging
 - It's totally possible, but high effort
- Generally: maximize spatial and temporal locality
 - Use elements close to each other (moving horizontally in 2D array)
 - Use the same element as many times as possible in a row (output)
- Well-designed math libraries will do this for you!
 - MATLAB, Mathematica, R, SciPy, etc.
 - <u>Jack Dongarra</u> won a Turing award for this in 2021!

Outline

- Memory Mountain
- Cache Metrics
- Cache Performance for Arrays
- Improving code
 - Rearranging Matrix Math
 - Matrix Math in Blocks