
Lecture 13
Cache Performance

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2024

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Today’s Goals

• Explore impacts of cache and code design

• Calculate cache performance based on array accesses

• Understand what it means to write “cache-friendly code”

2

3

• Memory Mountain

• Cache Metrics

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Writing Cache-Friendly Code

• Caches are key to program performance
• CPU accessing main memory = CPU twiddling its thumbs = bad
• Want to avoid as much as possible

• Minimize cache misses in the inner loops of core functions
• That’s usually where your program spends most of its time (“hot” code)

• Programmers are notoriously bad at guessing these spots
• Use a profiler to find them (e.g., gprof)

• Repeated references to variables are good (temporal locality)
• Stride-1 reference patterns are good (spatial locality)

• I.e., accessing array elements in sequence, not jumping around

• Now that we know how cache memories work
• We can quantify the effect of locality on performance

4

The Memory Mountain

• Read throughput (read bandwidth)
• Number of bytes read from the memory subsystem per second (MB/s)
• The higher it is, the less likely your CPU is to be waiting on memory

• Memory mountain: Measures read throughput as a function of spatial
and temporal locality.
• We run variants of the same program with different levels of spatial and temporal

locality, then measure read throughput
• Compact way to characterize memory system performance
• Different systems (with different caches) have different mountains!

• Observation: if you decrease locality, bandwidth drops
• As we’d expect; locality is key to having the right data in the cache
• And if data is not in the cache, need to get it from next level down

6

A Memory Mountain

6
4

M 8
M 1

M

1
2
8

K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1

5

s
3
2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

8

A Memory Mountain

6
4

M 8
M 1

M

1
2
8

K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1

5

s
3
2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Slopes of
spatial
locality

Throughput
≈ inv. prop.
to stride

9

A Memory Mountain

6
4

M 8
M 1

M

1
2
8

K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1

5

s
3
2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Slopes of
spatial
locality

Ridges of
Temporal
 locality

L1

L2

Mem

L3

Throughput
≈ inv. prop.
to stride

Sharp drops when
data stops fitting in
each cache level
(capacity misses)
Plateaus get wider
as caches get larger

10

11

• Memory Mountain

• Cache Metrics

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Cache Performance Metrics

• Miss Rate
• Fraction of memory references not found in cache (misses / accesses) = 1 – hit rate
• Typical numbers (in percentages):

• 3-10% for L1
• Can be quite small (e.g., < 1%) for L2, depending on dataset size, etc.
• However, many applications have >30% miss rate in L2 cache

• Hit Time
• Time to deliver a block in the cache to the processor

• Includes time to determine whether the block is in the cache
• Assumption: always check first cache before going to the next level

• Typical numbers:
• 1-2 clock cycles for L1
• 5-20 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss
• Typically 50-200 cycles for main memory

• Not really a “penalty”, just how long it takes to read from memory

12

Let’s think about those numbers

• Huge difference between a hit and a miss
• Could be 100x, if comparing L1 and main memory

• Would you believe a 99% hit rate is twice as good as 97%?
• Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

• Average access time:

97% hits: 100 instructions: 100*1 (L1 accesses) + 3*100 (misses)

on average: 1 cycle/instr. + 0.03 * 100 cycles/instr. = 4 cycles/instruction

99% hits: on average: 1 cycle/instr. + 0.01 * 100 cycles/instr. = 2 cycles/instruction

• This is why “miss rate” is used instead of “hit rate”
• In our example, 1% miss rate vs. 3% miss rate

• Makes the radical performance difference more obvious

• “Computation is what happens between cache misses.”

13

Average Memory Access Time (AMAT)

• AMAT = Hit time + Miss rate × Miss penalty
• Generalization of previous formula

• Can extend for multiple layers of caching
• AMAT = Hit Time L1 + Miss Rate L1 × Miss Penalty L1

• Miss Penalty L1 = Hit Time L2 + Miss Rate L2 × Miss Penalty L2

• Miss Penalty L2 = Hit Time Main Memory

• Generally: multi-level caching helps minimize AMAT

14

Example Memory Access Time Problem

• Computer specs: One layer of cache plus main memory
• Cache Hit Time: 5 nanoseconds

• Cache Miss Rate: 2%

• Memory Access Time: 100 nanoseconds

• Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)

• 5 ns + 0.02 * 100 ns

• = 5 ns + 2 ns

• = 7 ns

15

Break + Practice

• Computer specs: Two layers of cache plus main memory
• L1 Cache Hit Time: 4 nanoseconds

• L1 Cache Miss Rate: 10%

• L2 Cache Hit Time: 8 nanoseconds

• L2 Cache Miss Rate: 2%

• Memory Access Time: 100 nanoseconds

• Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)

16

Break + Practice

• Computer specs: Two layers of cache plus main memory
• L1 Cache Hit Time: 4 nanoseconds

• L1 Cache Miss Rate: 10%

• L2 Cache Hit Time: 8 nanoseconds

• L2 Cache Miss Rate: 2%

• Memory Access Time: 100 nanoseconds

• Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)

• 4 ns + 0.10 * (8 ns + 0.02 * 100 ns)

• = 4 ns + 0.10 * (8 ns + 2 ns)

• = 4 ns + 0.10 * 10 ns

• = 5 ns

17

19

• Memory Mountain

• Cache Metrics

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Contiguous Memory vs Indirection

• The rest of this lecture will focus on loops over arrays
• I.e., operating on contiguous blocks of memory

• Not all programs are like that
• “Pointer-chasing” is common

• E.g., traversing a linked list, following a pointer for every node
• (Usually) terrible for locality

• See earlier comment about some programs having >30% L2 misses
• A good allocator (malloc) can help some, but no miracles

• Specialized data structures can improve locality while still having a
linked structure, e.g., for trees
• E.g., ropes, B-trees, HAMTs, etc.

20

Understanding cache layout

• Cache parameters
• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

• Blocks per set: 1 (because direct mapped)

• Sets: 256/16 = 16

• Assume data starts at address 0
and the cache starts empty

21

Set Valid Tag Block

0000 0 ??

0001 0 ??

0010 0 ??

0011 0 ??

0100 0 ??

0101 0 ??

0110 0 ??

0111 0 ??

1000 0 ??

1001 0 ??

1010 0 ??

1011 0 ??

1100 0 ??

1101 0 ??

1110 0 ??

1111 0 ??

Understanding cache layout

• Cache parameters
• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

• Blocks per set: 1 (because direct mapped)

• Sets: 256/16 = 16

• Assume data starts at address 0
and the cache starts empty
• Valid & Tag bits don’t really matter here,

so let’s remove them from the diagram

22

Set Block (16 byte)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
• Each row in contiguous memory locations

• Stepping through columns in one row:
• Accesses successive elements
• Good spatial locality!

• Miss rate ≈ 1 miss / Elements in a Block

• Stepping through rows in one column:
• Accesses distant elements
• Bad spatial locality!

• Miss rate ≈ 1 (i.e. 100%) if the data is large enough

23

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

How do 1D arrays map to caches?

• How would an array of int map to this cache?
• int -> 4 bytes. So, 4 int values per block
• Example: int array[100]

• Where do the items go?
• First four (0-3) go in set 0
• Next four (4-7) go in set 1
• Next four (8-11) go in set 2
• etc.

• What if there are more elements in the array
than there are blocks in the cache?
• It wraps around and starts at set 0 again!
• Indexes 60-63 go in set 15
• Indexes 64-67 go in set 0 -> possible conflict!!

24

Set Block (16 byte)

0000 [0-3]

0001 [4-7]

0010 [8-11]

0011 [12-15]

0100 [16-19]

0101 [20-23]

0110 [24-27]

0111 [28-31]

1000 [32-35]

1001 [36-39]

1010 [40-43]

1011 [44-47]

1100 [48-51]

1101 [52-55]

1110 [56-59]

1111 [60-63]

How do 2D arrays map to caches?

• How would a 2D array of int map to this cache?
• int -> 4 bytes

• So, 4 int values per block

• Breakdown of indexes depends on the shape of
the array
• If there are 4 values per row, entire row fits in a block

• Example: int array[16][4]

25

Set Block (16 byte)

0000 [0][0-3]

0001 [1][0-3]

0010 [2][0-3]

0011 [3][0-3]

0100 [4][0-3]

0101 [5][0-3]

0110 [6][0-3]

0111 [7][0-3]

1000 [8][0-3]

1001 [9][0-3]

1010 [10][0-3]

1011 [11][0-3]

1100 [12][0-3]

1101 [13][0-3]

1110 [14][0-3]

1111 [15][0-3]

How do 2D arrays map to caches?

• How would a 2D array of int map to this cache?
• int -> 4 bytes

• So, 4 int values per block

• Breakdown of indexes depends on the shape of
the array
• If there are 4 values per row, entire row fits in a block

• If there are 16 values per row, ¼ of row fits in a block

• Example: int array[4][16]

26

Set Block (16 byte)

0000 [0][0-3]

0001 [0][4-7]

0010 [0][8-11]

0011 [0][12-15]

0100 [1][0-3]

0101 [1][4-7]

0110 [1][8-11]

0111 [1][12-15]

1000 [2][0-3]

1001 [2][4-7]

1010 [2][8-11]

1011 [2][12-15]

1100 [3][0-3]

1101 [3][4-7]

1110 [3][8-11]

1111 [3][12-15]

Example cache performance problem

• Cache parameters
• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

• Blocks per set: 1

• Sets: 256/16 = 16

• Assume data starts at address 0
and cache starts empty

27

int mat[6][16];

• First, think about how array
maps to the cache
• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache blocks

• First 4 rows * 16 cols fit
in cache without overlap
• Next 2 rows overlap with first 2

rows

Thinking visually about a 2D array

• int mat[6][16];

28

Set Block (16 byte)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Thinking visually about a 2D array

• int mat[6][16];

29

Set Block (16 byte)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Thinking visually about a 2D array

• int mat[6][16];

30

Set Block (16 byte)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Thinking visually about a 2D array

• int mat[6][16];

31

Set Block (16 byte)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

? ? ? ?

Thinking visually about a 2D array

• int mat[6][16];

32

Set Block (16 byte)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Conflict!

Example: accessing elements in a row

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 rows * 16 cols fit
in cache without overlap

• Next 2 rows overlap with
first 2 rows

33

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j] = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate

Example: accessing elements in a row

34

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j] = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 rows * 16 cols fit
in cache without overlap

• Next 2 rows overlap with
first 2 rows

Example: accessing elements in a row

35

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j] = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate
• All four accesses within loop fit in a cache block!

• 1 miss, 3 hits

• The next set of columns repeat pattern
• The next row repeats pattern

• Nothing already in cache from before
• Never reference old cells again

• Miss rate: 25%

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 rows * 16 cols fit
in cache without overlap

• Next 2 rows overlap with
first 2 rows

Example: reordering element access

36

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j+2] = 2;

mat[i][j] = 0;

mat[i][j+3] = 3;

mat[i][j+1] = 1;

}

}

• Does this change anything?
• No! First access brings in entire block
• Later accesses within block are hits

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 rows * 16 cols fit
in cache without overlap

• Next 2 rows overlap with
first 2 rows

Example: accessing elements by column

37

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 6; i = i+1) {

mat[i][j] = 7;

}

}

• Calculate miss rate

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 row * 16 cols fit
in cache without overlap

• Next 2 rows overlap with
first 2 rows

Remember, some rows are in conflict

• int mat[6][16];

38

Set Block (16 byte)

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Conflict!
Middle has no conflicts

Example: accessing elements by column (graphically)

39

x x x x

x x x x

x x x x

x x x x

Grey blocks are loaded into the cache, but not accessed at this time

Example: accessing elements by column

40

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 6; i = i+1) {

mat[i][j] = 7;

}

}

• Calculate miss rate

• 6 misses for 1st load of each row
• 4 misses for 2nd column in the row (2 hits)
• 4 misses for 3rd column in the row (2 hits)
• 4 misses for 4th column in the row (2 hits)
• Repeat

• Miss rate = (6+4+4+4)/24 = 75%

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 row * 16 cols fit
in cache without overlap

• Next 2 rows overlap with
first 2 rows

Break + Question

41

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 4; i = i+1) { // 4!

mat[i][j] = 7;

}

}

• Calculate miss rate

int mat[4][16];

• Same cache from
before:
• Direct-mapped data

cache
• 256-byte total size
• 16-byte blocks

• Change matrix to be 4
rows of 16 columns
(not 6 rows)

Break + Question

42

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 4; i = i+1) { // 4!

mat[i][j] = 7;

}

}

• Calculate miss rate

• Entire array fits in cache!
• No conflicts

• 1 miss per four accesses

• Miss rate = 25%

int mat[4][16];

• Same cache from
before:
• Direct-mapped data

cache
• 256-byte total size
• 16-byte blocks

• Change matrix to be 4
rows of 16 columns
(not 6 rows)

43

• Memory Mountain

• Cache Metrics

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Our Benchmark: Matrix Multiplication

• Review from your linear algebra class

1 3
2 4

5 6
7 8

× =

1 3
2 4

5 6
7 8

5

1 × 5 + 3 × 7 = 26

1 × 6 + 3 × 8 = 30

2 × 5 + 4 × 7 = 38

2 × 6 + 4 × 8 = 44
26 630

1038 1244

26 30

38 44

44

When is matrix
multiplication important?
• ML and AI algorithms!!

Miss Rate Analysis for Matrix Multiply

• Assume:
• Block size = 32B (big enough for four 64-bit longs)
• Matrix dimension (N) is very large
• Cache is not big enough to hold even one row

• Analysis Method:
• Look at access pattern of inner loop

• Now we’ll see why the standard matrix multiplication is bad!
• From a performance standpoint, that is

A

k

i

B

k

j

C

i

j

45

46

A

B

C

N
N

N N

i

k

k

j

i

j

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

Matrix Multiplication Example

 Multiply N x N matrices

 O(N3) total operations

 Each source element
read N times

 N values summed per
destination

Variable sum
held in register

46

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

Misses per inner loop iteration:
 A B C Remember: Block size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wise Fixed

Column-
wise

0.25 1 0

Total misses/iteration: 1.25
47

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

Misses per inner loop iteration:
 A B C Remember: Block size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wiseFixed

Row-wise

0 0.25 0.25

Total misses/iteration: 0.5
49

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

Misses per inner loop iteration:
 A B C Remember: Block size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

j

Column-
wise

Fixed

i

Column-
wise

1 0 1

Total misses/iteration: 2
51

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

A

B

C
i

k

k
j

i

j

Row-wise Fixed

Column-
wise

A

B

C
i

k

k

j

i

j
Row-wiseFixed

Row-wise

A

B

C
i

k

k

j

j

Column-
wise

Fixed

i

53

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

C
y
c
le

s
 p

e
r

in
n

e
r

lo
o

p
 i
te

ra
ti

o
n

Array size (N)

jki
kji
ijk
jik
kij
ikj

jki / kji (2.0 misses/iter)

ijk / jik (1.25 misses/iter)

kij / ikj (0.5 misses/iter)

Essentially the same algorithm, just different data access patterns!
The most natural way to write code may not be the best one!

54

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

C
y
c
le

s
 p

e
r

in
n

e
r

lo
o

p
 i
te

ra
ti

o
n

Array size (N)

jki
kji
ijk
jik
kij
ikj

jki / kji (2.0 misses/iter)

ijk / jik (1.25 misses/iter)

kij / ikj (0.5 misses/iter)

Essentially the same algorithm, just different data access patterns!
The most natural way to write code may not be the best one!

55

For a sufficiently small N, any
implementation is “good enough”

Break + Open Question

• What about those writes? Do they have additional costs?

56

Break + Open Question

• What about those writes? Do they have additional costs?
• Assumption: write-back cache such that they don’t cost more than reads

until evicted

• As long as evictions of modified (dirty) data happen once per array cell,
we’re equivalent to the one write outside of the for loop

• This is not the case here since entire row doesn’t fit in cache

• If evictions of modified (dirty) data happen multiple times per array cell,
question becomes complicated

• How much does that hurt compared to extra cache misses?

• Writes can happen in the background (while processor is running)

• Likely need to measure real-world performance to understand

57

58

• Memory Mountain

• Cache Metrics

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Example: Matrix Multiplication

a b

i

j

*

c

=

double *c = (double *) malloc(sizeof(double)*n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 double sum = 0.0;

 for (int k = 0; k < n; k++) {

 sum += a[i*n + k] * b[k*n + j];

 }

 c[i*n+j] = sum;

} } }

A

B

C

i

k

k

j

i

j

Row-wise Fixed

Column-
wise

59

 A

 B

 C

k

k

Cache Miss Analysis (approximate)

• Assume:
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C <<< n (much smaller than n)

• 1st iteration (i,j,k=0,0,*):
• How many misses?

• n/8 + n + 1 =
9n/8+1 misses

 A

 B

 C

k

k

Afterwards in cache:

8-wide

60

Cache Miss Analysis (approximate)

• Assume:
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C <<< n (much smaller than n)

• 2nd iteration (i,j,k=0,1,*):
• Again:

n/8 + n + 1 =
9n/8+1 misses

 Total misses:
▪ Every iteration: 9n/8 + 1

▪ # iterations: n2

▪ (9n/8+1)*n2 = (9/8)*n3 +n2

61

 A

 B

 C

k

k

 A

 B

 C

k

k
8-wide

Afterwards in cache:

Enter Blocking Algorithms

• Special class of algorithms designed specifically to have excellent temporal
and spatial locality

• Key idea: don’t operate on individual elements; instead operate on blocks !
• Treat the overall matrices as containing submatrices as elements

• See next slide

• General principle: use a piece of data as much as we can
• Then it’s ok to kick it out of the cache
• As opposed to using, kicking out, using again later, and so on

• Same result, but much nicer locality!
• And thus can leverage the cache better (more hits, fewer misses)
• Still same computational complexity

• May get a bit mind bending
• I want you to understand the general principle
• But you don’t need to fully understand the details of the algorithm

62

Matrices as Matrices of Submatrices

• Elements of are not scalars anymore
• But rather smaller matrices

• To compute a result submatrix
• Just do a smaller matrix multiplication!

1 3
2 4

5 7
6 8

9 11
10 12

13 15
14 16

17 19
18 20

21 23
22 24

1 3
2 4

25 27
26 28

(A*B)
+(C*D)

A

B

C
D

63

Blocked Matrix Multiplication
double * c = (double *) malloc(sizeof(double)*n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 for (int i = 0; i < n; i+=B) {

 for (int j = 0; j < n; j+=B) {

 for (int k = 0; k < n; k+=B) {

 /* B x B mini matrix multiplications */

 for (int i1 = i; i1 < i+B; i1++) {

 for (int j1 = j; j1 < j+B; j1++) {

 double sum = 0.0;

 for (int k1 = k; k1 < k+B; k1++) {

 sum += a[i1*n + k1] * b[k1*n + j1];

 }

 c[i1*n + j1] = sum;

} } } } } }

a b

i1

j1

*

c

=

Block size B x B 64

Cache Miss Analysis (approximate)

• Assume:
• Cache block = 8 doubles
• Cache size <<< n (much smaller than n)
• Three blocks fit into cache: 3B2 < Cache size

• First (block) iteration:
• B2/8 misses for any given block
• 2B2/8 misses for each

BxB-block multiplication
(only counting A, B misses)

• # BxB multiplications: n/B
• B2/8 misses for C[] block total
• 2B2/8*n/B+B2/8 = nB/4+B2/8

• Afterwards in cache
• No waste! We used all that we brought in!

*=

 A B

*
 C =

Block size B x B

n/B blocks

65

Cache Miss Analysis (approximate)

• Assume:
• Cache block = 8 doubles
• Cache size << n (much smaller than n)
• Three blocks fit into cache: 3B2 < Cache size

• Second (block) iteration:
• Same as first iteration
• misses = nB/4+B2/8

• Total misses:
• #block iterations: (n/B)2

• (nB/4 +B2/8)* (n/B)2 = n3/(4B) + n2/8

*=

Block size B x B

n/B blocks

66

Performance Impact

• Misses without blocking: (9/8) * n3 + n2

• Misses with blocking: 1/(4B) * n3 + 1/8 * n2

• Largest possible block size B, but limit 3B2 < C → B = 𝐶/3 (so it all fits in the cache)

• e.g., Cache size = 32K = 32,768 Bytes, then pick B = 104
• Results:

• No blocking: 1.125*n3 + n2

• Blocking: 0.0024*n3 + 0.125*n2

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality
• But program has to be written properly to take advantage of it

468x 8x

67

Takeaways

• Writing code to take advantage of the cache is challenging
• It’s totally possible, but high effort

• Generally: maximize spatial and temporal locality
• Use elements close to each other (moving horizontally in 2D array)

• Use the same element as many times as possible in a row (output)

• Well-designed math libraries will do this for you!
• MATLAB, Mathematica, R, SciPy, etc.

• Jack Dongarra won a Turing award for this in 2021!

68

https://en.wikipedia.org/wiki/Jack_Dongarra

69

• Memory Mountain

• Cache Metrics

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

	Default Section
	Slide 1: Lecture 13 Cache Performance

	Goals
	Slide 2: Today’s Goals

	Memory Mountain
	Slide 3: Outline
	Slide 4: Writing Cache-Friendly Code
	Slide 6: The Memory Mountain
	Slide 8: A Memory Mountain
	Slide 9: A Memory Mountain
	Slide 10: A Memory Mountain

	Cache Metrics
	Slide 11: Outline
	Slide 12: Cache Performance Metrics
	Slide 13: Let’s think about those numbers
	Slide 14: Average Memory Access Time (AMAT)
	Slide 15: Example Memory Access Time Problem
	Slide 16: Break + Practice
	Slide 17: Break + Practice

	Cache Performance
	Slide 19: Outline
	Slide 20: Contiguous Memory vs Indirection
	Slide 21: Understanding cache layout
	Slide 22: Understanding cache layout
	Slide 23: Layout of C Arrays in Memory (review)
	Slide 24: How do 1D arrays map to caches?
	Slide 25: How do 2D arrays map to caches?
	Slide 26: How do 2D arrays map to caches?
	Slide 27: Example cache performance problem
	Slide 28: Thinking visually about a 2D array
	Slide 29: Thinking visually about a 2D array
	Slide 30: Thinking visually about a 2D array
	Slide 31: Thinking visually about a 2D array
	Slide 32: Thinking visually about a 2D array
	Slide 33: Example: accessing elements in a row
	Slide 34: Example: accessing elements in a row
	Slide 35: Example: accessing elements in a row
	Slide 36: Example: reordering element access
	Slide 37: Example: accessing elements by column
	Slide 38: Remember, some rows are in conflict
	Slide 39: Example: accessing elements by column (graphically)
	Slide 40: Example: accessing elements by column
	Slide 41: Break + Question
	Slide 42: Break + Question

	Rearranging Matrix Math
	Slide 43: Outline
	Slide 44: Our Benchmark: Matrix Multiplication
	Slide 45: Miss Rate Analysis for Matrix Multiply
	Slide 46: Matrix Multiplication Example
	Slide 47: Matrix Multiplication (ijk)
	Slide 49: Matrix Multiplication (kij)
	Slide 51: Matrix Multiplication (jki)
	Slide 53: Summary of Matrix Multiplication
	Slide 54: Core i7 Matrix Multiply Performance
	Slide 55: Core i7 Matrix Multiply Performance
	Slide 56: Break + Open Question
	Slide 57: Break + Open Question

	Matrix Math in Blocks
	Slide 58: Outline
	Slide 59: Example: Matrix Multiplication
	Slide 60: Cache Miss Analysis (approximate)
	Slide 61: Cache Miss Analysis (approximate)
	Slide 62: Enter Blocking Algorithms
	Slide 63: Matrices as Matrices of Submatrices
	Slide 64: Blocked Matrix Multiplication
	Slide 65: Cache Miss Analysis (approximate)
	Slide 66: Cache Miss Analysis (approximate)
	Slide 67: Performance Impact
	Slide 68: Takeaways

	Wrapup
	Slide 69: Outline

