
Lecture 03
Data Operations

CS213 – Intro to Computer Systems

Branden Ghena – Fall 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• You should all have access to Piazza and Gradescope
• Contact me via email immediately if you don’t!!

• Office hours are now running
• See Canvas homepage for office hours times

• Mix of in-person and online hours

• Online uses gather.town (Room C)

• Office hours queue on the Canvas homepage

• Note: no office hours next Monday for MLK Day

2

Administrivia

• Homework 1 due next week Tuesday
• Submit on Gradescope

• Pack Lab should be out later today!
• Sometime this evening

• Pack Lab partnership survey on Piazza
• If you want a partner but don’t know who you want to work with

• You’ll do Pack Lab on one of the EECS servers
• Usually we use Moore, but any EECS server should be fine for this lab
• SSH + Command Line interface
• See Piazza post with some details on accessing the servers

3

Today’s Goals

• Finish encodings thoughts from last time

• Explore operations we can perform on integers and more generally
on binary numbers

• Understand the edge cases of those operations

4

5

• Binary and Hex

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

Big Idea: What do bits and bytes mean in a system?

• The answer is: it depends!

• Depending on the context, the bits 11000011 could mean
• The number 195
• The number -61
• The number -19/16
• The character ‘├’
• The ret x86 instruction

• You have to know the context to make sense of any bits you have!
• Looking at the same bits in different contexts can lead to interesting results
• Information = bits + context!

• An encoding is a set of rules that gives meaning to bits

6

Encoding strings (The C way)

• Represented by array of characters
• Each character encoded in ASCII format

• NULL character (code 0) to mark the end

• Compatibility
• Byte ordering not an issue (data all single-byte!)

• ASCII text files generally platform independent

• Except for different conventions of line termination
character(s)!

char S[6] = "18243";

Big-Endian Little-Endian

0x31

0x38

0x32

0x34

0x33

0x00

0x31

0x38

0x32

0x34

0x33

0x00

7

Encoding color

• RGB colors
• 3-byte values

• First byte is Red, then Green, then Blue

• Usually specified in hexadecimal
• #FF0000 -> maximum red, zero green or blue

• #4E2A84 -> 1/4 red, 1/8 blue, 1/2 green (Northwestern Purple)

• 224 possible colors = 16777216 colors

8

Interpreting file contents

• Collections of data
• Usually in permanent storage on your computer

• Regular files
• Arbitrary data

• Think of as a big array of bytes

• Non-regular files would be directories, symbolic links, or other less
used things

9

What about different types of regular files?

• Text files versus Executables versus Tar files
• All just differing patterns of bytes!

• It really is just all data. The meaning is in how you interpret it.

10

Executable
File

Archive
(tar)

Identifying regular files

• file in Linux command line can help determine the type of a file
• https://github.com/file/file

11

https://github.com/file/file

Encoding time

• Unix time:
• 32-bit signed integer counting seconds elapsed since initial time

• Initial time was January 1st at midnight UTC, 1970

• Current Unix time (as of last editing this slide): 1704997980
• Negative numbers would mean times before 1970

• Problem: when does Unix time hit the maximum value?
• 2147483647 seconds from January 1st 1970

• Result: January 19th, 2038

• This is the “Year 2038 Problem”

12

https://en.wikipedia.org/wiki/Year_2038_problem

Bonus xkcd comic

13https://xkcd.com/2697/

14

• Integer Operations
• Addition

• Negation and Subtraction

• Multiplication and Division

• Binary Operations
• Boolean Algebra

• Shifting

• Bit Masks

Outline

C versus the hardware

• Operations you can perform on binary numbers have edge
conditions
• Usually going above or below the bit width

• If we say what happens in that scenario, it’ll be what
“the hardware” (i.e., a computer) does
• In today’s examples, pretty much every computer does the same thing

• That is not the same as what C does
• Unclear choices are left as: UNDEFINED BEHAVIOR

• Which is to say, the compiler can make any choice it wants

15

Unsigned Addition

• Like grade-school addition, but in base 2, and ignores final carry
• If you want, can do addition in base 10 and convert to base 2. Same

result! But here we’re going to understand what the hardware is doing.

• Example: Adding two 4-bit numbers

• 510 + 310 = 810

0101

+ 0011

1 000

111

16

Unsigned Addition and Overflow

• What happens if the numbers get too big?

• Example: Adding two 4-bit numbers

• 1310 + 310 = 1610

• Too large for 4 bits! Overflow
• Result is the 4 least significant bits (all we can fit): so 010

• Truncate most-significant bits that do not fit
• Gives us modular (= modulo) behavior: 16 modulo 24 = 0

1101

+ 0011

0 000

111

1

1

17

Modulo behavior in binary numbers

18

1000

0000

01001100

0011

0010

0001

0111

0110

01011011

1010

1001

1111

1110

1101

+1-1

10000

Unsigned addition is modular

• Implements modular arithmetic
• UAddw(u , v) = (u + v) mod 2w

• Need to drop carry bit, otherwise results will keep getting bigger
• Example in base 10: 8010 + 4010 = 12010 (2-digit inputs become a 3-digit output!)

• Warning: C does not tell you that the result had an overflow!
• Unsigned addition in C silently truncates most-significant bits beyond the limit

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

UAdd Result: w bits UAddw(u , v)

19

Signed (2’s Complement) Addition

• Works exactly the same as unsigned addition!
• Just add the numbers in binary, and the result will work out

• Signed and unsigned sum have the exact same bit-level
representation
• Computers use the same machine instruction and the same hardware!

• That’s a big reason 2’s complement is so nice! Shares operations with
unsigned

20

Signed addition example

• Same addition method as unsigned

• Example: Adding two 4-bit signed numbers

• -510 + 310 = -210

1011 (-8 + 3 = -5)
+ 0011 (+3)

1 (-8 + 6 = -2)011

11

21

Combining negative and positive numbers

• Overflow sometimes makes signed addition work!

• Example: Adding two 4-bit signed numbers

• -310 + 310 = 010

• Too large for 4 bits! Drop the carry bit

• Result is what we expect as long as we truncate

1101 (-8 + 5 = -3)
+ 0011 (+3)

0 000

111

1

1

22

Signed addition and overflow

• Overflow can still happen in signed addition though

• Example: Adding two 4-bit signed numbers

• 510 + 310 = -810 (+8 is too big to fit)

• Remember, this was also unsigned 510 + 310 = 810

0101

+ 0011

1 000

111

23

Signed addition and negative overflow

• Overflow also happens in the negative direction

• Example: Adding two 4-bit signed numbers

• -510 + -510 = +610 (-10 was too small to fit)

1011

+ 1011

10 011

111

24

Overflow: hardware vs C standard

• Hardware implementations for unsigned and signed addition are
the same
• Both implement truncation of overflowing bits, leads to modular arithmetic

• Unsigned overflow in C is defined as modular arithmetic

• Signed overflow in C is UNDEFINED BEHAVIOR

• Compiler probably does modular result

• But there are no promises about this and it can make assumptions

• So don’t rely on it

25

Special boss in Chrono Trigger

• Dream Devourer
• Special boss in the Nintendo DS edition

• Wanted to make it even more challenging
• ~32000 hit points

• Takes forever to defeat

• Hit points stored as a 16-bit signed integer
• Range: -32768 to +32767

• How do speedrunners defeat the boss?

26

Chrono Trigger signed overflow bug

• Solution: heal it

• Hit points go negative
and it dies

27

28

• Integer Operations
• Addition

• Negation and Subtraction

• Multiplication and Division

• Binary Operations
• Boolean Algebra

• Shifting

• Bit Masks

Outline

Negating a number

• In C:

• x = -y;

• Operation
• Determine the negative, signed version of the number (two’s complement)

• Hardware method: flip bits and add one

• Completement operator (~)
• Flips all bits: zeros become a one and ones become a zero

• ~0b1011 -> 0b0100

29

Negating via Complement & Increment

• Claim: The following is true for 2’s complement
• ~x + 1 == -x

• Complement
• Observation: ~x + x == 1111…112 == -1

• Increment
• ~x + 1 == ~x + x - x + 1 == -1 - x + 1 == -x

• Example, 4 bits: 610 = 01102
• Complement: 10012 → Increment = 10102 = -8 + 2 = -610

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

30

Subtraction in two’s complement

• Subtraction becomes addition of the negative number
• 5 – 3 = 5 + -3 = 2

• Both unsigned and signed subtraction
• Convert subtractor to its two’s complement negative form

• i.e., negate it

• Then do addition

• Treat result as an unsigned number

31

0101 (+5)
+ 1101 (-3)

10 001

111

C rules vs hardware rules

• Exact same overflow rules apply

• Unsigned subtraction can wrap below zero to make a large number
• Modular arithmetic

• Signed subtraction is UNDEFINED BEHAVIOR

• And therefore should not be trusted

32

Break + practice

• Adding two 8-bit binary numbers:
• Also determine the decimal version of the result

33

00010101

+ 10110001

Break + practice

• Adding two 8-bit binary numbers:
• Also determine the decimal version of the result

34

00010101

+ 10110001

11 1

10100101 128+64+4+2 = 198

128+32+16+1 = 177

16+4+1 = 21

OR

-128+64+4+2 = -58

-128+32+16+1 = -79

16+4+1 = 21

Unsigned encoding Signed encoding

Break + practice

• Adding two 8-bit binary numbers:
• Also determine the decimal version of the result

35

00010101

+ 10110001

11 1

10100101 128+64+4+2 = 198

128+32+16+1 = 177

16+4+1 = 21

OR

-128+64+4+2 = -58

-128+32+16+1 = -79

16+4+1 = 21

Unsigned encoding Signed encoding

What about unsigned subtraction 21-79?

That would treat the result as unsigned, with the value 198
 Modular arithmetic in action

36

• Integer Operations
• Addition

• Negation and Subtraction

• Multiplication and Division

• Binary Operations
• Boolean Algebra

• Shifting

• Bit Masks

Outline

Multiplication

• Goal: Compute the Product of two w-bit numbers x, y
• Either signed or unsigned

• But, exact results can be bigger than w bits
• Double the size (2w), in fact!

• Example in base 10: 5010 * 2010 = 100010

• (2-digit inputs become a 4-digit output!)

• As with addition, result is truncated to fit in w bits
• Because computers are finite, results can’t grow indefinitely

37

Unsigned Multiplication

• Standard Multiplication Function
• Equivalent to grade-school multiplication

• But ignores most significant w bits of the result

• As a person, we can do base 10 multiplication, convert to base 2, then truncate

• Implements modular arithmetic like addition does
UMultw(u , v) = (u · v) mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

38

Unsigned multiplication

• Example: Multiplying two 4-bit numbers

210 * 510 = 1010

0010

x 0101

39

0010
0000
0010

+ 0000

0001010

0
00
000

Signed (2’s Complement) Multiplication

• Standard Multiplication Function
• Ignores most significant w bits
• Lower bits still give the correct result

• So we can use same machine instruction for both!
• Again, that’s one reason why 2’s complement is so nice

• In C, signed overflow is undefined
• ...but probably you’ll see the two’s complement behavior

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits TMultw(u , v)

• • •

40

Signed multiplication

• Example: Multiplying two’s complement 5-bit numbers

11110

x 00011

41

11110
0+ 11110

What are these two
5-bit numbers?

-2

3

What is the result of
this addition?

01 00 1111011010

-210 * 310 = -610

What about divide?

• Annoying operation, not going to discuss in this class
• Similar to long division process

• Tedious and complicated to get right

• I’ve worked on computers that don’t have hardware support for
division at all!!

• Important thing to remember is that integers don’t have fractional
parts
• In C: 1/2 == 0

• We’ll need a different encoding for fractional numbers: floating point

42

43

• Integer Operations
• Addition

• Negation and Subtraction

• Multiplication and Division

• Binary Operations
• Boolean Algebra

• Shifting

• Bit Masks

Outline

Boolean algebra

44

• You’ve programmed with and and or in earlier classes
• Written && and || in C and C++

• Boolean algebra is a generalization of that
• A mathematical system to represent logic (propositional logic)

• 2 truth values: true = 1, false = 0

• Operations: and &, or |, not (or complement) ~

Performing Boolean algebra

• Follow the rules for each operation to compute results
• Rules are like those you know from programming

• OR: | AND: & NOT: ~ 1: True 0: False

45

(1 | 0) & 0 1 & 0 0

(1 & 1) & ~(0 | 0) 1 & ~(0) 1 & 1 1

Truth tables for Boolean algebra

• For each possible value of each input, what is the output
• Column for each input

• Column for the output operation

46

A & B

A B A & B

0 0 0

0 1 0

1 0 0

1 1 1

A | B

A B A | B

0 0 0

0 1 1

1 0 1

1 1 1

~A

A ~A

0 1

1 0

Exclusive Or (xor)

• An operation you likely haven’t used before:
• Xor - either A or B, but not both
• ^ symbol in C

• We can build Xor out of &, |, and ~

• A^B = (~A & B) | (A & ~B)
• (exactly one of A and B is true)

• A^B = (A | B) & ~(A & B)
• (either is true but not both are true)

• The two definitions are equivalent
• Produce the same Truth Table

47

A ^ B

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

Practice problem

48

(A & B) | B

A B (A&B)|B

0 0

0 1

1 0

1 1

Practice problem

49

(A & B) | B

A B (A&B)|B

0 0

0 1

1 0

1 1

0

0

1

1

Practice problem

50

(A & B) | B

A B (A&B)|B

0 0 0

0 1 1

1 0 0

1 1 1

This is equivalent to B
(A has no influence on the solution)

Generalized Boolean algebra

• Boolean operations can be extended to work on collections of bits (i.e., bytes)

• Operations are applied one bit at a time: bitwise

• All of the properties of Boolean algebra still apply
• Relationships between operations, etc.

• Bitwise operations are usable in C: &, |, ~, ^
• Can operate on any integer type (long, int, short, char, signed or unsigned)

52

01101001

& 01010101

 01000001

01101001

| 01010101

 01111101

01101001

^ 01010101

 00111100

~ 01010101

 1010101001000001 01111101 00111100 10101010

Warning: bitwise operations are NOT logical operations

• Logical operations in C: ||, &&, ! (logical Or, And, and Not)
• Only operate on a single bit

• View 0 as “False”
• View anything nonzero as “True”
• Always return 0 or 1

• Short-circuit evaluation: only checks the first operand if that is sufficient

• Examples
• !0x41 -> 0x00 !0x00 -> 0x01 !!0x41 -> 0x01
• 0x59 && 0x35 -> 0x01
• (p != NULL) && *p (short circuit evaluation avoids null pointer access)

• Don’t confuse the two!! It’s a common C mistake

53

Break + Practice: C example of bitwise operators

unsigned char x = 13;

unsigned char y = 11;

unsigned char z = x & y;

• What decimal value is in z now?
• Remember: unsigned char is an 8-bit value

56

Break + Practice: C example of bitwise operators

unsigned char x = 13;

unsigned char y = 11;

unsigned char z = x & y;

• What decimal value is in z now?
• Remember: unsigned char is an 8-bit value

• x: 0b00001101

• y: 0b00001011

• z: 0b00001001

57

-> 9

58

• Integer Operations
• Addition

• Negation and Subtraction

• Multiplication and Division

• Binary Operations
• Boolean Algebra

• Shifting

• Bit Masks

Outline

Left Shift: x << y

• Shift bit-vector x left by y positions
• Throw away extra bits on left
• Fill empty bits with 0

• Same behavior for signed or unsigned

• Equivalent to multiplying by 2y

• And then taking modulo (i.e. truncating overflow bits)

• Undefined behavior in C when:
• y < 0, or y ≥ bit_width(x)
• Also when some non-0 bits get shifted off (probably they get truncated)

00000010Argument x

00010000<< 3

10100010Argument x

00010000<< 3

0000001000000000010000

1010001000010100010000

59

Right Shift: x >> y

• Shift bit-vector x right y positions
• Throw away extra bits on right

• But how to fill the new bits that open up?
• Will depend on signed vs unsigned

• Unsigned: Logical shift
• Always fill with 0’s on left

• Signed: Arithmetic shift
• Replicate most significant bit on left
• Necessary for two’s complement integer representation (sign extension!)

• Undefined behavior in C when:
• y < 0, or y ≥ bit_width(x)

01100010Argument x

00011000Logi. >> 2

00011000Arith. >> 2

10100010Argument x

00101000Logi. >> 2

11101000Arith. >> 2

0001100000011000

0001100000011000

00101000

11101000

00101000

11101000

60

unsigned char x = 0b10100010;

x << 3 = ?

Practice shifting in C

0b00010000

Note:
GCC supports the prefix 0b for binary literals (like 0x… for hex) directly in C.
This is not part of the C standard! It may not work on other compilers.

0b00101000

0b11101000

signed char x = 0b10100010;

 x >> 2 = ?

unsigned char x = 0b10100010;

 x >> 2 = ?

61

Steps:
0b10100010000
0b10100010000

Steps:
0b0010100010
0b0010100010

Steps:
0b1110100010
0b1110100010

Concept: Not all operations are equally expensive!

• Some operations are pretty simple to perform in hardware
• E.g., addition, shifting, bitwise operations

• Also true of doing the same by hand on paper

• Others are much more involved
• E.g., multiplication, or even more so division

• Consider long multiplication / long division; quite tedious!

• Hardware is not doing the exact same thing, but similar principle

• Trick: try to replace expensive operations with simple ones!
• Doesn’t work in all cases, but often does when mult/div by constants

62

Shift to divide

• Division by powers of two could be shifts
• unsigned int x = y / 2; unsigned int x = y >> 1;

• Even more important because division is a complicated operation
• Multiply is implemented in (relatively) simple hardware on most systems

• Compiler might actually translate your divide-by-powers-of-two operations
into shift operations though!

• Warning: rounding needs to be handled correctly for signed
numbers and division
• See bonus slides

63

Compilers automatically chose the best operations

• Should you use shifts instead of multiply/divide in your C code?
• NO

• Just write out the math
• Math is more readable if that’s what you meant

• Compiler automatically converts code to get best performance

• These two mean the same thing, but one is way more
understandable

• int x = y * 32;

• int x = (y << 5);

64

65

• Integer Operations
• Addition

• Negation and Subtraction

• Multiplication and Division

• Binary Operations
• Boolean Algebra

• Shifting

• Bit Masks

Outline

Bit Masking

• How do you manipulate certain bits within a number?

• Combines some of the ideas we’ve already learned
• ~, &, |, <<, >>

• Steps
1. Create a “bit mask” which is a pattern to choose certain bits

2. Use & or | to combine it with your number

3. Optional: Use >> to move the bits to the least significant position

66

How to operate on bits

• Selecting bits, use the AND operation
• 1 means to select that bit

• 0 means to not select that bit

• Writing bits
• Writing a one, use the OR operation

• 1 means to write a one to that position

• 0 is unchanged

• Writing a zero, use the AND operation

• 0 means to write a zero to that position

• 1 is unchanged

67

Select bottom four bits:
 num & 0x0F

Set 6th bit to one:
 num | (1 << 6)

 num | (0b01000000)

Clear 6th bit to zero:
 num & (~(1 << 6))

 num & (~(0b01000000))

 num & (0b10111111)

Example: swap nibbles in byte

• Nibble - 4 bits (one hexit)
• Input: 0x4F -> Output 0xF4

• Method:

• 1. Shift and select upper four bits

• 2. Shift and select lower four bits

• 3. Combine the two nibbles

uint8_t lower = input >> 4;

uint8_t upper = input << 4;

uint8_t output = upper | lower; // combines two halves

68

What are the values of the
new upper bits?

Unsigned -> Will be zero

Shifting implicitly zero’d out irrelevant bits.
Otherwise we would have needed an & operation too.

Example: selecting bits

• Select bits 2 and 3 from a number

69

Input: 0b011001000b01100100

Mask: 0b00001100

 0b01100100

 & 0b00001100

 0b00000100

Finally, shift right by two to get the
values in the least significant position:

 0b00000001

In C:
result = (input & 0x0C) >> 2;

70

• Integer Operations
• Addition

• Negation and Subtraction

• Multiplication and Division

• Binary Operations
• Boolean Algebra

• Shifting

• Bit Masks

Outline

71

• Dividing with bit shift

• Bonus material isn’t required and won’t be on an exam
• Unless it becomes main lecture material in a different lecture

• Usually the material is just for students who want more depth
• As is the case here

Outline

Unsigned Power-of-2 Divide with Right Shift

• Quotient of unsigned by power of 2
• u >> k gives  u / 2k 

• Uses logical shift

• Pink part would be remainder / fractional part (right of the point)

• Shift just drops it: equivalent to rounding down

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k

••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

0

0 0 0•••0

.

Binary Point

 x  : round x down
 x  : round x up

72

Signed Power-of-2 Divide with Shift (Almost)

• Quotient of signed by power of 2
• x >> k gives  x / 2k 
• Uses arithmetic shift
• Also rounds down, again by dropping bits
• But signed division should round towards 0! (that’s its math definition)
• That means rounding up for negative numbers!

• Example, 4 bits: -6 / 4 = -1.5 (should round towards 0, to -1)
• 10102 >> 2 = 11102 = -210

• Rounds the wrong way!

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

73

Correct Signed Power-of-2 Divide

• Want  x / 2k  (round towards 0)

• Math identity: x / y =  (x + y - 1) / y 

• Compute negative case as (x+2k-1)/ 2k  → gets us correct rounding!

• Computing both cases in C: (x<0 ? (x + (1<<k)-1) : x) >> k

• Biases dividend toward 0

• Case 1: No rounding

• Example, 4 bits: -8 / 22 = -2 bias = (1<<2)-1 = 3

• (1000 + 0011) >> 2 = 1011 >> 2 = 1110 = -210 (correct, no rounding)

Divisor:

Dividend:

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect; all affected bits are dropped

all bits at positions 0...(k-1) are 0

74

Correct Signed Power-of-2 Divide (Cont.)

• Example, 4 bits: -6 / 22 = -1 bias = (1<<2)-1 = 3
• (1010 + 0011) >> 2 = 1101 >> 2 = 1111 = -110 (correct, rounds towards 0)

• Compiler does that for you (but you need to be able to read it!)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1•••1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result; just what we wanted

•••

Incremented by 1

Incremented by 1

.

Binary Point

some bits at positions 0...(k-1) are 1

75

	Default Section
	Slide 1: Lecture 03 Data Operations

	Goals
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Today’s Goals

	Other encoding
	Slide 5: Outline
	Slide 6: Big Idea: What do bits and bytes mean in a system?
	Slide 7: Encoding strings (The C way)
	Slide 8: Encoding color
	Slide 9: Interpreting file contents
	Slide 10: What about different types of regular files?
	Slide 11: Identifying regular files
	Slide 12: Encoding time
	Slide 13: Bonus xkcd comic

	Addition
	Slide 14: Outline
	Slide 15: C versus the hardware
	Slide 16: Unsigned Addition
	Slide 17: Unsigned Addition and Overflow
	Slide 18: Modulo behavior in binary numbers
	Slide 19: Unsigned addition is modular
	Slide 20: Signed (2’s Complement) Addition
	Slide 21: Signed addition example
	Slide 22: Combining negative and positive numbers
	Slide 23: Signed addition and overflow
	Slide 24: Signed addition and negative overflow
	Slide 25: Overflow: hardware vs C standard
	Slide 26: Special boss in Chrono Trigger
	Slide 27: Chrono Trigger signed overflow bug

	Negation and Subtraction
	Slide 28: Outline
	Slide 29: Negating a number
	Slide 30: Negating via Complement & Increment
	Slide 31: Subtraction in two’s complement
	Slide 32: C rules vs hardware rules
	Slide 33: Break + practice
	Slide 34: Break + practice
	Slide 35: Break + practice

	Multiplication & Division
	Slide 36: Outline
	Slide 37: Multiplication
	Slide 38: Unsigned Multiplication
	Slide 39: Unsigned multiplication
	Slide 40: Signed (2’s Complement) Multiplication
	Slide 41: Signed multiplication
	Slide 42: What about divide?

	Boolean Algebra
	Slide 43: Outline
	Slide 44: Boolean algebra
	Slide 45: Performing Boolean algebra
	Slide 46: Truth tables for Boolean algebra
	Slide 47: Exclusive Or (xor)
	Slide 48: Practice problem
	Slide 49: Practice problem
	Slide 50: Practice problem
	Slide 52: Generalized Boolean algebra
	Slide 53: Warning: bitwise operations are NOT logical operations
	Slide 56: Break + Practice: C example of bitwise operators
	Slide 57: Break + Practice: C example of bitwise operators

	Shifting
	Slide 58: Outline
	Slide 59: Left Shift: x << y
	Slide 60: Right Shift: x >> y
	Slide 61: Practice shifting in C
	Slide 62: Concept: Not all operations are equally expensive!
	Slide 63: Shift to divide
	Slide 64: Compilers automatically chose the best operations

	Bit Masking
	Slide 65: Outline
	Slide 66: Bit Masking
	Slide 67: How to operate on bits
	Slide 68: Example: swap nibbles in byte
	Slide 69: Example: selecting bits

	Wrapup
	Slide 70: Outline

	Bonus: Divide with Shift
	Slide 71: Outline
	Slide 72: Unsigned Power-of-2 Divide with Right Shift
	Slide 73: Signed Power-of-2 Divide with Shift (Almost)
	Slide 74: Correct Signed Power-of-2 Divide
	Slide 75: Correct Signed Power-of-2 Divide (Cont.)

