Lecture 03
Data Operations

CS213 — Intro to Computer Systems
Branden Ghena — Fall 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Administrivia

* You should all have access to Piazza and Gradescope
« Contact me via email immediately if you don't!!

» Office hours are now running
« See Canvas homepage for office hours times

 Mix of in-person and online hours
* Online uses gather.town (Room C)

« Office hours queue on the Canvas homepage

« Note: no office hours next Monday for MLK Day

Administrivia

 Homework 1 due next week Tuesday
« Submit on Gradescope

 Pack Lab should be out later today!
« Sometime this evening

 Pack Lab partnership survey on Piazza
« If you want a partner but don’t know who you want to work with

* You'll do Pack Lab on one of the EECS servers

« Usually we use Moore, but any EECS server should be fine for this lab
« SSH + Command Line interface

» See Piazza post with some details on accessing the servers

Today’s Goals

* Finish encodings thoughts from last time

 Explore operations we can perform on integers and more generally
on binary numbers

» Understand the edge cases of those operations

Outline

* Binary and Hex
 Memory

 Encoding

» Integer Encodings
* Signed Integers
 Converting Sign
 Converting Length

« Other encodings

Big Idea: What do bits and bytes mean in a system?

* The answer is: it depends!

» Depending on the context, the bits 11000011 could mean
« The number 195
e The number -61
 The number -19/16
- The character * }
« The ret x86 instruction

 You have to know the context to make sense of any bits you have!
 Looking at the same bits in different contexts can lead to interesting results
 Information = bits + context!

« An encoding is a set of rules that gives meaning to bits

Encoding strings (The C way)

 Represented by array of characters char S[6] = "18243";

« Each character encoded in ASCII format

 NULL character (code 0) to mark the end Big-Endian Little-Endian

Ox31 |e »| Ox31

« Compatibility 0x38 [t *| 0x38

 Byte ordering not an issue (data all single-byte!) 0x32 [* " 0x32

 ASCII text files generally platform independent 0x34 [* *| 0x34

« Except for different conventions of line termination 0x33 |+ o 0x33
character(s)!

0x00 |* > 0x00

Encoding color

* RGB colors

 3-byte values
« First byte is Red, then Green, then Blue

 Usually specified in hexadecimal

- #FF0000 -> maximum red, zero green or blue [
» #4E2A84 -> 1/4 red, 1/8 blue, 1/2 green (Northwestern Purple) [

« 224 possible colors = 16777216 colors

Interpreting file contents

« Collections of data
 Usually in permanent storage on your computer

« Regular files
 Arbitrary data
« Think of as a big array of bytes

* Non-regular files would be directories, symbolic links, or other less
used things

What about different types of regular files?

e Text files versus Executables versus Tar files

« All just differing patterns of bytes!
« It really is just all data. The meaning is in how you interpret it.

- Header — =

Magic number

Text size

Data size

BSS size

Symbol table size

Entry point

Flags

Text

Executable
File

Header

Module
name

Object
module

Date

Owner

Protection

Header

Size

Object
module

Archive
(tar)

10

Identifying regular files

« file in Linux command line can help determine the type of a file
« https://qgithub.com/file/file

[brghena@ubuntu code] $ file arguments.c

arguments.c: C source, ASCII text

[brghena@ubuntu code] $ file arguments

arguments: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, interpreter /1ib64
/1d-1inux-x86-64.s0.2, BulldID[shal]=8731c4961d371f4989cd1b056f796ad54b711e6f, for GNU/Linux 3.2.0, not s

tripped

[brghena@ubuntu code] § file ./

./: directory

[brghena@ubuntu code] $§ file ~/scratch/GlobalProtect UI deb-5.1.0.0-101.deb

/home /brghena/scratch/GlobalProtect UI_deb-5.1.0.0-101.deb: Debian binary package (format 2.0), with cont

rol.tar.gz, data compression xz

11

https://github.com/file/file

Encoding time

« Unix time:
 32-bit signed integer counting seconds elapsed since initial time
« Initial time was January 1stat midnight UTC, 1970

» Current Unix time (as of last editing this slide): 1704997980
« Negative numbers would mean times before 1970

* Problem: when does Unix time hit the maximum value?
« 2147483647 seconds from January 15t 1970
« Result: January 19t, 2038
 This is the “Year 2038 Problem”

12

https://en.wikipedia.org/wiki/Year_2038_problem

Bonus xkcd comic

Eﬂﬂﬂ EIIZ.'J!"'Er Ng*u 2038

T ¥ ¥ 1 & T 1T 1 r 17 T1T 1T T7TT I T 715 Tr5 T

RECOVERING FROM THE YZI"I EUG ' PREPARING FOR THE Z038 BUG

EEMINDER: BY NOW YOU SHOULD HAVE. FINISHED YOUR YZK
RECOVERY AND BE SEVERAL YEARS INTO 2033 PREPARATION.

https://xkcd.com/2697/

13

Outline

- Integer Operations
 Addition
« Negation and Subtraction
 Multiplication and Division

* Binary Operations
* Boolean Algebra
« Shifting
» Bit Masks

C versus the hardware

« Operations you can perform on binary numbers have edge
conditions

 Usually going above or below the bit width

« If we say what happens in that scenario, it'll be what
“the hardware” (i.e., a computer) does

 In today’s examples, pretty much every computer does the same thing

 That is not the same as what C does
 Unclear choices are left as: UNDEFINED BEHAVIOR
« Which is to say, the compiler can make any choice it wants

15

Unsignhed Addition

- Like grade-school addition, but in base 2, and ignores final carry

« If you want, can do addition in base 10 and convert to base 2. Same
result! But here we're going to understand what the hardware is doing.

- Example: Adding two 4-bit nhumbers

111

0101
+ 0011

1000

* 5,0+ 310=84 vV

16

Unsigned Addition and Overflow

« What happens if the numbers get too big?
- Example: Adding two 4-bit numbers

1111

1101
+ 0011

10000

* 13,0 + 350 = 16,
 Too large for 4 bits! Overflow
« Result is the 4 least significant bits (all we can fit): so 04,

« Truncate most-significant bits that do not fit
 Gives us modular (= modulo) behavior: 16 modulo 24 = 0

17

Modulo behavior in binary humbers

o~
1111 0001
1110 0010
1101 0011
1100 0100
1011 0101
1010 0110
1001 0111

18

Unsigned addition is modular

« Implements modular arithmetic
« UAdd,(u,v) = (u+v) mod 2w

« Need to drop carry bit, otherwise results will keep getting bigger
- Example in base 10: 80,, + 40,, = 120,, (2-digit inputs become a 3-digit output!)

u
+ v

Operands: w bits

True Sum: w+1 bits u+tv [

UAdd Result; w bhits UAdd, (u , v)

« Warning: C does not tell you that the result had an overflow!
« Unsigned addition in C silently truncates most-significant bits beyond the limit

19

Signed (2's Complement) Addition

« Works exactly the same as unsigned addition!
» Just add the numbers in binary, and the result will work out

* Signed and unsigned sum have the exact same bit-level
representation
« Computers use the same machine instruction and the same hardware!

« That’s a big reason 2's complement is so nice! Shares operations with
unsigned

20

Signed addition example

» Same addition method as unsigned
- Example: Adding two 4-bit sighed numbers

1011 (-8 + 3 = -5)
+ 0011 (+3)
1110 (-8 + 6 =-2)

* =510 + 310 =230 vV

21

Combining negative and positive numbers

 Overflow sometimes makes signed addition work!
- Example: Adding two 4-bit sighed numbers

1111
1101 (-8 +5=-3)
+ 0011 (+3)
10000

* =310 + 310 =0y
« Too large for 4 bits! Drop the carry bit
» Result is what we expect as long as we truncate

22

Signed addition and overflow

 Overflow can still happen in signed addition though
- Example: Adding two 4-bit sighed numbers

111

0101
+ 0011

1000

* 5,0+ 310 = -8, (+8is too big to fit)

« Remember, this was also unsigned 5;¢ + 310 = 849

23

Signed addition and negative overflow

 Overflow also happens in the negative direction
- Example: Adding two 4-bit sighed numbers

1 11

1011
+ 1011
10110

e =50 + 519 = +6,, (-10 was too small to fit)

24

Overflow: hardware vs C standard

« Hardware implementations for unsigned and signed addition are
the same
« Both implement truncation of overflowing bits, leads to modular arithmetic

 Unsigned overflow in C is defined as modular arithmetic

* Signed overflow in C is UNDEFINED BEHAVIOR
« Compiler probably does modular result
 But there are no promises about this and it can make assumptions
« Sodontrely on it

25

Special boss in Chrono Trigger

* Dream Devourer
 Special boss in the Nintendo DS edition

NINTENDBDS“‘

» Wanted to make it even more challenging
« ~32000 hit points
 Takes forever to defeat

» Hit points stored as a 16-bit signed integer
« Range: -32768 to +32767

 How do speedrunners defeat the boss?

26

Chrono Trigger signed overflow bug

e Solution: heal it

« Hit points go negative
and it dies

Outline

- Integer Operations
» Addition
* Negation and Subtraction
 Multiplication and Division

* Binary Operations
* Boolean Algebra
« Shifting
» Bit Masks

Negating a number

e In C:

.X = —y;

» Operation
« Determine the negative, signed version of the number (two’s complement)
« Hardware method: flip bits and add one

» Completement operator (~)

* Flips all bits: zeros become a one and ones become a zero
« ~0b1011 -> 0b0100

29

Negating via Complement & Increment

 Claim: The following is true for 2's complement
* X+ 1==X x [1[oJo]1]2]z]o[2

+ ~x |0]1|1]|0|O|O|1]|0O

« Complement
« Observation: ~x + x == 1111...11, == -1 -1 [Tl

 Increment

. ~x+1==@-x+1==@-x-yl/==-x

- Example, 4 bits: 6,5, = 0110,
« Complement: 1001, — Increment = 1010, = -8 + 2 = -6y,

30

Subtraction in two’s complement

« Subtraction becomes addition of the negative number

+5-3 = 5+-3 = 2

 Both unsigned and signed subtraction
 Convert subtractor to its two’s complement negative form
* i.e., negate it
« Then do addition
. 11 1
» Treat result as an unsigned number 0101

+ 1101
10010

(+5)
(-3)

31

C rules vs hardware rules

« Exact same overflow rules apply

 Unsigned subtraction can wrap below zero to make a large number
« Modular arithmetic

* Signed subtraction is UNDEFINED BEHAVIOR
* And therefore should not be trusted

32

Break + practice

« Adding two 8-bit binary numbers:
* Also determine the decimal version of the result

00010101
+ 10110001

33

Break + practice

« Adding two 8-bit binary numbers:
* Also determine the decimal version of the result

1 Unsigned encoding

11
00010101 16+4+1 = 21
+ 10110001 128+32+16+1 = 177 OR

11000110 128+64+4+2 = 198

Signed encoding

16+4+1

-128+32+16+1

-128+64+4+2

21

-79

-58

34

Break + practice

« Adding two 8-bit binary numbers:
* Also determine the decimal version of the result

11 1 Unsigned encoding Signed encoding
00010101 16+4+1 = 21 16+4+1 = 21
+ 10110001 128+32+16+1 = 177 OR -128+32+16+1 = -79
11000110 128+64+4+2 = 198 -128+64+4+2 = -58

What about unsigned subtraction 21-79?

That would treat the result as unsigned, with the value 198
Modular arithmetic in action

35

Outline

- Integer Operations
» Addition
« Negation and Subtraction
- Multiplication and Division

* Binary Operations
* Boolean Algebra
« Shifting
» Bit Masks

Multiplication

« Goal: Compute the Product of two w~bit numbers x, y
« Either signed or unsigned

 But, exact results can be bigger than w bits
* Double the size (2w), in fact!

« Example in base 10: 50,4, * 20,, = 1000,
* (2-digit inputs become a 4-digit output!)

« As with addition, result is truncated to fit in w bits
« Because computers are finite, results can’t grow indefinitely

37

Unsigned Multiplication

u 00

Operands: w bits
X Vv o060
True Product: 2*w bits u * v o0 0 o0 0
Discard w bits: w bits UMultW(u ’ V) 200

« Standard Multiplication Function
 Equivalent to grade-school multiplication
 But ignores most significant w bits of the result
* As a person, we can do base 10 multiplication, convert to base 2, then truncate

» Implements modular arithmetic like addition does
UMult (v, v) = (v v) mod 2"

Unsigned multiplication
« Example: Multiplying two 4-bit numbers

0010
x 102011

0010
00000
001000

+ 0000000

0001010

210 ¥ 5,0=1049 vV

39

Signed (2's Complement) Multiplication

u ® 00

Operands: w bits
X v XX
True Product: 2*w bits ¢ - v o o o T o o
Discard w bits: w bits TMultW(u , V) oo eo

« Standard Multiplication Function
 Ignores most significant w bits
 Lower bits still give the correct result
« SO we can use same machine instruction for both!
« Again, that's one reason why 2’s complement is so nice

« In C, signed overflow is undefined
« ...but probably you’ll see the two’s complement behavior

40

Signed multiplication

- Example: Multiplying two’s complement 5-bit numbers

11110
x 00011

11110
+ 111100

1011010

-2
3

What are these two
5-bit numbers?

What is the result of
this addition?

2,0 * 319 = =649 V

41

What about divide?

« Annoying operation, not going to discuss in this class
 Similar to long division process
 Tedious and complicated to get right

« I've worked on computers that don't have hardware support for
division at all!!

» Important thing to remember is that integers don’t have fractional
parts

InC:1/2 ==
« We'll need a different encoding for fractional numbers: floating point

42

Outline

 Integer Operations
 Addition
« Negation and Subtraction
 Multiplication and Division

- Binary Operations
- Boolean Algebra
« Shifting
» Bit Masks

Boolean algebra

* You've programmed with and and or in earlier classes
« Written && and | | in C and C++

* Boolean algebra is a generalization of that
« A mathematical system to represent logic (propositional logic)
2 truth values: true = 1, false = 0
« Operations: and &, or |, not (or complement) ~

44

Performing Boolean algebra

* Follow the rules for each operation to compute results
 Rules are like those you know from programming

« OR: | AND: & NOT: ~ 1: True 0: False

’;:D—Q) A—[>o—out

(1]0)&0 ——>18&0 —> 0

(1&1)&~0|0) =»1&~(0) =»18& 1 =——>b1

45

Truth tables for Boolean algebra

* For each possible value of each input, what is the output

« Column for each input

 Column for the output operation

D_
&

= O = O |

= O O O |®

46

Exclusive Or (xor)

A™B
A B |AMB
0 O 0
0 1 1
1 0 1
1 1 0

) -

« An operation you likely haven't used before:
« Xor - either A or B, but not both
« A symbol in C

« We can build Xor out of &, |, and ~

« AB=(~A&B)| (A& ~B)
 (exactly one of A and B is true)

« A B=(A|B) & ~(A&B)
* (either is true but not both are true)

« The two definitions are equivalent
* Produce the same Truth Table

47

Practice problem

(A&B)|B
A B (A&B)|B
0 0
0 1
1 0
1 1

48

Practice problem

(A&B)|B
A B (A&B)|B
0 0 0
0 1 1
1 0 0
1 1 1

49

Practice problem

(A&B)|B
A B (AB)|B
0 0 0
0 1 1
1 0 0
1 1 1

This is equivalent to B
(A has no influence on the solution)

50

Generalized Boolean algebra

« Boolean operations can be extended to work on collections of bits (i.e., bytes)

« Operations are applied one bit at a time: bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

« All of the properties of Boolean algebra still apply
« Relationships between operations, etc.

* Bitwise operations are usable in C: &, |, ~, A
« Can operate on any integer type (long, int, short, char, signed or unsigned)

52

Warning: bitwise operations are NOT logical operations

» Logical operations in C: | |, &&, ! (logical Or, And, and Not)
« Only operate on a single bit
 View 0 as "False”
 View anything nonzero as “True”
« Always return 0 or 1
« Short-circuit evaluation: only checks the first operand if that is sufficient

« Examples

« 10x41 -> 0x00 10x00 -> 0x01 110x41 -> 0x01
e Ox59 && 0x35 -> 0x01
* (p '= NULL) && *p (short circuit evaluation avoids null pointer access)

* Don’t confuse the two!! It's a common C mistake

53

Break + Practice: C example of bitwise operators

unsigned char x = 13;
unsigned char v = 11;
unsigned char z = x & y;

 What decimal value is in z now?
« Remember: unsigned char is an 8-bit value

56

Break + Practice: C example of bitwise operators

unsigned char x = 13;
unsigned char v = 11;
unsigned char z = x & y;

 What decimal value is in z now?
« Remember: unsigned char is an 8-bit value

 X: 0b00001101
 y: 0b00001011
 z: 0b00001001 -> 9

Outline

 Integer Operations
 Addition
« Negation and Subtraction
 Multiplication and Division

- Binary Operations
* Boolean Algebra
- Shifting
» Bit Masks

Left Shift: x << y

« Shift bit-vector x left by y positions Argument x 00000010
- Throw away extra bits on left <3 | e

* Fill empty bits with 0 Argument x 10100010

« Same behavior for signed or unsigned << 3 10100010000

 Equivalent to multiplying by 2Y
« And then taking modulo (i.e. truncating overflow bits)

» Undefined behavior in C when:
*y < 0, or y 2 bit width (x)
 Also when some non-0 bits get shifted off (probably they get truncated)

59

Right Shift: x >> y

» Shift bit-vector x right y positions Argument x | 01100010

- Throw away extra bits on right Logi. >> 2 | 00011000

] . Arith. >> 2 00011000
 But how to fill the new bits that open up?
« Will depend on signed vs unsigned

Argument x | 10100010

Logi.>> 2 | 00101000

« Unsigned: Logical shift

Arith. >> 2 | 11101000

 Always fill with 0’s on left

* Signed: Arithmetic shift
 Replicate most significant bit on left
« Necessary for two’s complement integer representation (sign extension!)

« Undefined behavior in C when:
ey < 0, or y 2 bit width (x)

Practice shifting in C

unsigned char x = 0b10100010;

— o Steps:
x << 3 ? 0b00010000 0b10100010000

0b16+00010000

unsigned char x = 0b10100010;

_ 5 Steps:
x >> 2 =7 0b00101000 0b0010100010

0b0010100016

signed char x = 0b10100010;

_ 5 Steps:
x >> 2 =7 0bl1101000 0b1110100010

0b1110100040
Note:
GCC supports the prefix 0b for binary literals (like 0x... for hex) directly in C.

This is not part of the C standard! It may not work on other compilers.

Concept: Not all operations are equally expensive!

« Some operations are pretty simple to perform in hardware
 E.g., addition, shifting, bitwise operations
* Also true of doing the same by hand on paper

 Others are much more involved
 E.g., multiplication, or even more so division
 Consider long multiplication / long division; quite tedious!
« Hardware is not doing the exact same thing, but similar principle

« Trick: try to replace expensive operations with simple ones!
« Doesn’t work in all cases, but often does when mult/div by constants

62

Shift to divide

» Division by powers of two could be shifts
e unsighed intx =y / 2; unsigned intx =y >> 1;

« Even more important because division is a complicated operation
« Multiply is implemented in (relatively) simple hardware on most systems

« Compiler might actually translate your divide-by-powers-of-two operations
into shift operations though!

« Warning: rounding needs to be handled correctly for signed
numbers and division

« See bonus slides

63

Compilers automatically chose the best operations

 Should you use shifts instead of multiply/divide in your C code?
* NO

» Just write out the math
« Math is more readable if that's what you meant
« Compiler automatically converts code to get best performance

» These two mean the same thing, but one is way more
understandable
*Int x =y * 32;
* Int x = (y << 5H);

64

Outline

 Integer Operations
 Addition
« Negation and Subtraction
 Multiplication and Division

- Binary Operations
* Boolean Algebra
« Shifting
 Bit Masks

Bit Masking

« How do you manipulate certain bits within a number?

» Combines some of the ideas we've already learned
¢ NI &I |I <<l >>

« Steps
1. Create a "bit mask” which is a pattern to choose certain bits
2. Use & or | to combine it with your number
3. Optional: Use >> to move the bits to the least significant position

66

How to operate on bits

» Selecting bits, use the AND operation
* 1 means to select that bit
* 0 means to not select that bit

« Writing bits
 Writing a one, use the OR operation
« 1 means to write a one to that position
0 is unchanged

» Writing a zero, use the AND operation
» 0 means to write a zero to that position
1 is unchanged

Select bottom four bits:
num & OxOF

Set 6t bit to one:
num | (1 << 6)

num | (O0b01000000)

Clear 6t bit to zero:
num & (~(1 << 6))
num & (~(0b01000000))
num & (0b10111111)
67

Example: swap nibbles in byte

 Nibble - 4 bits (one hexit)
« Input: 0x4F -> Output 0xF4

« Method:
« 1. Shift and select upper four bits What are the values of the
« 2. Shift and select lower four bits new upper bits?

« 3. Combine the two nibbles Unsigned -> Will be zero

uint8 t lower = input >> 4;
ulint8 t upper = 1nput << 4;
uint8 t output = upper | lower; // combines two halves

Shifting implicitly zero'd out irrelevant bits.
Otherwise we would have needed an & operation too.

68

Example: selecting bits

 Select bits 2 and 3 from a number

0501100100
& 0b00001100

000000100

Input: 0b01100100
Mask: 0b00001100

Finally, shift right by two to get the

In C:

result

(Ilnput & 0x0C)

>> 2

values in the least significant position:

0b00000001

69

Outline

 Integer Operations
 Addition
« Negation and Subtraction
 Multiplication and Division

* Binary Operations
* Boolean Algebra
« Shifting
» Bit Masks

Outline
» Dividing with bit shift

« Bonus material isn’t required and won’t be on an exam
* Unless it becomes main lecture material in a different lecture

 Usually the material is just for students who want more depth
* As is the case here

Unsigned Power-of-2 Divide with Right Shift

« Quotient of unsigned by power of 2

«u>k gves Lu/ 2]
» Uses logical shift

|_XJ : round x down
| x |: round x up

 Pink part would be remainder / fractional part (right of the point)
- Shift just drops it: equivalent to rounding down

Operands: Blnary Point
/ 2k Ol eee [OI1IO] e [0]0
Division: 2 O [[
RGSUlt Lu/sz O L O O LI)
Division Computed Hex Binary

X 15213 15213 3B oD| 00111011 01101101
x >> 1 7606.5 7606 1D Bo| 00011101 10110110
X >> 4 050.8125 950 03 Bo| 00000011 10110110
x >> 8 59.4257813 59 00 3B| 00000000 0OO111011

72

Signed Power-of-2 Divide with Shift (Almost)

« Quotient of signed by power of 2
- x >> k gives |x / 2¢]
 Uses arithmetic shift
 Also rounds down, again by dropping bits
 But signed division should round towards 0! (that's its math definition)

« That means rounding up for negative numbers!
k

Operands: Binary Point
/ 2k 0] .-« JOJ1]JO] -~ JOJO

Division: x/ 2k XX XX _

Result: RoundDown(x / 2%)

- Example, 4 bits: -6 / 4 = -1.5 (should round towards O, to -1)

¢ 10102 > > 2 —]]102 — '210
« Rounds the wrong way!

73

Correct Signed Power-of-2 Divide

« Want [x / 2%¥] (round towards 0)
. Math identity: [x /yl =L (x+y-1) /vy
« Compute negative case as | (x+2%-1)/ 2%k] — gets us correct rounding!
« Computing both cases in C: (x<0 ? (x + (1<<k)-1) : x) >> k

 Biases dividend toward 0
all bits at positions 0...(k-1) are O

- Case 1: No rounding) /

Dividend: X 1 O] e« |0O]O
+2k 1 O o« JO|O|1]| e |1]1

1 oo o0 1 e oo 111 Blnary POlnt

Divisor: / 2k O] e [O[L]O] e+ [O]O /

/
|—x/2k—| 1 eo o 11111 eo e :1 eo e 111

Biasing has no effect; all affected bits are dropped

« Example, 4 bits: -8 / 22 = -2 bias = (1<<2)-1 =3
« (1000 + 0011) >>2=1011 >> 2 = 1110 = -2,, (correct, no rounding)

Correct Signed Power-of-2 Divide (Cont.)

Case 2: Roundmg some bits at positions 0...(k-1) are 1

A
Dividend: A AEEEN
+2k -1 O] e2* |JOJO]J1| 2= 1|1
1
LN v J
Incremented by 1 Binary Point
Divisor: / 2k |0] < JO[1]O] <~ JO]O /
/
[x/2¢] [A] -~ JI[1[T f
LN J
Y

Incremented by 1

Biasing adds 1 to final result; just what we wanted

« Example, 4 bits: -6/ 22 = -1 bias = (1<<2)-1 =3
(1010 + 0011) >> 2 =1101 >> 2 = 1111 = -1,, (correct, rounds towards 0)

« Compiler does that for you (but you need to be able to read it!)

75

	Default Section
	Slide 1: Lecture 03 Data Operations

	Goals
	Slide 2: Administrivia
	Slide 3: Administrivia
	Slide 4: Today’s Goals

	Other encoding
	Slide 5: Outline
	Slide 6: Big Idea: What do bits and bytes mean in a system?
	Slide 7: Encoding strings (The C way)
	Slide 8: Encoding color
	Slide 9: Interpreting file contents
	Slide 10: What about different types of regular files?
	Slide 11: Identifying regular files
	Slide 12: Encoding time
	Slide 13: Bonus xkcd comic

	Addition
	Slide 14: Outline
	Slide 15: C versus the hardware
	Slide 16: Unsigned Addition
	Slide 17: Unsigned Addition and Overflow
	Slide 18: Modulo behavior in binary numbers
	Slide 19: Unsigned addition is modular
	Slide 20: Signed (2’s Complement) Addition
	Slide 21: Signed addition example
	Slide 22: Combining negative and positive numbers
	Slide 23: Signed addition and overflow
	Slide 24: Signed addition and negative overflow
	Slide 25: Overflow: hardware vs C standard
	Slide 26: Special boss in Chrono Trigger
	Slide 27: Chrono Trigger signed overflow bug

	Negation and Subtraction
	Slide 28: Outline
	Slide 29: Negating a number
	Slide 30: Negating via Complement & Increment
	Slide 31: Subtraction in two’s complement
	Slide 32: C rules vs hardware rules
	Slide 33: Break + practice
	Slide 34: Break + practice
	Slide 35: Break + practice

	Multiplication & Division
	Slide 36: Outline
	Slide 37: Multiplication
	Slide 38: Unsigned Multiplication
	Slide 39: Unsigned multiplication
	Slide 40: Signed (2’s Complement) Multiplication
	Slide 41: Signed multiplication
	Slide 42: What about divide?

	Boolean Algebra
	Slide 43: Outline
	Slide 44: Boolean algebra
	Slide 45: Performing Boolean algebra
	Slide 46: Truth tables for Boolean algebra
	Slide 47: Exclusive Or (xor)
	Slide 48: Practice problem
	Slide 49: Practice problem
	Slide 50: Practice problem
	Slide 52: Generalized Boolean algebra
	Slide 53: Warning: bitwise operations are NOT logical operations
	Slide 56: Break + Practice: C example of bitwise operators
	Slide 57: Break + Practice: C example of bitwise operators

	Shifting
	Slide 58: Outline
	Slide 59: Left Shift: x << y
	Slide 60: Right Shift: x >> y
	Slide 61: Practice shifting in C
	Slide 62: Concept: Not all operations are equally expensive!
	Slide 63: Shift to divide
	Slide 64: Compilers automatically chose the best operations

	Bit Masking
	Slide 65: Outline
	Slide 66: Bit Masking
	Slide 67: How to operate on bits
	Slide 68: Example: swap nibbles in byte
	Slide 69: Example: selecting bits

	Wrapup
	Slide 70: Outline

	Bonus: Divide with Shift
	Slide 71: Outline
	Slide 72: Unsigned Power-of-2 Divide with Right Shift
	Slide 73: Signed Power-of-2 Divide with Shift (Almost)
	Slide 74: Correct Signed Power-of-2 Divide
	Slide 75: Correct Signed Power-of-2 Divide (Cont.)

