
Pack Lab Overview

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2024

High-level overview

• You will be given a utility that can “Pack” a file
• It already works!

• Supports three operations:
• Checksums - ensure data integrity
• Encrypts - file is only readable with password
• Compresses - reduces file size losslessly

• Your goal: write the “unpack” utility
• Unpacks a file and writes data to a new output file
• Unpacking gets you the same original file from before it was packed

2

Getting the lab files

• A tar of the lab files is available in the ~cs213/HANDOUT directory
• Must be on the class server: moore.wot.eecs.northwestern.edu

• Steps:
1. SSH into moore

2. Make a directory to hold the lab files in

3. Run the following command
tar xvf ~cs213/HANDOUT/packlab-starter.tar

• That will get you all the necessary lab files

3

Code files

• unpack.c
• Application logic for unpacking files
• Already written!

• unpack-utilities.c
• Utilities used by the application to perform operations
• You need to write this

• unpack-utilities.h
• Header file for unpacking utilities
• Includes comments about the purpose of each function

• test-utilities.c
• Test code for unpacking utilities
• You will add to this to test your code

4

Getting started suggestions

1. Understand what the existing code is doing

2. Implement parse_header()

3. Implement calculate_checksum()

4. Implement lfsr_step()

5. Implement decrypt_data()

6. Implement decompress_data()

Test as you go! Each of these functions can be tested independently

5

Submitting the lab files

• Gradescope will be used for grading your code
• You can submit any number of times
• Feedback: 1) does it compile and 2) does it run correctly on a test file

• Many more tests are run, which are hidden until after the deadline

• To submit your code, on Moore run:
~cs213/HANDOUT/submit213 submit --hw packlab unpack-utilities.c

• The first time you run the tool, it will ask you to log in with your Gradescope
credentials

• You MUST also mark your partnership on Gradescope. Click the button labeled
“Group Members” and select your partner from the dropdown
• Unfortunately, you have to do this each time you submit code

6

Grading

• 19% each for correct implementations of the five major functions in
unpack-utilities.c

• parse_header(), calculate_checksum(), lfsr_step(),
decrypt_data(), decompress_data()

• 5% for the entire unpack program working on the example_files/

• With some partial credit given for partially working code

• Your code should successfully unpack any file that meets the specification,
and should also handle errors correctly
• Invalid files, for example

• You are not graded on your tests

7

10

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

• Extra Credit

Outline

Format of packed files

11

• Remember: files are just a collection of bytes

• “Packed” files have two sections of bytes
• Header then File data

• Header (4–22 bytes)
• Identification and configuration of the packed file
• Includes “magic bytes” and version to identify a packed file
• Includes flags to determine which options are applied
• Includes configurations for particular options

• File Data (0–264 bytes)
• Contents of the original file
• Possibly encrypted and compressed

Header

File data

Minimal header: Compression and Checksum disabled

12

• Magic
• Identifies this file as a “packed” file. Always 0x0213 (big-endian)

• Version
• Identifies which version of the “pack” protocol is used. Always 0x02

• Flags
• Determines which options have been applied to the file

• 0 - disabled, 1 - enabled

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x02 Flags

Bit 7 6 5 4 3 2 1 0

Value Compressed? Encrypted? Checksummed? Unused: all zero

Compression enabled, Checksum disabled

13

• Compression dictionary
• 16-byte array used for compression

• Contains 16 most-used bytes from the original uncompressed file

• Only present in the header if the file was compressed

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x02 Flags

4 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]

8 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]

12 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]

16 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]

Compression disabled, Checksum enabled

14

• Checksum
• 16-bit unsigned checksum value (big-endian)

• Was computed on the data after compression and encryption

• Only present in the header if the file was checksummed

• Note: you don’t need to calculate a checksum here, this is the
value that was already computed
• unpack.c compares this to a new checksum value to check for validity

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x02 Flags

4 Checksum

Full header: Compression and Checksum enabled

15

• Compression dictionary, if used, always comes before Checksum

• Note: encryption does not add any fields to the header

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x02 Flags

4 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]

8 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]

12 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]

16 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]

20 Checksum

Steps to decoding a header

Steps:

1. Verify that the magic bytes and version byte are correct.

2. Check which options are set in “flags”.
That will determine the remaining bytes in the header, if any.

3. Pull out compression dictionary data (if enabled).

4. Pull out checksum value (if enabled).

16

Accessing individual bits

• There’s no native way in C to access individual bits of a byte

• Instead, you’ll need to use operations on the byte to pull out only
the bit(s) you need
• >>, <<, |, &, etc.

• See “Bit Masking” section of “Data Operations” lecture
• Slides 66-69: https://drive.google.com/file/d/1PE_tITq_NfjOQId5MBA4xsj-

4pNG9bKj/view

17

https://drive.google.com/file/d/1PE_tITq_NfjOQId5MBA4xsj-4pNG9bKj/view
https://drive.google.com/file/d/1PE_tITq_NfjOQId5MBA4xsj-4pNG9bKj/view

You write this - Function: parse_header()

• Parses the header from the input data
• input_data is an array of bytes. You can access it with []
• input_len is the number of bytes in input_data

• Write header configuration values into the config struct
• Depending on the flags in the header, some fields in the config struct may

not be used at all
• Look at the header: unpack-utilities.h to see the config struct fields

• If the header is invalid for some reason, set is_valid to false
• Otherwise, is_valid must be set to true
• Be careful to check that the input_len is long enough to hold the

expected header data!

18

19

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

• Extra Credit

Outline

What is a checksum?

• Allows verification of file data integrity
• If a byte in the file has changed, we can detect it!

• Concept
• Some kind of hash of file data into a much smaller number

• Process is repeatable and deterministic

• Integrity check: generate checksum twice
• Once when “packing” the file. Record result in file header

• Once when “unpacking” the file. Check against saved value in header

• If they don’t match, file contents have changed!

20

Checksum implementation

• Unsigned 16-bit integer, initialized to zero

• Add every byte of the file data to it, one-by-one
• Modular arithmetic automatically occurs upon overflow

• Example
• File data: [0x01, 0x03, 0x04]

• Checksum: 0x08

• If the checksum doesn’t match when unpacking, the unpack tool
should error and exit
• This code is already written for you in unpack.c

21

You write this - Function: calculate_checksum()

• Calculates a 16-bit unsigned checksum value from the input
• input_data is an array of bytes, you can access it with []

• input_data only contains data to calculate the checksum over, it does
not contain header bytes

• input_len is the number of bytes in input_data

• Must not modify the input data

• Return the calculated checksum value

22

23

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

• Extra Credit

Outline

Basic stream cipher encryption

• Process: combine each individual byte of data with a random byte to
encrypt it

1. Need some method for creating a series of random bytes
• Must be deterministic based on some initial state (a password)

2. Need some operation for combining random bytes with data
• XOR operation works well for this
• To decrypt, just XOR against the random byte a second time

• Note: the method we’re using is insufficient to provide good security
• Only 65535 possible starting states
• Could be brute-forced to decrypt the file

24

Method for creating a pseudorandom byte stream

• Linear-Feedback Shift Register (LFSR)
• Pattern of bit manipulations that is simple to implement in

hardware/software

• Creates pseudorandom sequences of bits that do not repeat for a very
long time

• LFSR takes in an input state and creates an output state
• xors several bits together to create a new most-significant bit

• Shifts all bits in state one to the right

25

Background: 4-bit LFSR example

26

• Initial state: 0b0101

bit 3 bit 2 bit 1 bit 0

0 1 0 1

xor

Background: 4-bit LFSR example, step 1

27

• Initial state: 0b0101
• XOR of bits 0 and 1 = 1
• Shift all bits right once, 0101 becomes 010

• The former least-significant bit (1) is deleted
• Set most-significant bit to xor result

bit 3 bit 2 bit 1 bit 0

1 0 1 0 1

xor

Background: 4-bit LFSR example, step 2

28

• Initial state: 0b1010
• XOR of bits 1 and 0 = 1
• Shift all bits right once, 1010 becomes 101

• The former least-significant bit (0) is deleted
• Set most-significant bit to xor result

bit 3 bit 2 bit 1 bit 0

1 1 0 1 0

xor

Background: 4-bit LFSR example, continued steps

29

• Next states:
• 0b1110, 0b1111, 0b0111, 0b0011, 0b0001, 0b1000, 0b0100, 0b0010,

0b1001, 0b1100, 0b0110, 0b1011, 0b0101 (←that’s the initial state again)

• Iterates through 15 total states before repeating

• Never hits 0b0000 (it would stick there permanently)

bit 3 bit 2 bit 1 bit 0

1 1 0 1 0

xor

Background: 4-bit LFSR example

• Still feel like LFSRs don’t make sense?

• Sometimes videos and animations can help!

• Here’s a great Youtube video explaining LFSRs:
https://www.youtube.com/watch?v=1UCaZjdRC_c

30

https://www.youtube.com/watch?v=1UCaZjdRC_c

Pack Lab LFSR design

• 16-bit LFSR
• Accesses bits 0, 6, 9, and 13

31

bit
15

14 13 12 11 10 9 8 7 6 5 4 3 2 1
bit
0

0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1

• Example initial state: 0x1337
• XOR of bits: 0

• Next state: 0b0000100110011011 -> 0x099B

xor
xor

xor

Testing your LFSR

• We’ve provided some code for you that can test your LFSR
implementation
• Within test-utilities.c

• Tests two things:
1. Your LFSR must iterate in a known pattern

2. Your LFSR must iterate over all 16-bit integers (except zero)

• If your implementation is not working, it can be annoying to debug
• Suggestion: use paper to work out the bit pattern for input and output and

compare to your code’s results

32

You write this - Function: lfsr_step()

• Determines the next LFSR state given an initial state input

• Return the new LFSR state

• Must not save state internally. To iterate through multiple LFSR
states, call the function with the prior state
• new_state = lfsr_step(old_state);

33

Decrypting data

• Once you’ve implemented the LFSR, you can use it to generate
16-bit pseudorandom numbers
• Each newstate returned is used as the pseudorandom number
• Never use the encryption key as a pseudorandom number, always LFSR step first

• To decrypt data:
• Generate a new LFSR state based on the previous state
• XOR the LFSR state against the next two bytes of data in little-endian order
• Repeat this process for every two bytes in the input_data

• Example: input_data=[0x60, 0x5A, 0xFF, 0xB7]
• First LFSR output is 0x099B and second LFSR output is 0x84CD
• 0x9B ^ 0x60 = 0xFB and 0x09 ^ 0x5A = 0x53
• 0xCD ^ 0xFF = 0x32 and 0x84 ^ 0xB7 = 0x33
• output_data = [0xFB, 0x53, 0x32, 0x33]

34

Initializing the LFSR

• The initial state for the LFSR is the encryption key
• Then each iteration after that, the state is the previous output

• The encryption key is a 16-bit unsigned integer formed by running
the checksum operation on the user’s entered password

• Note: this is not very secure
• There are many collisions where multiple passwords have the same value

• Password “ab” checksums to the same value as password “ba”

35

Decryption edge case

• When decrypting, there may be an odd number of bytes in the
input data!

• In that case, for the last byte of input_data, use the least-
significant byte of the LFSR result, but not the most-significant
byte

• Example: input_data=[0x21] and LFSR output 0x099B
• 0x9B ^ 0x21 = 0xBA

• output_data = [0xBA]

• (do nothing with the most-significant byte from the LFSR)

36

You write this - Function: decrypt_data()

• Decrypts the input_data and writes result into output_data
• input_data is an array of bytes, you can access it with []

• input_data only contains data to decrypt, it does not contain header bytes

• input_len is the number of bytes in input_data

• output_data is where you write decrypted bytes to

• output_len is the maximum number of bytes you can write to output_data

• Use lfsr_step() to generate pseudorandom numbers for decryption
• You will need a loop to iterate over bytes from input_data

• The initial state for the LFSR should be the encryption_key

• The output state from the LFSR is used as both a random number for decryption
and as the input state for the LFSR in the next iteration

37

38

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

• Extra Credit

Outline

How do you make a file smaller?

• Compression is the act of making a file smaller
• Files can get really large, so it would be nice to make them smaller
• Actually, all of your pictures, music, and videos are compressed already

• Otherwise the files would be even larger!

• Lossless compression means the process can be undone
(decompression) and the output will exactly match the original input
• Lossy compression is the other option, which is sometimes done for media
• For example: delete the parts of the audio file that humans can’t hear (MP3)

• We’re going to use lossless compression
• So the unpacked file should exactly match the original input file

39

Lossless compression algorithms

• There has been a lot of engineering put into compression
algorithms

• One really good algorithm comes up with new bit encodings for
each byte based on usage: Huffman Encoding
• It’s a little complex to implement though

• We will use a simpler algorithm: Run-length encoding

40

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Run-length_encoding

Run-length encoding concept

• Run-length encoding looks for repeated bytes and replaces them
with an indication of how many times the byte repeated

• Conceptually: “aaaaabb” could turn into “five a’s and two b’s”
• If there are enough repeated characters, this can save a lot of space!

• This kind of algorithm works really well on text files and raw image
files

41

Pack Lab compression implementation

• We will use a version of run-length encoding where repeated bytes
get replaced by a two-byte sequence
• Specifies which byte and how many repeats

• However, not all repeated bytes get reduced, we only reduce the
16 most frequently occurring bytes in the file
• The header contains a dictionary with the 16 most-frequent byte values

• The dictionary is ordered by how frequently they occur (most frequent first)

42

Compression dictionary

• 16-byte array of uint8_t (unsigned bytes)

• Bytes are arranged in index order and are zero-indexed (0–15)

43

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x02 Flags

4 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]

8 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]

12 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]

16 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]

Special byte sequence

• When packing a file, if one of the 16 bytes in the dictionary
appears twice or more in-a-row, instead we replace up to 15
repetitions with a special two-byte sequence

• First byte: “escape byte”
• Signifies that this is a special sequence, not normal data

• Always 0x07 which is unlikely to be used in text files

• Second byte:
• Information about which dictionary character and how many repetitions

44

Normal case: repeated character

• First byte signals that something special is happening

• Second byte contains a 4-bit unsigned “repeat count”

• Followed by a 4-bit unsigned “dictionary index”

• Example: 0x0737
• Three repetitions of dictionary index 7

45

Bit bit
15

14 13 12 11 10 9 8 7 6 5 4 3 2 1
bit
0

Value
Escape Byte: 0x07 Repeat Count Dictionary Index

Special case: literal escape byte

• What if the file actually uses the byte value 0x07?

• Special case: if the first byte is 0x07 and the second byte is 0x00
• Then the output should be a single byte: 0x07

• Any other pattern with a “repeat count” of zero is invalid
• You don’t have to check for this

46

Bit bit
15

14 13 12 11 10 9 8 7 6 5 4 3 2 1
bit
0

Value
Escape Byte: 0x07 Literal Escape Byte: 0x00

Decompression example

• Input data: {0x01, 0x07, 0x42}

• Dictionary: {0x30, 0x31, 0x32, 0x33 …} (didn’t write the rest due to space)

• Resulting output data: {0x01, 0x32, 0x32, 0x32, 0x32}

• Explanation
• First byte isn’t special and just gets copied over

• Second byte is the escape byte, which means the third byte holds a repeat
count (4) and dictionary index (2)

• So, the output should be four copies of dictionary[2] (0x32)

47

Implementation guide

• Iterate through bytes in the input
• Either it’s a normal byte
• Or it’s an escape character

• For normal bytes, just copy them over to the output

• For special bytes, read the second byte and determine what to do
• Either multiple repetitions of a dictionary byte
• Or a single literal escape byte

• Be careful to not go past the end of the input!
• Check against lengths as you go
• Special case: if the very last character is the escape byte, treat it as a normal

byte and copy it over to the output

48

You write this - Function: decompress_data()

• Decompresses the input_data and writes the result into output_data
• input_data is an array of bytes, you can access it with []

• input_data only contains data to decompress, it does not contain header bytes

• input_len is the number of bytes in input_data

• output_data is where you write decompressed bytes to

• output_len is the maximum number of bytes you can write to output_data

• dictionary_data is the compression dictionary used when compressing the data

• Return the total length of the decompressed data

49

50

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

• Extra Credit

Outline

Testing overview

1. Write tests in test-utilities.c

2. You can pack your own files using the pack application and run
your unpack application on them to see if it works

3. We have provided some example packed files, and their original
versions, in the example_files/ directory

4. There are some other useful tools you should know about for
looking at files
• xxd and diff

51

Testing your utility function implementations

• Each operation takes in an array of data

• You can craft your own array of unsigned 8-bit data and pass it
into the function

• This is much easier than crafting full files files to unpack

• See the example_test() provided in test-utilities.c as
an example for how you might make a test

52

Testing overview

1. Write tests in test-utilities.c

2. You can pack your own files using the pack application
and run your unpack application on them to see if it
works

3. We have provided some example packed files, and their original
versions, in the example_files/ directory

4. There are some other useful tools you should know about for
looking at files
• xxd and diff

53

Using the Pack application

./pack [-cek] inputfilename outputfilename

• -c: Optionally compresses the file

• -e: Optionally encrypts the (compressed) file with a password

• -k: Optionally checksums the (compressed & encrypted) file

• The three options can be combined in any way
• -e: Encryption only

• -ck: Compression and Checksum

• -cek: Compression, Encryption, and Checksum

• no flags: Add header, but perform no operations

54

Using the Unpack application

./unpack inputfilename outputfilename

• Automatically determines which options were applied when
packing and undoes them
• Requires a password if the file was encrypted

• The output file should be exactly identical to the original file before
it was packed

• Note: this will only work fully once your code is done!
• You could test just parts though, as long as you’d done parse_header()

55

Testing overview

1. Write tests in test-utilities.c

2. You can pack your own files using the pack application and run
your unpack application on them to see if it works

3. We have provided some example packed files, and their
original versions, in the example_files/ directory

4. There are some other useful tools you should know about for
looking at files
• xxd and diff

56

Example packed files

• Original and packed versions of some files have been provided to
you in the example_files/ directory
• Try unpacking the packed versions to see if they match the original file

• Each fits the pattern of filename.options.pack
• Where options are

• c – compress

• e – encrypt

• k – checksum

• The password for any encrypted file is: cs213

57

Testing overview

1. Write tests in test-utilities.c

2. You can pack your own files using the pack application and run
your unpack application on them to see if it works

3. We have provided some example packed files, and their original
versions, in the example_files/ directory

4. There are some other useful tools you should know about
for looking at files
• xxd and diff

58

Other useful tools – seeing raw hex values inside a file

• xxd filename

• Dumps raw hex values of the file

• Format:
• On the left are addresses starting at 0x00000000

• In the middle are the hexadecimal values

• On the right are the same values interpreted as an ASCII encoding

• Example:

59

Ways to use xxd

• xxd filename | head –2

• Only show the first ten lines of hexadecimal output for a file

• Useful for looking at the header bytes of a file

• xxd filename > filename.hex

• Convert a normal file into hexadecimal

• xxd –r filename.hex > filename

• Convert hexadecimal back into a normal file

• Can do this after editing some bytes in the hex to craft your own input

60

Other useful tools – checking for differences in files

• diff filename1 filename2

• Checks for differences between two files

• Doesn’t output anything if they match

• Useful for determining if an unpacked file matches the original file

• If the two files do differ:
• For text files, it will show you the text that’s different

• For raw binary files, it will just say that they differ

• To see the difference for binary files, convert both into .hex files and then
diff those!

61

62

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

• Extra Credit

Outline

Optional Extra Credit

• You can get 10% extra credit on Pack Lab
• This is entirely optional, and should only be done after you are finished with the lab

• To start, you must first find the extra credit instructions

• very_complex_file is actually a PDF that’s been packed and then

placed in a zip file. You’ll need to reverse this process to read it.
1. Unzip it with the command: unzip very_complex_file

• That should give you the file packlab_extra_credit.pdf.cek.pack

2. Unpack it again using password: extracredit
• The output filename should be packlab_extra_credit.pdf

3. That PDF contains the extra credit instructions
• Download it to your own computer with SCP so you can read it

63

https://superuser.com/questions/374531/downloading-file-using-scp-command

	Default Section
	Slide 1: Pack Lab Overview

	Overview
	Slide 2: High-level overview
	Slide 3: Getting the lab files
	Slide 4: Code files
	Slide 5: Getting started suggestions
	Slide 6: Submitting the lab files
	Slide 7: Grading

	Header Format
	Slide 10: Outline
	Slide 11: Format of packed files
	Slide 12: Minimal header: Compression and Checksum disabled
	Slide 13: Compression enabled, Checksum disabled
	Slide 14: Compression disabled, Checksum enabled
	Slide 15: Full header: Compression and Checksum enabled
	Slide 16: Steps to decoding a header
	Slide 17: Accessing individual bits
	Slide 18: You write this - Function: parse_header()

	Checksums
	Slide 19: Outline
	Slide 20: What is a checksum?
	Slide 21: Checksum implementation
	Slide 22: You write this - Function: calculate_checksum()

	Encryption
	Slide 23: Outline
	Slide 24: Basic stream cipher encryption
	Slide 25: Method for creating a pseudorandom byte stream
	Slide 26: Background: 4-bit LFSR example
	Slide 27: Background: 4-bit LFSR example, step 1
	Slide 28: Background: 4-bit LFSR example, step 2
	Slide 29: Background: 4-bit LFSR example, continued steps
	Slide 30: Background: 4-bit LFSR example
	Slide 31: Pack Lab LFSR design
	Slide 32: Testing your LFSR
	Slide 33: You write this - Function: lfsr_step()
	Slide 34: Decrypting data
	Slide 35: Initializing the LFSR
	Slide 36: Decryption edge case
	Slide 37: You write this - Function: decrypt_data()

	Compression
	Slide 38: Outline
	Slide 39: How do you make a file smaller?
	Slide 40: Lossless compression algorithms
	Slide 41: Run-length encoding concept
	Slide 42: Pack Lab compression implementation
	Slide 43: Compression dictionary
	Slide 44: Special byte sequence
	Slide 45: Normal case: repeated character
	Slide 46: Special case: literal escape byte
	Slide 47: Decompression example
	Slide 48: Implementation guide
	Slide 49: You write this - Function: decompress_data()

	Testing
	Slide 50: Outline
	Slide 51: Testing overview
	Slide 52: Testing your utility function implementations
	Slide 53: Testing overview
	Slide 54: Using the Pack application
	Slide 55: Using the Unpack application
	Slide 56: Testing overview
	Slide 57: Example packed files
	Slide 58: Testing overview
	Slide 59: Other useful tools – seeing raw hex values inside a file
	Slide 60: Ways to use xxd
	Slide 61: Other useful tools – checking for differences in files

	Extra Credit
	Slide 62: Outline
	Slide 63: Optional Extra Credit

