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Administrivia

« Homework 4 due tonight
 Very similar problems will be on the exam

« SETI Lab
« Due next week Wednesday

 See the pinned Piazza posts
 Getting Started
 Testing Performance



Today’s Goals

« Understand goals and application of virtual memory
 Explore how virtual memory resolves memory problems

» Practice translating virtual addresses to physical addresses

« Bonus: Practice problems at the end
 Also some bonus details on multi-level page tables we won't test you on



Outline

 Memory Problems

* Virtual Memory Concept
* Main Memory as a Cache
« Memory Problems Solved

» Address Translation

 Caching Page Table Entries




The Illusion!

Process A
I

I am the ONLY
PROCESS \
accessing CPU

memory, and I
don't have to

share it with
anyone!

RAM




The Reality!

Process A

Process B

Process C

Process A

CPU

RAM

Process B

Process C




Memory problems
« What are the challenges to supporting this reality?

1. Which addresses does each process get?



Multiple applications share RAM

Both processes
assume they start

Process A at the beginning of
\ RAM and use as
Process B RAM much as they need
cpu




Multiple applications share RAM

Process A

Process A
Process B \ RAM
cou —




Multiple applications share RAM

Process A

Process A
Process B \ RAM
cou —




Multiple applications share RAM

Process A

Process B

Process B

CPU

RAM
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Multiple applications share RAM

There’s enough

Process A Why should we
have to swap?
Process B Process B
T~ CPU Challenge here
is that programs

are compiled
with specific
addresses...
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Memory problems
« What are the challenges to supporting this reality?

1. Which addresses does each process get?

2. How do we move memory around?
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Memory fragmentation

Process A

Process B

Process C

Process A

CPU

Process B

Process C

14



Memory fragmentation

Process A

Process C

Process A

CPU

RAM

Process C
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Memory fragmentation

Process A
Process A
Process C
Process D \ RAM Process D
CPU

Hmm... There’s

enough space, Process C

but not all

together!
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Memory fragmentation

Process A

Process C

Process A

Process D \

There we go!

CPU

Process C

Process D
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Memory fragmentation

Process A

Process C

Process D

Wait... This isn’t
my data?

Process A

Process C

CPU
\

Process D
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Memory problems
« What are the challenges to supporting this reality?

1. Which addresses does each process get?
2. How do we move memory around?

3. How do we support processes bigger than RAM?
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Processes might be bigger than RAM

Process A

CPU

RAM

Memory for
Process A

ELDEN RING
DELUXE EDITION
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Memory problems

« What are the challenges to supporting this reality?

1. Which addresses does each process get?
2. How do we move memory around?
3. How do we support processes bigger than RAM?

4. How do we protect processes from each other?

21



Processes can't be trusted

Process A

Please give me
Process A’s data!

For | am evil!

Process B

\CPU/

Process A

Process B
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Memory problems

« What are the challenges to supporting this reality?

1.

2.

Which addresses does each process get?

How do we move memory around?

. How do we support processes bigger than RAM?

How do we protect processes from each other?

. How do we deal with how incredibly slow disk is?
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Computing timescales

» Assuming 4 GHz processor, Instruction (with registers):

Jeff Dean

(Google AI):
“Numbers Everyone
Should Know”

Jim Gray’s analogy:

« Registers are in your
apartment

e Disk is on Mars

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send ZK bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

0.25 ns

0.5 ns

5

7

25

100

3,000
20,000
250,000
500,000
10,000,000
20,000,000
150,000,000

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns
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Caching disks

A

Smaller,
faster,
and
costlier
(per byte)
storage
devices

Larger,
slower,
and
cheaper
(per byte)
storage
devices

L5:

LO:
register

1,/ on-chip L1 Main memory should act
C

L
ache (SRAM) as a cache for disk!
LZ/ off-chip L2

cache (SRAM)

L3: main memory
(DRAM)

local secondary storage
(local disks)

remote secondary storage
(distributed file systems, Web servers)
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Memory problems

« What are the challenges to supporting this reality?

1. Which addresses does each process get?
How do we move memory around?
How do we support processes bigger than RAM?

How do we protect processes from each other?

A

How do we deal with how incredibly slow disk is?

* Virtual memory addresses all of these problems!
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Outline

« Memory Problems
 Virtual Memory Concept
* Main Memory as a Cache

« Memory Problems Solved

» Address Translation

 Caching Page Table Entries




Virtual memory concept

* Disconnect reality of RAM from illusion of main memory

 Processes work with the illusion
« They use virtual addresses to reference where their memory is

« Computer (and OS) work with the reality
« They use physical addresses that are real locations in RAM

« The hardware/OS translates virtual addresses into physical
addresses
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A system using physical addresses

« Main memory - An array of M contiguous byte-sized cells,

each with a unique physical address

» Physical addressing
» Most natural way to access it

» Addresses used by the
CPU correspond to bytes
IN memory

« Used in simple systems like
early PCs and embedded
microcontrollers

CPU

Physical address
(PA)

4

M-1:

Main memory

v
NI HEWNRO

Data word
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A system using virtual addresses

* The CPU generates virtual address

 Address translation is done by dedicated hardware (memory management
unit) via OS-managed lookup table (a Page Table)

 Resulting physical address is used to access memory hierarchy

» Modern processors use virtual addresses
» All addresses

CPU Chi
YOUF programs P Virtual address Memory
work with are CPU V&) >| Management
virtual! . 4100 Unit

Physical address
(PA)

Main memory

Data word

4

\ 4
NI RN O

<
N
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Your experiences with Virtual Memory

 In Attack Lab, what was the address of touch2?
» 0x40000-ish, right?
« The same each time you run it too

« But multiple of you were running separate ctarget processes at the
same time on Moore

* 0x40000-ish was a Virtual Address

 Really, each process’s code was at a totally different Physical
Address in Moore’s actual RAM
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Virtual Memory

* From here on out, we'll be working with two different memory

spaces:
 Virtual Memory (VM): A large (~infinite) space that a process
believes it, and only it, has access to

* Physical Memory (PM): The limited RAM space your computer must
share among all processors

- This idea is independent of physical caches
« There are still multiple layers of memory caches in the CPU
« They might use virtual or physical addresses
« We'll usually assume caches use physical addresses for this class
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Break + Review =v5 5 virtual memorys 7
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Outline

« Memory Problems

* Virtual Memory Concept

- Main Memory as a Cache
« Memory Problems Solved

» Address Translation

 Caching Page Table Entries




File data is stored on disk

 Physical memory: how much RAM does a computer actually have
« These days, a handful of gigabytes is typical

 Address space: 2% possible addresses on x86-64!
 That's 264 possible bytes of memory, or 17,179,869,184 GB!
* (In reality, architecture limits addresses to 48 bits, soon 57. Still huge!)

« Across all your programs, may need more data than fits in physical
memory, so some of it is in disk
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VM as a Tool for Caching

« Solution: use physical memory as a cache! (called: DRAM cache)
« Store the bulk of your data on disk (very large, very cheap, but very slow)

« And store the currently-used data in main memory (very fast by
comparison)

 Get the best of both worlds! Large capacity and fast access!

* DRAM cache organization driven by the enormous miss penalty
 DRAM is about Z00x slower than SRAM
 Disk is about 100,000x slower than DRAM
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Picking Cache Design Parameters

e Block size?

 Disks are better at transferring large chunks of data
(the first byte incurs a long delay, the rest come really fast afterwards)

 Large block size: typically 4-8 KB

 Associativity?
« DRAM cache misses incur enormous penalties; have to go to disk. Yikes!
« Associativity is high to minimize miss rate
 Fully associative (one huge set): any block can go anywhere in cache
« Requires a “large” mapping function — but managed in software, so ok

« Write-back or write-through?
 Disk cannot keep up with a firehose of small writes
 Use write-back (only write to disk when a page is evicted)

« Replacement algorithms?
* Not limited by hardware; hardware strongly favors simple methods
 Highly sophisticated, expensive, open-ended replacement algorithms
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DRAM Cache Analogy to Cache Memory

Vv tag B-1|eceeee 21110
Vv tag B-1|ececee 21110
\Y; tag B-1 |eeccee 21110
v tag B-1 Jeceees 21110
@
[ )
[ )
v tag B-1 Jeceees 21110

Every virtual /’

address
ALWAYS maps
to some entry!

/

Page Table
(in DRAM)

tag

B-1

tag

B-1

tag

B-1

tag

B-1

tag

B-1

tag

tag

Main Memory
(DRAM)

Page



Locating an object in DRAM Cache: Page Tables

- A page table maps virtual pages to physical pages
* One page table entry (PTE) per virtual page (possible page in VM)
» Fully-associative — one big set. Use the "tag” to index into table!
« Each PTE specifies either a physical page (in DRAM) or a disk address
« Valid bit tells us which
 Instead of data in the “cache block”, “pointer” to where data is

Physical page number Physical memory (DRAM Cache)
or disk address
Valid VP 1 PP O
1 — | VP 4 PP 3
0 Q
— Disk Memor
Some pages are unallocated 1 —_ y
: ——— 0 null el VP 1
(i.e., no data there) S — .
*. AR VP 2
PTE7[ 1 o« ~-_ ..
S~. S VP 3
Page table TNl Sa o 7
(Memory resident - DRAM) S~o
Seo VP 6
A VP 7
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Page Hit

« Page hit: reference to a VM word that is in physical memory

(hit on the DRAM cache)

Virtlal address Physical page Physical memory (DRAM)
number or
VPN Offset Valid  disk address / xg ; PPO
PTEO[ 0 n:H///' 2
1
AR —— VP4 PP 3
Q
: Canu
0 null 1~ Disk memory
0 - TN VP 1
PTE 7] 1 o« <. RISy —
Memory resident \\\\ T 3
page table S
(DRAM) Tl VP4
Page table has an entry for each VP 6
virtual page, so index with “tag” VP 7

(VPN) instead!
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Page Fault

« Page fault: reference to VM word that is not in physical memory

(DRAM cache miss)

Virtual address

VPN Offset

Physical page Physical memory (DRAM)
number or v
Valid  disk address / i1 PP O
PTEO] 0 null // 2
: — VP4 PP 3
1 —
> 0 e
1 . _
0 null \)«\
0 o~ | - Disk memory
PTE 7] 1 o« "~ RN VP 1
Memory resident S \\\ Y
page table AN S
(DRAM) \\\\ VP 3
RN VP 4
VP 6
VP 7
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Handling Page Fault

« Page miss causes page fault (a HW exception, OS code kicks in to handle)

Virtual address

VPN Offset

Physical page
number or

Physical memory (DRAM)

\

VP 1 PP O
VP 2
VP 7
VP4 PP 3

~

Rlo|lolr|lo | |-
O\
y
/

/

/ /

Valid  disk address /
"

null >
o« ~ Disk memory
PTE 7 o = VP 1
Memory resident ~~ ~. VP 2
page table Se T
(DRAM) o VP 3
So VP 4
VP 6
VP 7
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Handling Page Fault

« Page miss causes page fault (a HW exception, OS code kicks in to handle)

 Page fault handler selects a victim to be evicted (here VP 4)

Virtlal address Physical page Physical memory (DRAM)
number or o1
VPN Offset Valid  disk address / I PP O
PTEO| O null // I
1 — VP4 PP 3
1 —
0 “ ]
1 o~ _
0 null 1
0 o« ~ NN Disk memory
PTE 7] 1 o« "~ . VP 1
Memory resident\\ \\ VP 2
page table Se T
(DRAM) o VP 3
Eviction decision is made by software. So can be AN vea
pretty sophisticated! (Beyond scope of this class) VPO
- fewer page faults (if we do it right) Vb7
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Handling Page Fault

« Page miss causes page fault (a HW exception, OS code kicks in to handle)
« Page fault handler selects a victim to be evicted (here VP 4)
« The victim page is swapped with the disk block of the requested address

Virtual address Physical page Physical memory (DRAM)
number or X
VPN Offset Valid  disk address / I PPO
PTEO| O null // P
: — VP 3 PP 3
1 —
1 o/_
0 . _
0 null "~ A
0 o ~ L. Disk memory
PTE7 1 o« "~ | . 71
Memory resident ~~_ S~ VP 2
page table Sso Tl
(DRAM) Sso s VP 3
Requires a disk read! (Slow!) RN i
OS suspends process in the meantime. VPO
Resumes it once memory access finishes. VP 7 44




Handling Page Fault

« Offending instruction is restarted: page hit this time!

Virtual address

Physical page
number or

Physical memory (DRAM)

VPN Offset Valid  disk address / xE ; PPO
VP 7
1 -~ VP 3 PP 3
1 —
0 N
0 null "~ A
0 e L. Disk memory
PTE 7] 1 « ~ | - VP 1
Memory resident ~~_ s~ VP 2
page table Sso s
(DRAM) NSUIRR VP 3
So VP 4
How does anything ever get done? VP 6
Locality to the rescue! VP 7
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Locality saves the day (as usual)

« At aly/ Roint in time, programs tend to access a small set of active virtual pages
called the working set
« Programs with higher temporal locality will have smaller working sets

o If (working set size < main memory size)
« High performance for one process after compulsory misses
« Fully-associative cache, so no conflicts. Only capacity matters.
« Life is good!

« If ( SUM(working set sizes) > main memory size )
« Thrashing: Performance meltdown where pages are swapped to and from disk continuously

« When cache memory is thrashing, CPU runs at the speed of memory. Ow.
« When virtual memory is thrashing, CPU runs at the speed of disk. Yikes!
« Hope you enjoy the commute to Pluto. Because that’s where your data is
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Break + Question

« Computer has:
- 8 pages of Virtual Memory
* 4 pages of Physical Memory

 How many entries (rows) does a page table have?
* How many entries can be valid at any time?
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Break + Question

« Computer has:
- 8 pages of Virtual Memory
* 4 pages of Physical Memory

* How many entries (rows) does a page table have? 8 entries
* How many entries can be valid at any time? 4 valid

 Page Table translates Virtual to Physical
« It needs an entry for each virtual page, so 8 entries

« Rows are valid if they point at physical memory
« So only four entries can be valid (unless they share a physical page)
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Outline

« Memory Problems

* Virtual Memory Concept

* Main Memory as a Cache

« Memory Problems Solved

» Address Translation

 Caching Page Table Entries




Memory problems

« What are the challenges to supporting this reality?

1.

2.

Which addresses does each process get?

How do we move memory around?

. How do we support processes bigger than RAM?

How do we protect processes from each other?

How do we deal with how incredibly slow disk is? v
Use RAM as a cache for disk

50



Which addresses do processes get?

* Programs can use
whatever virtual
addresses they want

 Usually a fixed
mapping for a given OS

O0x0007FFFFFFFFFFFE —

Kernel Virtual
Memory

Dynamic segments

0x80000000000 —
_ %rsp — User stack
» OS controls physical v
add Fesses Shared libraries
« Decides which parts of brk —» ¢
RAM are used for which Heap
things Data
0x400000 —|—Code (text)

0x0000000000000000 —

‘

Process
virtual
memory
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Memory problems

« What are the challenges to supporting this reality?

1.

2.

Which addresses does each process get? v
Whatever virtual addresses they want

How do we move memory around?

. How do we support processes bigger than RAM?

How do we protect processes from each other?

How do we deal with how incredibly slow disk is? v
Use RAM as a cache for disk
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How do we move memory around?

« Just change the page

table entry!

Physical page number
or disk address

Physical memory (DRAM Cache)

Valid VP 1 PPO
0 nu” / -~
1 —
1 null PP 3
0 LR )
1 aull Disk Memory
0 null AN VP 1
0 = VP 2
1 null
.o VP 3
Page table ) S VP 4
(Memory resident - DRAM)
VP 6
A VP 7
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How do we move memory around?

« Just change the page
table entry!
« Same virtual address

Physical page number
or disk address

Physical memory (DRAM Cache)

points at a different Valid PP 0
I 0 null VP 2
physical address - — o
1 null PP 3
(1) n:ﬂ Disk Memory
» Usually only happens 5 R =
when pages are 0 .. V2
swapped to disk and E
Page table - - VP 4
then |atel‘ bI‘Ought (Memory resident - DRAM) \\\ X
back s
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Memory problems

« What are the challenges to supporting this reality?

1.

2.

Which addresses does each process get? v
Whatever virtual addresses they want

How do we move memory around? v
Update page table entries

. How do we support processes bigger than RAM?

How do we protect processes from each other?

How do we deal with how incredibly slow disk is? v
Use RAM as a cache for disk
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How do we support processes bigger than RAM?

e Just leave some

pages for that
proceSS on d|Sk Physicc;/.pkagcej';umber Physical memory (DRAM Cache)
Valid or a4isK aadress VP 1 PP O
PTE 00 niﬂ/_?' VP2
VP 7
1 — VP4 PP 3
 Page table entry L :
still exists for each 3 T" Disk Memry
virtual page g e —
PTE 7[ 1 o« . | AN —
Page table \\\ TNl VP 4
- (Memory resident - DRAM) S o
» Hopefully working e .
4 VP 7

set is smaller than
program memory
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Memory problems

« What are the challenges to supporting this reality?

1.

2.

Which addresses does each process get? v
Whatever virtual addresses they want

How do we move memory around? v
Update page table entries

. How do we support processes bigger than RAM? v

Leave some pages on disk
How do we protect processes from each other?

How do we deal with how incredibly slow disk is? v
Use RAM as a cache for disk
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How do we protect processes from each other?

 Each process has separate virtual memory spaces

* No way to access another process’s physical memory unless it is mapped
to one of your virtual addresses

Address .
Virtual 0 Iati 0 Physical
Address VP 1 M} Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
PP 6
Virtual 0
freua —> PP8
Address VP 1 5 pp 12
Space for VP 2
Process 2:
N-1 M-1

58



Enabling shared libraries

« We could share some physical pages across processes to enable
shared libraries or shared memory

Address .
Virtual 0 Iati 0 Physical
Address VP 1 w} Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
PP 6 (e.g., read-only
library code)
. 0
Virtual > ppg
Address VP 1
Space for VP 2
Process 2:
N-1 M-1




VM as a Tool for Memory Protection

- What if we want better
protection?
« Mark a page as read-only

« Keep a page in memory, but
onlypthepO can tOUCth

 Extend PTEs with
permission bits!

« Page fault handler checks
these before remapping

 HW enforces this
protection (trap into OS if
violation occurs)

VP 0O:
VP 1:
VP 2:

VP 0O:
VP 1:
VP 2:

Must be running in
kernel (supervisor

w Physical
Address Space

SUP READ WRITE EXEC Address

No Yes No Yes PP 6

No Yes Yes No PP 4

Yes Yes Yes No PP 2 22
Process i . . PP 4

. .
PP 6

SUP READ WRITE EXEC Address PP 8

No Yes No No PP9 PP 9

Yes Yes Yes Yes PP 6

No Yes Yes No PP 11 —> PP 11
Process j
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Memory problems

« What are the challenges to supporting this reality?

1.

2.

Which addresses does each process get? v
Whatever virtual addresses they want

How do we move memory around? v
Update page table entries

. How do we support processes bigger than RAM? v

Leave some pages on disk

How do we protect processes from each other? v
Don’t overlap virtual address spaces + permission bits

How do we deal with how incredibly slow disk is? v
Use RAM as a cache for disk
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Outline

« Memory Problems

* Virtual Memory Concept
* Main Memory as a Cache
« Memory Problems Solved

 Address Translation

 Caching Page Table Entries




Address Translation

« Goal: Given virtual address, find corresponding physical address
« (Or get a page fault if the page is not in memory)
 Translation done by Memory Management Unit (hardware)
« But mapping itself is maintained by OS (software)
« Just a table in memory!

 Basic Parameters
« N = 2": Number of addresses in virtual address space

« M = 2™m: Number of addresses in physical address space. m < n (usually much less)
« P = 2P : Page size (bytes)

« Components of the virtual address (VA)
* Virtual page number (VPN)
 Page Offset

« Components of the physical address (PA)
 Physical page number (PPN)
« Page Offset (same offset as VA)
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Address Translation With a Page Table

Page table base

register (PTBR)

CR3 on x86-64
(OS-only register)

Page table address
for process

Virtual address

VPN is the index
into the page table

Valid Access
>

Valid bit = 0:
page not in memory

(page fault) <

Access rights mismatch:

prohibited access by process €
(protection violation fault)

n-1 p p-1
Virtual page number (VPN) Page offset
Page table (in memory)
Physical page number (PPN)
If Valid bit =1 &&
access mode allowed:
page in memory
(page hit)
m-1 p p-1 \ 4
Physical page number (PPN) Page Offset

Physical address
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Memory Access: Page Hit

| 2]
CPU Chip PTE address >
o < PTE
CPU A 5 MMU 5
PA >
@

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Cache/
Memory
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Memory Access: Page Fault

Exception
jm————————— > Page fault handler (OS code)
| @
[
|
! (2 ]\/I
CPU Chip : PTE address Victim page
@ > o
CPU VA > MMU | PTE Cache/
0 e Memory
New page
1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

/) Handler returns to original process, restarting faulting instruction

Disk
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Virtual memory example

« Parameters _ .
] ] Mapping can be anything,
 Virtual addresses are 12-bits which is bigger doesn't really
* Physical addresses are 16-bits matter!
 Page size is 64 bytes

1. How do we split Virtual Addresses into VPN and Offset?

11| 10 9 8 7 6 5 4 3 2 1 0




Virtual memory example

» Parameters Mapping can be anything,

« Virtual addresses are 12-bits which is bigger doesn't really
» Physical addresses are 16-bits matter!
 Page size is 64 bytes

1. How do we split Virtual Addresses into VPN and Offset?
 Offset is based on page size: 64-bytes = 6 bits. All the rest are VPN

11| 10 ) 8 7 6 5 4 3 2 1 0
Virtual Page Number Page Offset

2. How big are Physical Page Numbers?
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Virtual memory example

» Parameters Mapping can be anything,

« Virtual addresses are 12-bits which is bigger doesn't really
» Physical addresses are 16-bits matter!
 Page size is 64 bytes

1. How do we split Virtual Addresses into VPN and Offset?
 Offset is based on page size: 64-bytes = 6 bits. All the rest are VPN

11| 10 ) 8 7 6 5 4 3 2 1 0
Virtual Page Number Page Offset

2. How big are Physical Page Numbers? 16-6 = 10 bits



Virtual memory example

« Parameters
« Virtual addresses are 12-bits
 Physical addresses are 16-bits
« Page size is 64 bytes

11|/ 10|91 8|7 (6|5(4|3(2|1(0

Virtual Page Number Page Offset

14| 13| 12| 11| 10| 9(8|7(6|5|4(3|2(|(1]0

Physical Page Number Page Offset

* Translate:

e Virtual address: 0x3F0
 VPN:
« Offset:




Virtual memory example

« Parameters
« Virtual addresses are 12-bits
 Physical addresses are 16-bits
« Page size is 64 bytes

11|/ 10|91 8|7 (6|5(4|3(2|1(0

Virtual Page Number Page Offset

14| 13| 12| 11| 10| 9(8|7(6|5|4(3|2(|(1]0

Physical Page Number Page Offset

* Translate:

* Virtual address: 0x3F0
* VPN: 0Ob001111
e Offset: 0b110000




. VPN PPN Valid | | VPN PPN Valid
Vlrtual memory example 0x00 0x123 |1 0x10 0x237 |1
P ¢ 0x01 Ox156 |1 Ox11 0x236 |1
ar?/nle Ierf:;ld 19-bit 0x02 0x143 |1 0x12 0x2BO0 |1
o u_a dcaresses are ! S 0x03 Ox16F |1 0x13 0x280 |0
 Physical addresses are 16-bits
. 0x04 Ox1FF |0 0x14 0x120 |0
« Page size is 64 bytes
0x05 0x107 |0 Continues on...
11(10|9(8|7]6 4321 0x06 0x100 |0
Virtual Page Number Page Offset 0X07 OX].CO 0
15 14 13 12 11 10( 9| 8| 7| 6 4|1 3(2(1 * PPN:
T — L 0x08 0x1D8 |0
sical Page Number age Offset .
—— : 0x09 |Ox1BF |0 » Offset:
 Translate: Ox0A | 0x000 |1
] 0x0B Ox3FF |1
« Virtual address: 0x3FO0 oo locos 1o
* VPN: 0Ob001111 0x0D 0x3FD |0
« Offset: 0b110000 OxOE |ox111 |1
OxOF Ox1FO |1
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. VPN PPN Valid | | VPN PPN Valid
Vlrtual memory example 0x00 0x123 |1 0x10 0x237 |1
P ¢ 0x01 Ox156 |1 Ox11 0x236 |1
ar?/nle Ierild 19-bit 0x02 0x143 |1 0x12 0x2BO0 |1
o u_a aderesses are ! S 0x03 Ox16F |1 Ox13 0x280 |0
 Physical addresses are 16-bits
. 0x04 Ox1FF |0 Ox14 0x120 |0
« Page size is 64 bytes
0x05 0x107 |0 Continues on...
11 (10|9|8|7|6|5|a|l3|2]1]0 0x06 0x100 0
Virtual Page Number Page Offset 0X07 OX].CO 0
14 13 12 11 10(9|8|7|6|5(4|]3]2|11]0 0X08 OX1D8 O * PPN: ObO]' 1111 OOOO
Physical Page Number Page Offset 0)(09 OxlBF 0 o OffS et: ObllOOOO
 Translate: Ox0A | 0x000 |1
. 0XOB |OX3FF |1  Physical address:
* Virtual address: 0x3F0 oo locos 1o
 VPN: Ob001111 0x0D 0x3FD |0
« Offset: 0b110000 OxOE |Ox111 |1
OxOF Ox1F0 |1
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Ob110000

- VPN PPN Valid | | VPN PPN Valid
Vlrtual memory example 0x00 0x123 |1 0x10 0x237 |1
P ¢ 0x01 Ox156 |1 Ox11 0x236 |1
ar?/nle Ierild 12-bit 0x02 Ox143 |1 0x12 0x2B0 |1
TEUal adCresses are 17bIts 0x03 |Ox16F |1 0x13 |0x280 |0
 Physical addresses are 16-bits
. 0x04 Ox1FF |0 Ox14 0x120 |0
« Page size is 64 bytes
0x05 0x107 |0 Continues on...
11| 10|9(8|7]|6 43|21 0x06 0x100 0
Virtual Page Number Page Offset 0X07 OX].CO 0
15 14 13 12 11 10|/ 9|87 ]| 6 4 (3121 0X08 OX1D8 O * PPN: ObO]- 1111 OOOO
Physical Page Number Page Offset 0)(09 OxlBF 0 o OffS et:
 Translate: Ox0A | 0x000 |1
. 0XOB |OX3FF |1  Physical address:
e Virtual address: 0x3F0 o0c 10308 10 . 0b0111110000110000
 VPN: Ob001111 0x0D 0x3ED |0 « 0x7C30
« Offset: 0b110000 Ox0E |Ox111 |1
OxOF Ox1F0 |1
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- VPN PPN Valid | | VPN PPN Valid
Break T QueSthn 0x00 0x123 |1 0x10 0x237 |1
P ¢ 0x01 Ox156 |1 Ox11 0x236 |1
ar?/nle Ierf:;ld 12-bit 0x02 0x143 1 Ox12 0x2B0 |1
o u.a aderesses are ! S 0x03 Ox16F |1 0x13 0x280 |0
 Physical addresses are 16-bits
. 0x04 Ox1FF |0 Ox14 0x120 |0
« Page size is 64 bytes
0x05 0x107 |0 Continues on...
11 | 10|9|8|7|6|5|4a|3|2]1]0 0x06 0x100 0
Virtual Page Number Page Offset 0X07 OX].CO 0
14 13 12 11 10/ 9| 8|(7|6|5(4|13|]2(11]|0 * PPN:
e E—— e 0x08 0x1D8 |0
sical Page Number age Offset .
— : 0x09 |Ox1BF |0 « Offset:
 Translate: Ox0A | 0x000 |1
. 0XOB |OX3FF |1  Physical address:
* Virtual address: 0x500 oo locos 1o
* VPN: 0xOD | OX3FD |0
« Offset: Ox0E |Ox111 |1
OxOF Ox1F0 |1




. VPN PPN Valid | | VPN PPN Valid
Break T QueStlon 0x00 0x123 |1 0x10 0x237 |1
P ¢ 0x01 0x156 |1 Ox11 0x236 |1
ar?/nle Ierild 12-bit 0x02 0x143 |1 0x12 0x2BO0 |1
o u_a addresses are ! S 0x03 Ox16F |1 0x13 0x280 |0
 Physical addresses are 16-bits
. 0x04 Ox1FF |0 0x14 0x120 |0
« Page size is 64 bytes
0x05 0x107 |0 Continues on...
11 (10|9(8|7 |6 al3|2|1 0x06 0x100 0
Virtual Page Number Page Offset 0X07 OX].CO 0
15 14 13 12 11 10| 98|76 4|1 3(2]1 0X08 OX1D8 O * PPN: INVALID
Physical Page Number Page Offset .
— : 0x09 | Ox1BF |0 » Offset:
 Translate: OX0A | 0x000 |1
. 0XOB |OX3FF |1  Physical address:
* VPN: 0b010100 0x0D 0x3FD |0
« Offset: 0b000000 OxOE |Ox111 |1
Ox0F Ox1F0 |1
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. . VPN PPN Valid | | VPN PPN Valid
+
Break PraCt|Ce agaln 0x00 0x123 1 0x10 0x237 1
P t 0x01 0x156 1 Ox11 0x236 1
ar?/nle Ierf:;ld 12-bit 0x02 0x143 1 Ox12 0x2B0 1
s ug aderesses are ! S 0x03 Ox16F 1 Ox13 0x280 |0
 Physical addresses are 16-bits
. 0x04 Ox1FF |0 Ox14 0x120 |0
« Page size is 64 bytes
0x05 0x107 |0 Continues on...
11 |10|9|8|7|6|5|4a|3]|2|1]0 0x06 0x100 0
Virtual Page Number Page Offset 0X07 OX].CO 0
14 13 12 11 10/ 9| 8|(7|6|5(4|13|]2(11]|0 * PPN:
Physical P Numb P Offset 0X08 OX1D8 O
= : 0x09 | OXIBF |0 « Offset:
 Translate: Ox0A | 0x000 |1
. 0XOB |OX3FF |1  Physical address:
e Virtual address: 0x0D6 oo locos 1o
* VPN: 0xOD | O0X3FD |0
« Offset: OxOE |Ox111 |1
OxOF Ox1FO 1




0b010110

- . VPN PPN Valid | | VPN PPN Valid
Break T PraCtlce agam 0x00 0x123 |1 0x10 0x237 |1
P ¢ 0x01 Ox156 |1 Ox11 0x236 |1
ar?/nle Ierild 12-bit 0x02 Ox143 |1 0x12 0x2B0 |1
TEUal adCresses are 17bIts 0x03 |Ox16F |1 0x13 |0x280 |0
 Physical addresses are 16-bits
. 0x04 Ox1FF |0 Ox14 0x120 |0
« Page size is 64 bytes
0x05 0x107 |0 Continues on...
11| 10|9(8|7]|6 43|21 0x06 0x100 0
Virtual Page Number Page Offset 0X07 OX].CO 0
15 14 13 12 11 10|/ 9|87 ]| 6 4 (3121 0X08 OX1D8 O ° PPN: ObO]-O 110 1111
Physical Page Number Page Offset 0)(09 OxlBF 0 o OffS et:
 Translate: Ox0A | 0x000 |1
. 0XOB |OX3FF |1  Physical address:
* Virtual address: 0x0D6 o0c 10308 10 . 0b0101101111010110
 VPN: 0b000011 0x0D 0x3ED |0 + 0x5BD6
e Offset: 0b010110 OxOE |Ox111 |1
OxOF Ox1F0 |1
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Outline

« Memory Problems

* Virtual Memory Concept
* Main Memory as a Cache
« Memory Problems Solved

» Address Translation

- Caching Page Table Entries




Accessing page tables is slow

* Problem: page tables are in memory
« And we need to access them to find our address to access memory
» Two memory accesses per access!!! @)

 Page table entries (PTESs) are cached in L1, L2, etc, like any other
data in memory

« PTEs may be evicted by other data references. Oops.
« PTE access still requires average effective memory access delay
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Speeding up Translation with a TLB

« Solution: 7rans/ation Lookaside Buffer (TLB)
« Small hardware cache memory inside MMU
 Contains page table entries for a small number of pages
« Maps virtual page numbers to physical page numbers
« Reduces issues with data kicking PTEs out of caches!

* Like cache memories, uses set indices, tags, and valid bits
« VPN split into: TLB tag and TLB index (just like caches, because it is one!)
« No need for a block offset equivalent (PTEs have a single value)
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TLB Hit

CPU Chip LB

Q PTE
VPN e

@

VA PA

CPU MMU a > Cache/
] Memory

Data
®

A TLB hit eliminates a memory access
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TLB Miss

CPU Chip .
@)
a PTE
VPN
(1 ©
VA PTEA
CPU > MMU > Cache/
PA s| Memory
(5
Data
6

A TLB miss incurs an additional memory access (the PTE)

Fortunately, TLB misses are rare. Why? Locality. It’s always locality.



Address translation process

1 hardware

| hardware or OS software
1 OS software

TLB Miss

Virtual Address

TLB Hit

v

Page Table
Access

Page not

in Mem¢

Page

;in Mem

Page Fault
(OS loads page)

Update
TLB

Protection
Check

v

Find in Disk

v
|

Find in Mem

Access Access
Denied¢ *Permitted
Protection Physical
Fault Address
v v
SEGFAULT Check cache
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Outline

« Memory Problems

* Virtual Memory Concept
* Main Memory as a Cache
« Memory Problems Solved

» Address Translation

 Caching Page Table Entries




Outline

« Bonus: Memory System Practice Problems




Simple Memory System Example

« Addressing
 14-bit virtual addresses
 12-bit physical address
» Page size = 64 bytes

13 12 11 10 9 8 7 6

VPN

Virtual Page Number

11 10 9 8 7 6

VPO

PPN >
Physical Page Number

PPO
Physical Page Offset

v
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We only show a few entries (out of 256)

Simple Memory System: Page Table

VPN PPN | Valid
00 28 1
01 - 0
02 33 1
03 02 1
04 - 0
05 16 1
06 - 0
07 - 0

VPN PPN | Valid
08 13 1
09 17 1
0A 09 1
0B - 0
0C - 0
0D 2D 1
OE 11 1
OF oD 1

VPN

PPN

Valid

2E
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Simple Memory System: TLB

* 16 entries
* 4-way associative

A

TLBT
13 12 11 10 9 8 7 6 5 4 3 2 1 0

: VPN VPO >
Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid
0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0

89



Simple Memory System: L1 Cache

* 16 lines, 4-byte block size
* Physically addressed
« Direct mapped.

11 10 9 8 7 6 5 4 3 2

“ PPN >
ldx Tag B3 B2 B1 BO Tag B3 B2 B1 BO
0 19 99 11 23 11 8 24 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 0D 1 1D 72 FO 36 D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -




Address Translation Example #1

(using the Page Table, TLB, and L1 cache shown in the preceding slides)

movb (%rcx), %al Address space: 14-bit VAddr, 12-bit PAddr, 64-byte page
\_,_!\A TLB: 16 entries, 4-way
i L1 Cache: 16 lines, 4-byte block, direct mapped,
Virtual Address: 0x03D4 Physically addressed PP

< TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

O, 0| 0] O 1 1 1 1| 0 1 /0 (1,0

. VPN = VPO >
VPN 0xOF TLBI Ox3 TLBT 0x03 TLB Hit? .Y  Page Fault? N PPN:0x0D
Physical Address
= cT - cl ><— BO —

1 10 9 8 7 6 5 4 3 2 1 0
o,o0|1(1;,0}1|0, 1,010/ 0

PPN PPO

A

v

BO 0 CIOx5  CTO0x0D Hit?Y Byte: 0x36 91



Address Translation Example #2

(using the Page Table, TLB, and L1 cache shown in the preceding slides)

Virtual Address: 0x0OBS8F

< TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

0O 0 110 1 1 11000 1 1 1 1

A

VPN > VPO

v

VPN Ox2E TLBI _2 TLBT _0x0B TLB Hit?N__  Page Fault? _Y PPN:TBD

Physical Address

A
O
—
v
A

Cl ><— BO —

11 10 9 8 7 6 5 4 3 2 1 0

A

PPN PPO

v

Likely invalid page. Maybe needs to
read from disk. Either way we don't
know the PPN. .

BO Cl___ CT Hit? Byte:



Address Translation Example #3

(using the Page Table, TLB, and L1 cache shown in the preceding slides)

Virtual Address: 0x0020

< TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

o0 0|O0O|O0O]O0]O0]|O0 110|000 ]|O

A

VPN > VPO

v

VPN 0x00 TLBI O TLBT 0x00 TLB Hit? N Page Fault? N PPN: 0x28

Physical Address

A
v
A

CcT

Cl ><— BO —
1 10 9 8 7 6 5 4 3 2 1 0
i,0(1;, 0,00, 1,000 |0]0O0

PPO

Cache miss, so needs to read byte
values from main memory

A

v

« PPN

v

BO_O0 CIOx8  CT 0x28 Hit? N_ Byte: Mem



Outline

« Bonus: Multi-level Page Tables




Multi-Level Page Tables

Level 2

* Suppose: | | Tables
« 4KB (212) page size, 48-bit address space, 8-byte PTE

* How big is the page table?
« Would need a 512 GB page table! Level 1

° 248 b 3 2-12 b 3 23 —_ 239 bytes Table
« That'’s just meta-data! 7
Where does the data go?

« Common solution:
 Multi-level page tables

—

 Split the VPN into multiple pieces, 1 per level

« Example: 2-level page table

 Level 1 table: each PTE points to a level 2 page table
(always memory resident)

 Level 2 table: each PTE points to a page

(paged in and out like any other data, maybe not even allocated!)



A Two-Level Page Table Hierarchy

32 bit addresses, 4KB pages, 4-byte PTEs

Level 1 page table Level 2 page tables
1 table 3 tables, NOT 1024!
1024 entries 1024 entries each
PTEO — [ ereo
PTE 1
PTE 2 (null) PTE 1023
PTE 3 (null)
PTE 4 (null) STE O
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null)
PTE 8 >
1023 null
(1K - 9) PTEs
null PTEs PTE 1023

If you’re not using most of the address space
(which you’re not), don’t need most level 2
page tables! So don’t allocate them!

Virtual

memory

VPO

VP 1023

VP 1024

VP 2047

Gap

1023
unallocated
pages

VP 9215

AN

> 2K allocated VM pages
for code and data

> 6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack
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Multi-level page table: Core i/

9 9 9 9 12 Virtual
VPN 1 VPN 2 VPN 3 VPN 4 VPO
address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40% directory |ap* directory  |apxdirectory |40 table
CR3 T > 7 IAd
Physical
address Offset into
of L1 PT 12 physical and
» L1 PTE » L2 PTE » L3 PTE — —{ L4 PTE virtual page
Physical
address
512 GB 1GBP 2 MB 4 KB of page
region region region region
per entry per entry per entry per entry
40*
l /
40 12 > Physical
PPN PPO
address

*aligned to a 4K-boundary
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End-to-end Core i7 Data Address Translation

32/64
CPU | data Result s L2, L3, and
N Virtual address (VA) f AL LT
VPN (VPO 11 y
T'—'|3T TLBI L1 d-TLB (64 sets, 4
fﬂh‘le' stej)
R \ 4 A 4 L1 d-CaChe
> (64 sets, 8 lines/set)
—>| | | | | :
' L1 d-TLB miss LT T 1 | e—
L2 TLB miss L2 TLB | Vo 2 4 4 & 4
VPN L]_ d-TLB
v 9 9 ) ) ] vh/t 40 v 12 40 6’ 6
VPN1 [ VPN2 | VPN3 | VPN4 L2 TLB hit . PPN PPO | =p CT CI|cO
T 3 Physical
J J address
>PTEJ S{PTEU | PTE| bo{PTE (PA)

Page tables
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