
Lecture 12
Cache Memories

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Announcements

• Homework 3 due today

• Attack Lab due next week Wednesday
• Get started ASAP!

• Be sure to check out the Piazza post on
“Attack Lab: Double Return Explanation”

• PM Huaxuan Chen did an overview of the Attack Lab

• Piazza post “Attack Lab Walkthrough + Slides”

2

Today’s Goals

• Discuss organization of various cache designs
• Direct-mapped caches

• N-way set-associative caches

• Fully-associative caches

• Understand how cache memories are used to reduce the average
time to access memory

3

Caching speeds up code

• Cache: smaller, faster storage device that keeps copies of a subset of
the data in a larger, slower device
• If the data we access is already in the cache, we win!
• Can get access time of faster memory, with overall capacity of larger

• Locality helps predict which data code is likely to access
• So want to design caches to take advantage of it!

• Most code has good locality
• Well-written code has great locality!

• Spatial locality: if you need a byte, you’re likely to need its neighbors
• Caches should load whole blocks, not single bytes!

• Temporal locality: if you need a byte, you’re likely to need it again
• Caches should try to keep recently cached data in the cache!

4

Locality example

• Can get a sense for whether a function has good locality just by looking at its
memory access patterns

• Does this function have good locality?

• Yes!
• Array is accessed in same row-major order in which it is stored in memory
• a through a+3 , a+4 through a+7, a+8 through a+11, etc.

int sumarrayrows(int a[M][N]){

int sum = 0;

for (int i = 0; i < M; i++) {

for (int j = 0; j < N; j++) {

sum += a[i][j];

}

}

return sum;

}

Temporal or spatial locality?

5

Spatial: accesses to array
Temporal: accesses to sum

Locality example

• Does this function have good locality?

• No!
• Scans array column-wise instead of row-wise
• a through a+3, then a+4*N through a+4*N+3, etc.
• Holy jumping around memory Batman!

• More on that next lecture

int sumarraycols(int a[M][N]){

int sum = 0;

for (int j = 0; j < N; j++) {

for (int i = 0; i < M; i++) {

sum += a[i][j];

}

}

return sum;

}

6

7

• Cache Organization

• Associativity

• Cache Performance

Outline

Cache memories

• A specific instance of the general principle of caching
• Small, fast SRAM-based memories between CPU and main memory

• Can include multiple levels

• L1 = small, but really fast, L2 = larger, slower, L3, etc.

• CPU looks for data in caches first
• e.g., L1, then L2, then L3, then finally in main memory as a last resort

• Mechanisms we’ll see today are implemented in hardware

8

How You Probably Thought a Memory Access Worked

Some memory address

Address of word:

Memory:

%rax

%rdx

%rcx

%rbx

%rsi

%rdi

%rsp 0x104

9

...

return var;

...

...

movq -12(%rsp),%rax

...

How a Memory Access Actually Works

Some memory address

Address of word:

Memory:

%rax

%rdx

%rcx

%rbx

%rsi

%rdi

%rsp 0x104

L1 Cache:L2 Cache:

...

...

10

...

return var;

...

...

movq -12(%rsp),%rax

...

General Cache Organization (S, A, B)

A blocks per set (associativity)

K = 2s sets

cache set

B-1 2 1 0tagv

B = 2b bytes per cache block (the data)

Cache size:
C = K x A x B data bytes

valid bit

cache line
(aka cache block)

Set ≈ column
from last time.
Specific data
can go in only
one set!

11

tag identifies which data
is in this cache block

Cache Access

Some memory address

Address of word:

Cache:

%rax

%rdx

%rcx

%rbx

%rsi

%rdi

%rsp 0x104

t bits s bits b bits

12

...

return var;

...

...

movq -12(%rsp),%rax

...

Cache Read (1): Locate Set

A lines per set

K = 2s sets

t bits s bits b bits

Address of word:

tag set
index

block
offset

• Locate set

0xFF

0xFF

Each address maps to a particular set!
Data has to be stored at that particular set!
Even if that set is full and there “is space” elsewhere!
(That’s where conflict misses come from.)

13

Cache Read (2): Tag Match + Valid

A lines per set

K = 2s sets

tagv

valid bit

t bits s bits b bits

Address of word:

tag set
index

block
offset

• Locate set
• Locate block in set
• Tag matches + valid bit set
→ Cache Hit!

0xFF

0xFF

0x1E45

0x1E451

Within a set, could be anywhere! So, need
to check all lines!

But if it’s not in that set, it’s not in the
cache at all! (It’s the only place it could be.)

14

Cache Read (3): Block Offset

A lines per set

K = 2s sets

012B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

data begins at this offset

• Locate set
• Locate line in set
• Tag matches + V bit set
→ Cache Hit!
• Locate data starting at offset

block
offset

0xFF

0xFF

0x1E45

0x1E451

0x2

2

15

00…01

Example: 128 sets, 64 bytes per block

63 2 1 0

127 66 65 64

191 130 129 128

Memory:

t bits s bits b bits

6510 = 100 00012

00...0 0000001 000001

64 bytes per block → b = 6 bits
128 sets → s = 7 bits
remaining address bits → t bits

address of a byte in memory

A lines per set

set 0:

set 1:

set 2:

set 127:

Goal: Get byte M[65] from cache

QUIZ #1: which set
should we look in?

QUIZ #2: which tag
are we looking for?

QUIZ #3: which byte
within the block is the
one that we want?

16

Cache access overview

A lines per set

2s sets

012B-1tagv

B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

data begins at this offset

block
offset

Address of word:
%rax

%rdx

%rcx

%rbx

%rsi

%rdi

%rsp 0x104

17

...

return var;

...

...

movq -12(%rsp),%rax

...

valid bit

tag identifies which data
is in this cache block

What about writes?

• Multiple copies of data exist:
• L1, L2, Main Memory, Disk

• Don’t want them to get (or at least not to stay) out of sync!

• Otherwise, who do you believe?

• Multiple configuration options that a cache could have

18

Write configurations

• What to do on a write-hit?
• Write-through (write immediately to memory)
• Write-back (delay write until we evict this cache block)

• Need a dirty bit (indicate if line differs from memory)
• We had an example of that last time

• What to do on a write-miss?
• Write-allocate (load into cache, update line in cache)

• Good if more writes to the location follow
• No-write-allocate (writes immediately to memory, doesn’t bring into cache)

• Typical
• Write-back + Write-allocate ← by far the most common
• Write-through + No-write-allocate

19

Break + Question

• 64-bit, byte-addressed system

• 32 kB cache
• 512 sets and 64-byte blocks

• How many bits for Tag?

• A: 6 bits

• B: 9 bits

• C: 17 bits

• D: 49 bits

20

t bits s bits b bits

Address of word:

tag set
index

block
offset

s bits

Break + Question

• 64-bit, byte-addressed system

• 32 kB cache
• 512 sets and 64-byte blocks

• How many bits for Tag? (6 bits for block, 9 bits for set)

• A: 6 bits

• B: 9 bits

• C: 17 bits

• D: 49 bits (Tag is remaining bits. 64 - 6 - 9 = 49)

21

t bits s bits b bits

Address of word:

tag set
index

block
offset

s bits

22

• Cache Organization

• Associativity

• Cache Performance

Outline

Cache memory associativity

• When designing a cache, a number of parameters to choose
• Total size (C), cache line size (B), number of sets (K), …

• The most interesting one: associativity (A)
• i.e., how many cache lines per set

• Has a significant impact on effectiveness (and complexity!)

23

Associativity choices

• Associativity 1 → direct-mapped caches
• One cache line per set, blocks can only go in that one line

• Whenever we place data in a set, must evict whatever is there

• Associativity >1 → set-associative caches
• Can keep multiple blocks that would map to the same set

• Single set → fully-associative caches
• Any block can go anywhere, 1 big set, tag is all that matters

• Very rare for cache memories due to expensive hardware

24

Direct-mapped cache (associativity = 1)

K = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

find set

25

Direct-mapped cache (associativity = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

7 6 5 0tagv 4 123

tag match? if yes → hitvalid? +

block offset

tag

26

Address of int:

Direct-mapped cache (associativity = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

7 6 5 0tagv 4 123

tag match? if yes → hitvalid? +

int is here (4 bytes)

block offset

27

Address of int:

Direct-mapped cache (associativity = 1)

K = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

7 6 5 0tagv 4 123

find set

If tag doesn’t match or valid bit is not set: cache miss!
→ old line is evicted and replaced with currently requested one

XX tag1 7 6 5 04 123

28

Address of int:

Direct-mapped cache simulation

7 [0 11 12]

8 [1 00 02]

0 [0 00 02]

1 [0 00 12]

x
t=1 s=2 b=1

xx x

blockv tag

0 [0 00 02]

1 0 m[1] m[0]1 0 m[1] m[0]

1 0 m[7] m[6]

1 1 m[9] m[8]1 0 m[1] m[0]

1 0 m[7] m[6]
miss

hit

miss

miss

miss

M=16 addresses,
byte-addressable

B=2 bytes/block
K=4 sets
A=1 blocks/set

Address trace
(reads, one byte per read):

set 002

set 012

set 102

set 112

1 1 m[9] m[8]0
0
0
0

???

29

What are the types of each miss here?

7 [0 11 12]

8 [1 00 02]

0 [0 00 02]

1 [0 00 12]

x
t=1 s=2 b=1

xx x

Conflict misses:
There is “room” in the cache,
but two blocks map to the same set;
one evicts the other!

blockv tag

0 [0 00 02] miss

hit

miss

miss

miss

M=16 addresses,
byte-addressable

B=2 bytes/block
K=4 sets
A=1 blocks/set

Address trace
(reads, one byte per read):

set 002

set 012

set 102

set 112

0
0

30

Compulsory
Miss

Compulsory
Miss

Compulsory
Miss

Conflict
Miss

1 0 m[7] m[6]

Options:
• Compulsory
• Capacity
• Conflict

1 0 m[1] m[0]

Pause for questions on direct-mapped caches

31

Associativity choices

• Associativity 1 → direct-mapped caches
• One cache block per set, blocks can only go in that one block

• Whenever we place data in a set, must evict whatever is there

• Associativity >1 → set-associative caches
• Can keep multiple cache blocks that would map to the same set

• Single set → fully-associative caches
• Any cache block can go anywhere, 1 big set, tag is all that matters

• Very rare for cache memories due to expensive hardware

32

2-way set-associative cache (associativity = 2)

A = 2: Two lines per set
Assume: block size 8 bytes

t bits 0…01 100

Address of short int:

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

find set

33

2-way set-associative cache (associativity = 2)

A = 2: Two lines per set
Assume: block size 8 bytes

t bits 0…01 100

Address of short int:

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

compare both

valid? + tag match? if yes → hit

block offset

tag

The data we want is either on the left, or on the right, or not in the cache at all.
It can’t be anywhere else! Addresses map to a single set!

34

2-way set-associative cache (associativity = 2)

A = 2: Two lines per set
Assume: block size 8 bytes

t bits 0…01 100

Address of short int:

7 6 5 0tagv 4 123 7 6 5 0tagv 4 123

compare both

valid? + tag match? if yes = hit

block offset

short int is here (2 bytes)

If no match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

• More clever → lower miss rate, but harder to implement in hardware

35

2-way set-associative cache simulation

Address trace (reads, one byte per read):
0 [00 0 02]
1 [00 0 12]
7 [01 1 12]
8 [10 0 02]
0 [00 0 02]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[1-0]

hit
miss

1 01 M[7-6]

miss

1 10 M[9-8]

hit

Set 0 Set 1

The same address sequence in the
direct mapped cache resulted in:
miss
hit
miss
miss
miss

M=16 addresses, byte-addressable,
B=2 bytes/block, K=2 sets, A=2 blocks/set

Higher associativity =
Less likely to have to evict!

Temporal locality: want data
in cache to stay in cache!

v Tag Block

Same total size and block size as before.
Associativity (and thus # of sets) changed.

36

Pause for questions on set-associative caches

37

Fully-associative caches

• What changes with fully-associative caches?
• Anything can go anywhere

• Only one set (s = 0 bits)

• Otherwise, same steps as for a set-associative cache
• Compare tag against all blocks in the set

38

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400

• 0x0410

• 0xC002

• 0xC048

39

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

40

??
t=?? s=0 b=??

??

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

41

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400⇨0b0000 0100 0000 0000

• 0x0410⇨0b0000 0100 0001 0000

• 0xC002⇨0b1100 0000 0000 0010

• 0xC048⇨0b1100 0000 0100 1000

42

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400⇨0b0000 0100 0000 0000 → Tag 0x010 HIT

• 0x0410⇨0b0000 0100 0001 0000 → Tag 0x010 (same block!) HIT

• 0xC002⇨0b1100 0000 0000 0010

• 0xC048⇨0b1100 0000 0100 1000

43

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Break + Question

• Fully-associative cache on a 16-bit system
• One set (fully associative!)

• Eight, 64-byte blocks

• Are the following addresses in the cache?
• 0x0400⇨0b0000 0100 0000 0000 → Tag 0x010 HIT

• 0x0410⇨0b0000 0100 0001 0000 → Tag 0x010 (same block!) HIT

• 0xC002⇨0b1100 0000 0000 0010 → Tag 0x300 HIT

• 0xC048⇨0b1100 0000 0100 1000 → Tag 0x301 (different block!) MISS

44

Tag: 0x010 Tag: 0x011Tag: 0x000 Tag: 0x1FF Tag: 0x052 Tag: 0x300Tag: 0x050 Tag: 0x051

xxxxxxxxxx
t=10 s=0 b=6

xxxxxx

Associativity Pros and Cons

• Direct-mapped
• Simplest to implement: look-up compares tag with 1 cache line

→ requires fewer transistors, which can be used elsewhere on the chip
• Conflicts can easily lead to thrashing

• Two cache lines map to the same set, program needs both, and they keep kicking
each other out of the cache. Lots of misses. Bad times.

• Set-associative
• More complex implementation: requires more (HW) tag comparators
• Lower miss rate than direct-mapped caches (fewer conflict misses)

• 2-way is a significant improvement over direct-mapped
• 4-way is a more modest improvement over 2-way, and so on

• Fully-associative
• One comparator per cache line in the cache means a LOT of hardware. Ouch.

• Often a deal-breaker for hardware
• Very low miss rate!

45

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

Keep separate caches for instructions and
data. Don’t want them to step on each
other’s toes!

L2 unified cache:
256 KB, 8-way,

Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Last resort before going to main memory
(slow!) So want this large and highly-
associative, to have very few misses.

Block size: 64 bytes for all caches.

46

47

• Cache Organization

• Associativity

• Cache Performance

Outline

Cache Performance Metrics

• Miss Rate
• Fraction of memory references not found in cache (misses / accesses) = 1 – hit rate
• Typical numbers (in percentages):

• 3-10% for L1
• Can be quite small (e.g., < 1%) for L2, depending on dataset size, etc.
• However, many applications have >30% miss rate in L2 cache

• Hit Time
• Time to deliver a line in the cache to the processor

• Includes time to determine whether the line is in the cache
• Typical numbers:

• 1-2 clock cycles for L1
• 5-20 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss
• Typically 50-200 cycles for main memory

• Not really a “penalty”, just how long it takes to read from memory

48

Let’s think about those numbers

• Huge difference between a hit and a miss
• Could be 100x, if comparing L1 and main memory

• Would you believe a 99% hit rate is twice as good as 97%?
• Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

• Average access time:

97% hits: 100 instructions: 100 cycles (1 per instruction) + 3*100 (misses)

on average: 1 cycle/instr. + 0.03 * 100 cycles/instr. = 4 cycles/instr.

99% hits: on average: 1 cycle/instr. + 0.01 * 100 cycles/instr. = 2 cycles/instr.

• This is why “miss rate” is used instead of “hit rate”
• In our example, 1% miss rate vs. 3% miss rate

• Makes the radical performance difference more obvious

• “Computation is what happens between cache misses.”

49

Average Memory Access Time (AMAT)

• AMAT = Hit time + Miss rate × Miss penalty
• Generalization of previous formula

• Can extend for multiple layers of caching
• AMAT = Hit Time L1 + Miss Rate L1 × Miss Penalty L1

• Miss Penalty L1 = Hit Time L2 + Miss Rate L2 × Miss Penalty L2

• Miss Penalty L2 = Hit Time Main Memory

• Multi-level caching helps minimize AMAT

50

51

• Cache Organization

• Associativity

• Cache Performance

Outline

	Default Section
	Slide 1: Lecture 12 Cache Memories

	Goals
	Slide 2: Announcements
	Slide 3: Today’s Goals
	Slide 4: Caching speeds up code
	Slide 5: Locality example
	Slide 6: Locality example

	Cache Organization
	Slide 7: Outline
	Slide 8: Cache memories
	Slide 9: How You Probably Thought a Memory Access Worked
	Slide 10: How a Memory Access Actually Works
	Slide 11: General Cache Organization (S, A, B)
	Slide 12: Cache Access
	Slide 13: Cache Read (1): Locate Set
	Slide 14: Cache Read (2): Tag Match + Valid
	Slide 15: Cache Read (3): Block Offset
	Slide 16: Example: 128 sets, 64 bytes per block
	Slide 17: Cache access overview
	Slide 18: What about writes?
	Slide 19: Write configurations
	Slide 20: Break + Question
	Slide 21: Break + Question

	Associativity
	Slide 22: Outline
	Slide 23: Cache memory associativity
	Slide 24: Associativity choices
	Slide 25: Direct-mapped cache (associativity = 1)
	Slide 26: Direct-mapped cache (associativity = 1)
	Slide 27: Direct-mapped cache (associativity = 1)
	Slide 28: Direct-mapped cache (associativity = 1)
	Slide 29: Direct-mapped cache simulation
	Slide 30: What are the types of each miss here?
	Slide 31: Pause for questions on direct-mapped caches
	Slide 32: Associativity choices
	Slide 33: 2-way set-associative cache (associativity = 2)
	Slide 34: 2-way set-associative cache (associativity = 2)
	Slide 35: 2-way set-associative cache (associativity = 2)
	Slide 36: 2-way set-associative cache simulation
	Slide 37: Pause for questions on set-associative caches
	Slide 38: Fully-associative caches
	Slide 39: Break + Question
	Slide 40: Break + Question
	Slide 41: Break + Question
	Slide 42: Break + Question
	Slide 43: Break + Question
	Slide 44: Break + Question
	Slide 45: Associativity Pros and Cons
	Slide 46: Intel Core i7 Cache Hierarchy

	Cache Performance
	Slide 47: Outline
	Slide 48: Cache Performance Metrics
	Slide 49: Let’s think about those numbers
	Slide 50: Average Memory Access Time (AMAT)

	Wrapup
	Slide 51: Outline

