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Administrivia

• Business as usual
• Homework 3 due Wednesday

• Attack Lab due next week Wednesday

• Topics remaining in class
• Memory System (Hierarchy, Caches, Virtual Memory)

• Applications (Concurrency, Processes, Virtual Memory)

• Other Systems Topics (Compilers, Networks)
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Changing the focus of CS213

• So far in class we’ve focused on how computers do things
• Represent data
• Run instructions

• Now we’re focusing on how to improve those things
• Secure (last lecture plus some stuff in two weeks)
• Efficient (today and next week)

• As we’ll show today, the most important thing to speed up is 
memory
• It is possible and hardware does so already
• Software can be designed to take advantage of this
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Today’s Goals

• Explore the memory systems available in modern computers
• Understand capabilities and limitations of each

• Discuss the memory hierarchy
• How it improves performance through caching

• Describe software patterns that caching is designed to support

• Bonus: assembly-to-transistors deep-dive
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Storage in a Computer System

• Data can be stored in different places
• Registers, caches, memory, disk, etc.

• Hugely different characteristics
• Storage size

• x86-64: 16 registers. 128 B total (not including FP registers, etc.)
• Memory is measured in GB, disks in TB

• Latency (i.e., time to access data)
• Registers are really fast, memory less so, disk is incredibly slow

• Cost per byte
• Registers are really expensive, disks are really cheap, memory somewhere in 

the middle

• Each serves a different purpose in a system
• Can design systems to get the best of all worlds (in most cases)
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Tour of computer memory
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Tour of computer memory
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Register storage

• x86-64
• 16 registers (general-purpose) with 8 bytes each

• 32 registers (special-purpose) with up to 64 bytes each

• Plus some other odds and ends (%rip, flags, segments, etc.)

• 128 bytes for general purpose registers

• Order 2-3 kB for everything

• Accesses are very fast. Within a single processor cycle
• Usually, 0.25-4 cycles per instruction
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Register technology: SRAM

• Static RAM (SRAM)
• Each cell stores a bit in a bi-stable circuit,

typically a six-transistor circuit

• Static – no need for periodic refreshing;
keeps data while powered

• Relatively insensitive to disturbances such as electrical noise

• Energetic particles (alpha particles, cosmic rays) can flip stored bits

• Fastest memory on computer
• Also most expensive and takes up most space per bit

• Typically used for registers and cache memories
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Caches

• Memory in the processor that duplicates portions of RAM
• Goal: speed up accesses to frequently used data

• Complicated part: what’s in the cache at any given moment

• Many configurations to try to improve the “hit rate” on data

• Not general-purpose memory
• Can’t be directly accessed and doesn’t have memory addresses

• Hardware automatically chooses what’s in the cache

• Cache sizes
• Kilobytes to Megabytes of storage: ~1-10 MB total in modern processors
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Tour of computer memory
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Main memory

• The “RAM” in your computer
• Random Access Memory
• Can access any byte you want in 

“random” order

• Typically measured in GB
• 1-128 GB
• Some special purpose systems 

may have MUCH less

• This is the “array of bytes” we’ve 
been using in assembly
• Program memory lives in RAM
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Main memory technology: DRAM

• Dynamic RAM (DRAM)
• Each cell stores a bit as a charge in a capacitor

• Capacitors lose charge; each cell must be refreshed every 10-100 ms

• More sensitive to disturbances (EMI, radiation, …) than SRAM

• Slower than SRAM, but cheaper and denser
• ~100x slower than registers

• Typically used for main memory
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Accessing DRAM

• Read entire row of data at a time
• Large in practice, kilobytes

• Select actual bytes that are wanted
• Possibly modifying those bits

• Write row back to memory
• Must always happen!

• Reading is destructive

15



Connecting main memory and the processor

• Data flows between main memory and processor over “buses”
• A collection of parallel wires that carry address, data, and control signals

• Typically shared by multiple devices

main

memory
I/O 

bridge
bus interface

ALU

register file

CPU chip

memory bus

Includes memory 
controller

movl A, %eax (load)
Processor writes address A to the bus
Memory writes data to the bus
Processor reads data from the bus

movl %eax, A (store)
Processor writes address A to the bus
Processor writes data to the bus
Memory reads data from the bus
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Sidebar: memory security is important

• Data in RAM disappears without power
• But the rate depends on temperature, minutes to decay if frozen

• Cold Boot Attack: freeze RAM to remove from computer and steal contents
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Tour of computer memory
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Disk storage

• Workhorse storage devices

• Terabytes in size in modern 
computers

• Milliseconds to read

• 100,000x longer than reading from 
RAM

• 10,000,000x longer than reading 
from registers

• Used for filesystem storage
• Running programs do not

directly use disk except
when interacting with files

IBM 350 Disk Storage Unit
First disk drive, 1956

WD Red 6TB NAS, 2015

101.6mm

146.99mm

Storage? 
5MB!

Basic mechanisms the same!
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Disk types
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Hard disk drive operation
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Animation of Disk Access
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Writing bits to the platters
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Note: most disks can only move the entire set of arms, not two sets of them



Disk heads read/write data to the platters
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Accessing data on disk

• Three-step process
• Read head needs to move to the right cylinder: seek time

• Platter turns until start of sector under the read head: rotational latency

• Sector passes under read head and data is read: transfer time

• Time cost dominated by seek time and rotational latency
• Consequence: reading first bit of a sector is expensive

• But reading the rest of the sector is basically free!

• When using disks, best to favor large sequential reads/writes
• Terrible for random access! (reading a little bit here, a little bit there)

• Fits file access well (read/write in order)

• But overall still really slow compared to main memory or registers
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Disk types
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Solid State Drives (SSDs)

• Flash memory
• Just like Flash Drives

• Pages: 2KB to 512KB, Blocks: 32 to 128 pages

• Data read/written in units of pages

• Page can be written only after its block has been erased
• Need to copy rest of the data to not lose it. Expensive!

• A block wears out after repeated writes (10k – 100k writes) and can no longer be used

Flash 

translation layer

I/O bus

Page 0 Page 1 Page P-1…

Block 0

… Page 0 Page 1 Page P-1…

Block  B-1

Flash memory

Solid State Disk (SSD)

Requests to read and 
write logical disk blocks
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SSDs vs Rotating Disks

• Advantages 
• No moving parts → faster, less power, more rugged

• Disadvantages
• Have the potential to wear out 

• Mitigated by “wear leveling logic” in flash translation layer
• Order  petabyte (1015 bytes) of random writes before they wear out

• More expensive per byte (but getting cheaper)
• 2022: HDD $0.013 per GB, SSD $0.05 per GB (last year was $0.02 vs $0.09)

• Applications
• Portable electronics (phones, tablets, etc.)
• Began to appear in desktops and servers circa 2007
• Now common on laptops as well
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Biggest speed improvement 
to your computer:
• Get an SSD



Reading memory from disk

• Data from disk is 
always read into 
Main Memory

• Direct Memory 
Access (DMA)
• Processor starts a 

read and then 
returns to programs

• Disk performs the 
read, transfers data, 
then notifies 
processor when 
done
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Tour of computer memory
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Break + Question

• How do you make an SSD with a longer lifetime (more writes)?
• Without changing any of the physics of how it works
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Break + Question

• How do you make an SSD with a longer lifetime (more writes)?
• Without changing any of the physics of how it works

• Secretly make it larger than it claims to be

• e.g. 200 GB when it claims to be 100 GB

• Behind the scenes move around memory as necessary so the device can 
still hold 100 GB even if half of the flash is

• Maintain a mapping of which data is located where

33



34

• Memory Technologies

• Memory Hierarchy

• Caches

• Locality of Reference

Outline



Computing timescales

• Assuming 4 GHz processor, Instruction (with registers):                      0.25 ns
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Jeff Dean
(Google AI):
“Numbers Everyone 
Should Know”

Reminder:
1,000,000,000 ns per second



Jim Gray’s storage latency analogy

• How “far” is data for the CPU, converted to human scale

Storage Distance Time

Registers

On-chip cache

On-board cache

Main memory

Disk

Tape

In my apartment

Across the street

A few blocks away

In Milwaukee

On Mars

On Kepler-76b

~1 minute

2-4 minutes

10 minutes

1.5 hours

2 years

2000 years
(at speed of light)

Jim Gray
Turing Award 1998
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The CPU-Memory gap
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The CPU-Memory Gap

• CPUs outspeed memory
• But they can’t compute on data they don’t have!

• If the CPU has to wait for data to reach it, it just sits idle!

• All these GHz don’t look so useful anymore, do they?

• Challenge: get data to the CPU despite “slow” memory
• So the CPU can work at full speed, without waiting for data

• Two-pronged strategy
• Memory hierarchy: keep data we need closer to the CPU

• Locality of reference: predict which data we’re likely to need
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Memory hierarchy

• Some fundamental and enduring properties of systems
• The faster the storage, the more expensive ($) it is
• The faster the storage, the smaller (capacity) it is 
• The gap between processor and main memory speed is widening

• Key idea: keep the data you need the most in fast memory!
• Data you only need from time to time can be in slow memory, no big deal
• Most used data goes in registers
• Least used data goes to disk

• Analogy: kitchen ingredients I use
• Salt, all the time: it sits out on the counter
• Oregano, frequently: front of the cabinet
• Onion powder, occasionally: back of the cabinet
• Brown sugar, sometimes: somewhere in the pantry
• Saffron, never: I can go buy some if I do need it
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Memory hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 

and 
cheaper 

(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold 
files retrieved from 
disks on remote 
network servers.

Main memory holds disk 
blocks retrieved from local 
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache memory.

CPU registers hold words 
retrieved from L1 cache.

L2 cache holds cache lines 
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 

costlier
(per byte)
storage 
devices
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Caching, general principle

• Cache: A smaller, faster storage device that acts as a staging area for a 
subset of the data in a larger, slower device
• Data lives in both places (typically)

• When the consumer (e.g., CPU) reads the data, it gets it from the smaller, faster storage

• If the data we want is not in the cache, we pay the full cost of bringing it over from the 
larger, slower storage into the smaller, faster storage

• The hope: we don’t need to do it too often

• Fundamental idea in systems. Shows up all over!
• Memory hierarchies

• Content delivery networks (CDNs) on the Internet (Akamai, Cloudflare, etc.)
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Caching in a memory hierarchy

• Fundamental idea of a memory hierarchy
• For each k, the faster, smaller device at level k serves as a cache for the 

larger, slower device at level k+1

• L2 cache memory as a cache for main memory

• Main memory as a cache for disk, etc.

• Each level stores some of the most frequently accessed data

• The closer the cache is to the processor, the “hotter” the cached data
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Memory hierarchies make memory fast and large

• Why do memory hierarchies work?
• Programs tend to access the data at level k more often than they access 

the data at level k+1

• Thus, the storage at level k+1 can be slower, and thus larger and cheaper 
per bit

• Net effect: 
• A large pool of memory that costs as little as the cheap storage near the 

bottom, but that serves data to programs at the rate of the fast storage 
near the top

• Best of both worlds!
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Caching in a memory hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer 
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a 
subset of the blocks from level k+1

Level k:

Level k+1:

Blocks cannot be stored in an arbitrary location!
They can only live at one of a fixed set of locations.
In this example: they must be in the same 
“column” for both levels.
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Request
14

General caching concepts

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level 
k+1:

1414

14

4*
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• Program needs object d, which is stored in some 
block b

• Cache hit

• Program finds b in the cache at level k
e.g.,  block 14



12 Request
12

General caching concepts

• Program needs object d, which is stored in some 
block b

• Cache hit

• Program finds b in the cache at level k
e.g.,  block 14

• Cache miss

• b is not at level k, so the level k cache must 
fetch it from level k+1, 
e.g.,  block 12

• If the level-k cache is full, then some current 
block must be replaced (evicted). Which one is 
the “victim”? 

• Here, we pick 4; same column as 12

• 4 is “dirty”, need to write back to k+1

• More on this next lecture

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level 
k+1:

14

12

4*

Request
12

4*4*12
12

“ * ” means the block is dirty
(i.e., it has been modified)
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Cache Misses Taxonomy

• Cold (compulsory) miss
• Cold misses occur when a block is accessed for the first time

• No one ever accessed it, so there wasn’t any reason to bring it into cache

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger than the cache

• There’s no way the working set can all fit in the cache, so there will be misses

• Conflict miss
• In most caches, blocks cannot be stored in any available slot

• If two blocks need to go in the same slot, need to evict the old one to store the new!

• If after that, we need to access the old block, conflict miss!

• We had a conflict, evicted a block, and now we miss trying to access that block

• Note: can happen even when there is “room” elsewhere in the cache!
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Break + Video

• How do you remember which cache miss is which?
• Mr. Bean can help you tell the difference! (video)
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Locality

• Goal: predict which data the CPU will want to access
• So we can bring it to (and keep it in!) fast memory
• Problem: memory is huge! (billions of bytes) how do you decide which to save?

• Principle of Locality
• Programs tend to reuse/use data items recently used or nearby those recently 

used

• Temporal locality
• Recently referenced items are likely to be referenced in the near future

• Spatial locality
• Items with nearby addresses tend to be referenced close together in time
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Types of locality practice

• Temporal locality
• Recently referenced items are likely to be referenced in the near future

• Spatial locality
• Items with nearby addresses tend to be referenced close together in time

• Quiz: what kind of locality?
• Data

• Reference array elements in succession:

• Reference sum each iteration:

• Instructions

• Execute instructions in sequence:

• Cycle through loop repeatedly:
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sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality



Locality example

• Can get a sense for whether a function has good locality just by looking at its 
memory access patterns

• Does this function have good locality?

• Yes!
• Array is accessed in same row-major order in which it is stored in memory
• a through a+3 , a+4 through a+7, a+8 through a+11, etc.

int sumarrayrows(int a[M][N]){

int sum = 0;

for (int i = 0; i < M; i++) {

for (int j = 0; j < N; j++) {

sum += a[i][j];

}

}

return sum;

}

Temporal or spatial locality?
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Spatial: accesses to array
Temporal: accesses to sum



Locality example

• Does this function have good locality?

• No!
• Scans array column-wise instead of row-wise
• a through a+3, then a+4*N through a+4*N+3, etc.
• Holy jumping around memory Batman!

• More on that in a couple of lectures

int sumarraycols(int a[M][N]){

int sum = 0;

for (int j = 0; j < N; j++) {

for (int i = 0; i < M; i++) {

sum += a[i][j];

}

}

return sum;

}

54



Locality to the Rescue!

• How can we exploit locality to bridge the CPU-memory gap?
• Use it to determine which data to put in a cache!

• Spatial locality
• When level k needs a byte from level k+1, don’t just bring one byte
• Bring neighboring bytes as well!
• Good chances we’ll need them too in the near future

• Temporal locality
• When you bring something into the cache, try to keep it there
• Good chances we’ll need it again in the near future

• Result: most accesses should be cache hits!
• Memory system: size of largest memory, with speed close to that of fastest memory

• We’ll see how that works in detail next time
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Assembly into machine code
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• Machine code are the 
numerical versions of 
each instruction

• Number breaks down 
into parts
• Operation
• Source
• Destination

• Immediates are stored 
in the instruction 
encoding



Machine code ideas

• Example:
• ADD $0x4351FF23, %rax

• ADD with destination %rax translates into 0x05
• Immediate is appended on to that

• Machine code: 0x0523FF5143

• Number of bytes for each instruction is variable
• 1-15 bytes depending on instruction and operands

• Translation in complicated
• We’re not going to do it by hand, although Attack Lab touches it a bit
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Representing instructions as numbers

• Why represent instructions as numbers?

1. Everything in memory is “just a number”
• And instructions go in memory

2. Hardware can “decode” number to figure out what to do
• Break number apart into bits (just like floating point)

• Some bits pick operation

• Some bits pick register or specify immediate
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Computer Processor (in five easy steps)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)
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These steps are relatively easy (we’ll skip them)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)
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This is extremely complicated for x86-64 (skip it too)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)
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We can talk about what execution means though!

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)
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Arithmetic Logic Unit (ALU)

• Piece of hardware

• Takes in two operands
• Source and Destination values

• Takes in an Opcode
• Which operation to run

• Performs operation and 
outputs result
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What can an ALU do?

• All the basic arithmetic operations
• Add
• Subtract
• Bitwise And
• Bitwise Or
• Bitwise Xor
• Arithmetic Shift Right
• Logical Shift Right
• Logical Shift Left

• Complex operations are separate hardware
• Multiply, Divide, Anything floating point

65



Let’s zoom in
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Inside an ALU

• Input values go into 
separate hardware blocks 
for each operation

• Every operation occurs in 
parallel, simultaneously
• We are in hardware so this 

doesn’t take any additional 
time
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ALU Inputs



Inside an ALU – selecting the correct output
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Selector
ALU Output

ALU Inputs

Opcode

Selects ALU 
output based 
on Opcode



Let’s zoom in
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How is an ALU made?

• All of those arithmetic operations can be broken down into a series 
of 1-bit Boolean operations
• Add is XOR for result + AND for carry
• Subtract is Flip bits (NOT), Add one (XOR + AND), then Add (XOR + AND)

• And/Or/Xor are just their respective operations
• Shifts are just move the bits around (simple in hardware, just move wires)
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32-bit OR operation

• Perform OR operation on each individual bit
• Pictured is a series of 1-bit OR gates
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32-bit ADD operation

• Below is the 1-bit version with carry-in/out
• Two 1-bit AND, two 1-bit XOR, one 1-bit OR

• Repeat 32 times, connecting carries together
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Let’s zoom in
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Logic gates can be created with transistors

• CMOS implementation of logic gates
• Complementary Metal-Oxide Semiconductor

74

Transistors are just 
on/off switches



Let’s zoom in
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Transistors are made out of silicon and other materials

• Turning gate on/off causes 
source and drain to connect or 
disconnect
• Acts as a switch

• We can make very small 
transistors
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That’s the bottom
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Zooming out again

• Transistors make logic gates
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1-bit AND gate

F

~6 transistors



Zooming out again

• Logic gates make operations
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1-bit AND gate
1-bit ADD operation

~30 transistors



Zooming out again

• 1-bit operations make 32-bit operations
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1-bit ADD operation

~1000 transistors



Zooming out again

• Operations make an ALU
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Selector

ALU Output

ALU Inputs

Opcode

~20K transistors



ALU allows us to execute operations

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)
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All the way back to software

• Machine code specifies 
what should be 
executed

• Assembly translates 
into machine code

• C compiles into 
assembly
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A processor is just a lot of transistors connected very carefully

• ALU plus other operations make up a Core
• Decode logic, floating point, registers, etc.

• Multiple cores plus caches make up a Processor
• And other stuff these days like graphics
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