
Lecture 11
Memory Hierarchy

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Business as usual
• Homework 3 due Wednesday

• Attack Lab due next week Wednesday

• Topics remaining in class
• Memory System (Hierarchy, Caches, Virtual Memory)

• Applications (Concurrency, Processes, Virtual Memory)

• Other Systems Topics (Compilers, Networks)

2

Changing the focus of CS213

• So far in class we’ve focused on how computers do things
• Represent data
• Run instructions

• Now we’re focusing on how to improve those things
• Secure (last lecture plus some stuff in two weeks)
• Efficient (today and next week)

• As we’ll show today, the most important thing to speed up is
memory
• It is possible and hardware does so already
• Software can be designed to take advantage of this

3

Today’s Goals

• Explore the memory systems available in modern computers
• Understand capabilities and limitations of each

• Discuss the memory hierarchy
• How it improves performance through caching

• Describe software patterns that caching is designed to support

• Bonus: assembly-to-transistors deep-dive

4

5

• Memory Technologies

• Memory Hierarchy

• Caches

• Locality of Reference

Outline

Storage in a Computer System

• Data can be stored in different places
• Registers, caches, memory, disk, etc.

• Hugely different characteristics
• Storage size

• x86-64: 16 registers. 128 B total (not including FP registers, etc.)
• Memory is measured in GB, disks in TB

• Latency (i.e., time to access data)
• Registers are really fast, memory less so, disk is incredibly slow

• Cost per byte
• Registers are really expensive, disks are really cheap, memory somewhere in

the middle

• Each serves a different purpose in a system
• Can design systems to get the best of all worlds (in most cases)

6

Tour of computer memory

7

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Tour of computer memory

8

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Registers and Caches

Register storage

• x86-64
• 16 registers (general-purpose) with 8 bytes each

• 32 registers (special-purpose) with up to 64 bytes each

• Plus some other odds and ends (%rip, flags, segments, etc.)

• 128 bytes for general purpose registers

• Order 2-3 kB for everything

• Accesses are very fast. Within a single processor cycle
• Usually, 0.25-4 cycles per instruction

9

Register technology: SRAM

• Static RAM (SRAM)
• Each cell stores a bit in a bi-stable circuit,

typically a six-transistor circuit

• Static – no need for periodic refreshing;
keeps data while powered

• Relatively insensitive to disturbances such as electrical noise

• Energetic particles (alpha particles, cosmic rays) can flip stored bits

• Fastest memory on computer
• Also most expensive and takes up most space per bit

• Typically used for registers and cache memories

10

Caches

• Memory in the processor that duplicates portions of RAM
• Goal: speed up accesses to frequently used data

• Complicated part: what’s in the cache at any given moment

• Many configurations to try to improve the “hit rate” on data

• Not general-purpose memory
• Can’t be directly accessed and doesn’t have memory addresses

• Hardware automatically chooses what’s in the cache

• Cache sizes
• Kilobytes to Megabytes of storage: ~1-10 MB total in modern processors

11

Tour of computer memory

12

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

RAM

Main memory

• The “RAM” in your computer
• Random Access Memory
• Can access any byte you want in

“random” order

• Typically measured in GB
• 1-128 GB
• Some special purpose systems

may have MUCH less

• This is the “array of bytes” we’ve
been using in assembly
• Program memory lives in RAM

13

Main memory technology: DRAM

• Dynamic RAM (DRAM)
• Each cell stores a bit as a charge in a capacitor

• Capacitors lose charge; each cell must be refreshed every 10-100 ms

• More sensitive to disturbances (EMI, radiation, …) than SRAM

• Slower than SRAM, but cheaper and denser
• ~100x slower than registers

• Typically used for main memory

14

Accessing DRAM

• Read entire row of data at a time
• Large in practice, kilobytes

• Select actual bytes that are wanted
• Possibly modifying those bits

• Write row back to memory
• Must always happen!

• Reading is destructive

15

Connecting main memory and the processor

• Data flows between main memory and processor over “buses”
• A collection of parallel wires that carry address, data, and control signals

• Typically shared by multiple devices

main

memory
I/O

bridge
bus interface

ALU

register file

CPU chip

memory bus

Includes memory
controller

movl A, %eax (load)
Processor writes address A to the bus
Memory writes data to the bus
Processor reads data from the bus

movl %eax, A (store)
Processor writes address A to the bus
Processor writes data to the bus
Memory reads data from the bus

16

system bus

Sidebar: memory security is important

• Data in RAM disappears without power
• But the rate depends on temperature, minutes to decay if frozen

• Cold Boot Attack: freeze RAM to remove from computer and steal contents

17

Tour of computer memory

18

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Disk:
Hard drive or SSD

Disk storage

• Workhorse storage devices

• Terabytes in size in modern
computers

• Milliseconds to read

• 100,000x longer than reading from
RAM

• 10,000,000x longer than reading
from registers

• Used for filesystem storage
• Running programs do not

directly use disk except
when interacting with files

IBM 350 Disk Storage Unit
First disk drive, 1956

WD Red 6TB NAS, 2015

101.6mm

146.99mm

Storage?
5MB!

Basic mechanisms the same!

19

Disk types

20

Hard disk drive operation

21

The disk surface

spins at a fixed

rotational rate

(5400-15000 RPM)

spindle

By moving radially, the arm

can position the read/write

head over any track.

The read/write head

is attached to the end

of the arm and flies over

the disk surface on

a thin cushion of air.

s
p

in
d

le

spindle

s
p

in
d

le

spindle

arm

read/write heads

move in unison

from cylinder to cylinder

spindle

Animation of Disk Access

22

Writing bits to the platters

23
Note: most disks can only move the entire set of arms, not two sets of them

Disk heads read/write data to the platters

24

Accessing data on disk

• Three-step process
• Read head needs to move to the right cylinder: seek time

• Platter turns until start of sector under the read head: rotational latency

• Sector passes under read head and data is read: transfer time

• Time cost dominated by seek time and rotational latency
• Consequence: reading first bit of a sector is expensive

• But reading the rest of the sector is basically free!

• When using disks, best to favor large sequential reads/writes
• Terrible for random access! (reading a little bit here, a little bit there)

• Fits file access well (read/write in order)

• But overall still really slow compared to main memory or registers

25

Disk types

26

Solid State Drives (SSDs)

• Flash memory
• Just like Flash Drives

• Pages: 2KB to 512KB, Blocks: 32 to 128 pages

• Data read/written in units of pages

• Page can be written only after its block has been erased
• Need to copy rest of the data to not lose it. Expensive!

• A block wears out after repeated writes (10k – 100k writes) and can no longer be used

Flash

translation layer

I/O bus

Page 0 Page 1 Page P-1…

Block 0

… Page 0 Page 1 Page P-1…

Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

28

SSDs vs Rotating Disks

• Advantages
• No moving parts → faster, less power, more rugged

• Disadvantages
• Have the potential to wear out

• Mitigated by “wear leveling logic” in flash translation layer
• Order petabyte (1015 bytes) of random writes before they wear out

• More expensive per byte (but getting cheaper)
• 2022: HDD $0.013 per GB, SSD $0.05 per GB (last year was $0.02 vs $0.09)

• Applications
• Portable electronics (phones, tablets, etc.)
• Began to appear in desktops and servers circa 2007
• Now common on laptops as well

29

Biggest speed improvement
to your computer:
• Get an SSD

Reading memory from disk

• Data from disk is
always read into
Main Memory

• Direct Memory
Access (DMA)
• Processor starts a

read and then
returns to programs

• Disk performs the
read, transfers data,
then notifies
processor when
done

30

main

memory

ALU

register file

CPU chip

disk

controller

graphics

adapter

USB

controller

mouse keyboard monitor

disk

I/O bus

bus interface

Tour of computer memory

31

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Break + Question

• How do you make an SSD with a longer lifetime (more writes)?
• Without changing any of the physics of how it works

32

Break + Question

• How do you make an SSD with a longer lifetime (more writes)?
• Without changing any of the physics of how it works

• Secretly make it larger than it claims to be

• e.g. 200 GB when it claims to be 100 GB

• Behind the scenes move around memory as necessary so the device can
still hold 100 GB even if half of the flash is

• Maintain a mapping of which data is located where

33

34

• Memory Technologies

• Memory Hierarchy

• Caches

• Locality of Reference

Outline

Computing timescales

• Assuming 4 GHz processor, Instruction (with registers): 0.25 ns

35

Jeff Dean
(Google AI):
“Numbers Everyone
Should Know”

Reminder:
1,000,000,000 ns per second

Jim Gray’s storage latency analogy

• How “far” is data for the CPU, converted to human scale

Storage Distance Time

Registers

On-chip cache

On-board cache

Main memory

Disk

Tape

In my apartment

Across the street

A few blocks away

In Milwaukee

On Mars

On Kepler-76b

~1 minute

2-4 minutes

10 minutes

1.5 hours

2 years

2000 years
(at speed of light)

Jim Gray
Turing Award 1998

36

The CPU-Memory gap

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1,000,000.00

10,000,000.00

100,000,000.00

1980 1985 1990 1995 2000 2003 2005 2010 2015 2020

La
te

nc
y

(n
s)

Disk seek time Flash SSD access time DRAM access time

SRAM access time CPU cycle time Effective CPU cycle time

Increasing gap between
DRAM, disk, and CPU speeds.

SRAM roughly
keeping up

DRAM, disk and CPU
performance gap widening

Split reflects the
introduction of multicores

Disk

DRAM

CPU

SSD

SRAM

37

The CPU-Memory Gap

• CPUs outspeed memory
• But they can’t compute on data they don’t have!

• If the CPU has to wait for data to reach it, it just sits idle!

• All these GHz don’t look so useful anymore, do they?

• Challenge: get data to the CPU despite “slow” memory
• So the CPU can work at full speed, without waiting for data

• Two-pronged strategy
• Memory hierarchy: keep data we need closer to the CPU

• Locality of reference: predict which data we’re likely to need

38

Memory hierarchy

• Some fundamental and enduring properties of systems
• The faster the storage, the more expensive ($) it is
• The faster the storage, the smaller (capacity) it is
• The gap between processor and main memory speed is widening

• Key idea: keep the data you need the most in fast memory!
• Data you only need from time to time can be in slow memory, no big deal
• Most used data goes in registers
• Least used data goes to disk

• Analogy: kitchen ingredients I use
• Salt, all the time: it sits out on the counter
• Oregano, frequently: front of the cabinet
• Onion powder, occasionally: back of the cabinet
• Brown sugar, sometimes: somewhere in the pantry
• Saffron, never: I can go buy some if I do need it

39

Memory hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper

(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold
files retrieved from
disks on remote
network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words
retrieved from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

40

41

• Memory Technologies

• Memory Hierarchy

• Caches

• Locality of Reference

Outline

Caching, general principle

• Cache: A smaller, faster storage device that acts as a staging area for a
subset of the data in a larger, slower device
• Data lives in both places (typically)

• When the consumer (e.g., CPU) reads the data, it gets it from the smaller, faster storage

• If the data we want is not in the cache, we pay the full cost of bringing it over from the
larger, slower storage into the smaller, faster storage

• The hope: we don’t need to do it too often

• Fundamental idea in systems. Shows up all over!
• Memory hierarchies

• Content delivery networks (CDNs) on the Internet (Akamai, Cloudflare, etc.)

42

Caching in a memory hierarchy

• Fundamental idea of a memory hierarchy
• For each k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1

• L2 cache memory as a cache for main memory

• Main memory as a cache for disk, etc.

• Each level stores some of the most frequently accessed data

• The closer the cache is to the processor, the “hotter” the cached data

43

Memory hierarchies make memory fast and large

• Why do memory hierarchies work?
• Programs tend to access the data at level k more often than they access

the data at level k+1

• Thus, the storage at level k+1 can be slower, and thus larger and cheaper
per bit

• Net effect:
• A large pool of memory that costs as little as the cheap storage near the

bottom, but that serves data to programs at the rate of the fast storage
near the top

• Best of both worlds!

44

Caching in a memory hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Level k:

Level k+1:

Blocks cannot be stored in an arbitrary location!
They can only live at one of a fixed set of locations.
In this example: they must be in the same
“column” for both levels.

45

Request
14

General caching concepts

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level
k+1:

1414

14

4*

46

• Program needs object d, which is stored in some
block b

• Cache hit

• Program finds b in the cache at level k
e.g., block 14

12 Request
12

General caching concepts

• Program needs object d, which is stored in some
block b

• Cache hit

• Program finds b in the cache at level k
e.g., block 14

• Cache miss

• b is not at level k, so the level k cache must
fetch it from level k+1,
e.g., block 12

• If the level-k cache is full, then some current
block must be replaced (evicted). Which one is
the “victim”?

• Here, we pick 4; same column as 12

• 4 is “dirty”, need to write back to k+1

• More on this next lecture

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level
k+1:

14

12

4*

Request
12

4*4*12
12

“ * ” means the block is dirty
(i.e., it has been modified)

47

Cache Misses Taxonomy

• Cold (compulsory) miss
• Cold misses occur when a block is accessed for the first time

• No one ever accessed it, so there wasn’t any reason to bring it into cache

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger than the cache

• There’s no way the working set can all fit in the cache, so there will be misses

• Conflict miss
• In most caches, blocks cannot be stored in any available slot

• If two blocks need to go in the same slot, need to evict the old one to store the new!

• If after that, we need to access the old block, conflict miss!

• We had a conflict, evicted a block, and now we miss trying to access that block

• Note: can happen even when there is “room” elsewhere in the cache!

48

Break + Video

• How do you remember which cache miss is which?
• Mr. Bean can help you tell the difference! (video)

49

50

• Memory Technologies

• Memory Hierarchy

• Caches

• Locality of Reference

Outline

Locality

• Goal: predict which data the CPU will want to access
• So we can bring it to (and keep it in!) fast memory
• Problem: memory is huge! (billions of bytes) how do you decide which to save?

• Principle of Locality
• Programs tend to reuse/use data items recently used or nearby those recently

used

• Temporal locality
• Recently referenced items are likely to be referenced in the near future

• Spatial locality
• Items with nearby addresses tend to be referenced close together in time

51

Types of locality practice

• Temporal locality
• Recently referenced items are likely to be referenced in the near future

• Spatial locality
• Items with nearby addresses tend to be referenced close together in time

• Quiz: what kind of locality?
• Data

• Reference array elements in succession:

• Reference sum each iteration:

• Instructions

• Execute instructions in sequence:

• Cycle through loop repeatedly:

52

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality

Locality example

• Can get a sense for whether a function has good locality just by looking at its
memory access patterns

• Does this function have good locality?

• Yes!
• Array is accessed in same row-major order in which it is stored in memory
• a through a+3 , a+4 through a+7, a+8 through a+11, etc.

int sumarrayrows(int a[M][N]){

int sum = 0;

for (int i = 0; i < M; i++) {

for (int j = 0; j < N; j++) {

sum += a[i][j];

}

}

return sum;

}

Temporal or spatial locality?

53

Spatial: accesses to array
Temporal: accesses to sum

Locality example

• Does this function have good locality?

• No!
• Scans array column-wise instead of row-wise
• a through a+3, then a+4*N through a+4*N+3, etc.
• Holy jumping around memory Batman!

• More on that in a couple of lectures

int sumarraycols(int a[M][N]){

int sum = 0;

for (int j = 0; j < N; j++) {

for (int i = 0; i < M; i++) {

sum += a[i][j];

}

}

return sum;

}

54

Locality to the Rescue!

• How can we exploit locality to bridge the CPU-memory gap?
• Use it to determine which data to put in a cache!

• Spatial locality
• When level k needs a byte from level k+1, don’t just bring one byte
• Bring neighboring bytes as well!
• Good chances we’ll need them too in the near future

• Temporal locality
• When you bring something into the cache, try to keep it there
• Good chances we’ll need it again in the near future

• Result: most accesses should be cache hits!
• Memory system: size of largest memory, with speed close to that of fastest memory

• We’ll see how that works in detail next time

55

Lecture BONUS
Assembly to Transistors

CS213 – Intro to Computer Systems

Branden Ghena

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Assembly into machine code

57

• Machine code are the
numerical versions of
each instruction

• Number breaks down
into parts
• Operation
• Source
• Destination

• Immediates are stored
in the instruction
encoding

Machine code ideas

• Example:
• ADD $0x4351FF23, %rax

• ADD with destination %rax translates into 0x05
• Immediate is appended on to that

• Machine code: 0x0523FF5143

• Number of bytes for each instruction is variable
• 1-15 bytes depending on instruction and operands

• Translation in complicated
• We’re not going to do it by hand, although Attack Lab touches it a bit

58

Representing instructions as numbers

• Why represent instructions as numbers?

1. Everything in memory is “just a number”
• And instructions go in memory

2. Hardware can “decode” number to figure out what to do
• Break number apart into bits (just like floating point)

• Some bits pick operation

• Some bits pick register or specify immediate

59

Computer Processor (in five easy steps)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

60

These steps are relatively easy (we’ll skip them)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

61

This is extremely complicated for x86-64 (skip it too)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

62

We can talk about what execution means though!

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

63

Arithmetic Logic Unit (ALU)

• Piece of hardware

• Takes in two operands
• Source and Destination values

• Takes in an Opcode
• Which operation to run

• Performs operation and
outputs result

64

What can an ALU do?

• All the basic arithmetic operations
• Add
• Subtract
• Bitwise And
• Bitwise Or
• Bitwise Xor
• Arithmetic Shift Right
• Logical Shift Right
• Logical Shift Left

• Complex operations are separate hardware
• Multiply, Divide, Anything floating point

65

Let’s zoom in

66

Inside an ALU

• Input values go into
separate hardware blocks
for each operation

• Every operation occurs in
parallel, simultaneously
• We are in hardware so this

doesn’t take any additional
time

67

ALU Inputs

Inside an ALU – selecting the correct output

68

Selector
ALU Output

ALU Inputs

Opcode

Selects ALU
output based
on Opcode

Let’s zoom in

69

How is an ALU made?

• All of those arithmetic operations can be broken down into a series
of 1-bit Boolean operations
• Add is XOR for result + AND for carry
• Subtract is Flip bits (NOT), Add one (XOR + AND), then Add (XOR + AND)

• And/Or/Xor are just their respective operations
• Shifts are just move the bits around (simple in hardware, just move wires)

70

32-bit OR operation

• Perform OR operation on each individual bit
• Pictured is a series of 1-bit OR gates

71

32-bit ADD operation

• Below is the 1-bit version with carry-in/out
• Two 1-bit AND, two 1-bit XOR, one 1-bit OR

• Repeat 32 times, connecting carries together

72

Let’s zoom in

73

Logic gates can be created with transistors

• CMOS implementation of logic gates
• Complementary Metal-Oxide Semiconductor

74

Transistors are just
on/off switches

Let’s zoom in

75

Transistors are made out of silicon and other materials

• Turning gate on/off causes
source and drain to connect or
disconnect
• Acts as a switch

• We can make very small
transistors

76

That’s the bottom

77

Zooming out again

• Transistors make logic gates

78

1-bit AND gate

F

~6 transistors

Zooming out again

• Logic gates make operations

79

1-bit AND gate
1-bit ADD operation

~30 transistors

Zooming out again

• 1-bit operations make 32-bit operations

80

1-bit ADD operation

~1000 transistors

Zooming out again

• Operations make an ALU

81

Selector

ALU Output

ALU Inputs

Opcode

~20K transistors

ALU allows us to execute operations

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

82

All the way back to software

• Machine code specifies
what should be
executed

• Assembly translates
into machine code

• C compiles into
assembly

83

A processor is just a lot of transistors connected very carefully

• ALU plus other operations make up a Core
• Decode logic, floating point, registers, etc.

• Multiple cores plus caches make up a Processor
• And other stuff these days like graphics

84

85

• Memory Technologies

• Memory Hierarchy

• Caches

• Locality of Reference

• Bonus: Assembly to Transistors

Outline

	Default Section
	Slide 1: Lecture 11 Memory Hierarchy

	Goals
	Slide 2: Administrivia
	Slide 3: Changing the focus of CS213
	Slide 4: Today’s Goals

	Memory Technologies
	Slide 5: Outline
	Slide 6: Storage in a Computer System
	Slide 7: Tour of computer memory
	Slide 8: Tour of computer memory
	Slide 9: Register storage
	Slide 10: Register technology: SRAM
	Slide 11: Caches
	Slide 12: Tour of computer memory
	Slide 13: Main memory
	Slide 14: Main memory technology: DRAM
	Slide 15: Accessing DRAM
	Slide 16: Connecting main memory and the processor
	Slide 17: Sidebar: memory security is important
	Slide 18: Tour of computer memory
	Slide 19: Disk storage
	Slide 20: Disk types
	Slide 21: Hard disk drive operation
	Slide 22: Animation of Disk Access
	Slide 23: Writing bits to the platters
	Slide 24: Disk heads read/write data to the platters
	Slide 25: Accessing data on disk
	Slide 26: Disk types
	Slide 28: Solid State Drives (SSDs)
	Slide 29: SSDs vs Rotating Disks
	Slide 30: Reading memory from disk
	Slide 31: Tour of computer memory
	Slide 32: Break + Question
	Slide 33: Break + Question

	Memory Hierarchy
	Slide 34: Outline
	Slide 35: Computing timescales
	Slide 36: Jim Gray’s storage latency analogy
	Slide 37: The CPU-Memory gap
	Slide 38: The CPU-Memory Gap
	Slide 39: Memory hierarchy
	Slide 40: Memory hierarchy

	Caches
	Slide 41: Outline
	Slide 42: Caching, general principle
	Slide 43: Caching in a memory hierarchy
	Slide 44: Memory hierarchies make memory fast and large
	Slide 45: Caching in a memory hierarchy
	Slide 46: General caching concepts
	Slide 47: General caching concepts
	Slide 48: Cache Misses Taxonomy
	Slide 49: Break + Video

	Locality of Reference
	Slide 50: Outline
	Slide 51: Locality
	Slide 52: Types of locality practice
	Slide 53: Locality example
	Slide 54: Locality example
	Slide 55: Locality to the Rescue!

	Assembly to Transistors
	Slide 56: Lecture BONUS Assembly to Transistors
	Slide 57: Assembly into machine code
	Slide 58: Machine code ideas
	Slide 59: Representing instructions as numbers
	Slide 60: Computer Processor (in five easy steps)
	Slide 61: These steps are relatively easy (we’ll skip them)
	Slide 62: This is extremely complicated for x86-64 (skip it too)
	Slide 63: We can talk about what execution means though!
	Slide 64: Arithmetic Logic Unit (ALU)
	Slide 65: What can an ALU do?
	Slide 66: Let’s zoom in
	Slide 67: Inside an ALU
	Slide 68: Inside an ALU – selecting the correct output
	Slide 69: Let’s zoom in
	Slide 70: How is an ALU made?
	Slide 71: 32-bit OR operation
	Slide 72: 32-bit ADD operation
	Slide 73: Let’s zoom in
	Slide 74: Logic gates can be created with transistors
	Slide 75: Let’s zoom in
	Slide 76: Transistors are made out of silicon and other materials
	Slide 77: That’s the bottom
	Slide 78: Zooming out again
	Slide 79: Zooming out again
	Slide 80: Zooming out again
	Slide 81: Zooming out again
	Slide 82: ALU allows us to execute operations
	Slide 83: All the way back to software
	Slide 84: A processor is just a lot of transistors connected very carefully

	Wrapup
	Slide 85: Outline

