Lecture 03 Data Operations

CS213 – Intro to Computer Systems Branden Ghena – Winter 2023

Slides adapted from: St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Administrivia

- You should all have access to Piazza and Gradescope
 - Contact me via email immediately if you don't!!

- Office hours are now running
 - See Canvas homepage for office hours times
 - Mix of in-person (M/W/F) and online (T/R) hours
 - Today: Elder 30 2-4pm, Tech M128 5-8pm
 - Each staffed by 3+ PMs

Administrivia

- Homework 1 due by end-of-day Wednesday
 - Submit on Gradescope
- Pack Lab should be out later today!
 - Sometime this evening
- You'll do Pack Lab on one of the EECS servers
 - Usually we use Moore, but any should be fine for this lab
 - SSH + Command Line interface
 - See <u>Piazza post</u> for details on remote access
 - See Piazza post for tutorials on command line

Today's Goals

 Explore operations we can perform on integers and more generally on binary numbers

• Understand the edge cases of those operations

C versus the hardware

- Operations you can perform on binary numbers have edge conditions
 - Usually going above or below the bit width
- If we say what happens in that scenario, it'll be what "the hardware" (i.e., a computer) does
 - In today's examples, pretty much every computer does the same thing
- That is not the same as what C does
 - Unclear choices are left as: UNDEFINED BEHAVIOR 🚱
 - Which is to say, the compiler can make any choice it wants

Outline

Integer Operations

- Addition
- Negation and Subtraction
- Multiplication and Division
- Binary Operations
 - Boolean Algebra
 - Shifting
 - Bit Masks

Unsigned Addition

- Like grade-school addition, but in base 2, and ignores final carry
 - If you want, can do addition in base 10 and convert to base 2. Same result!
- Example: Adding two 4-bit numbers

╉

$$\begin{array}{r} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \end{array}$$

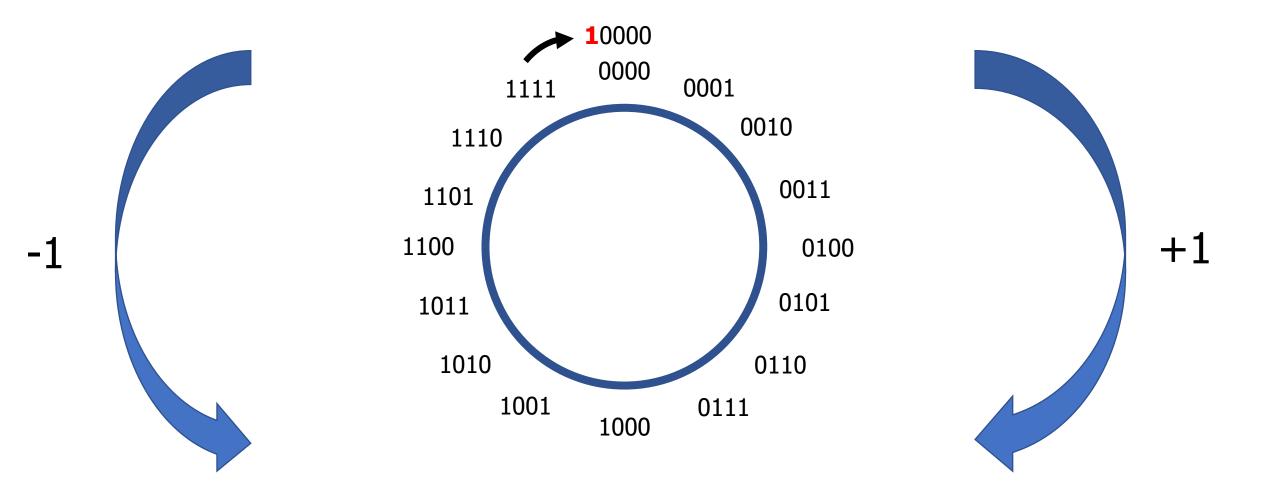
•
$$5_{10} + 3_{10} = 8_{10} \checkmark$$

Unsigned Addition and Overflow

- What happens if the numbers get too big?
- Example: Adding two 4-bit numbers

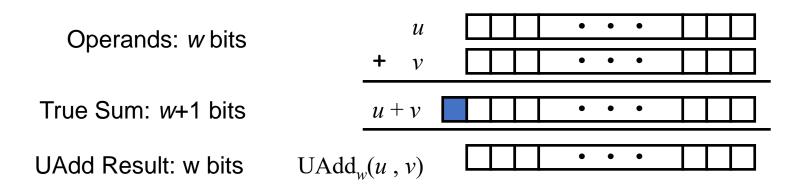
- $13_{10} + 3_{10} = 16_{10}$
 - Too large for 4 bits! Overflow
 - Result is the 4 least significant bits (all we can fit): so 0_{10}
 - Gives us modular (= modulo) behavior: 16 modulo $2^4 = 0$

Modulo behavior in binary numbers



Unsigned addition is modular

- Implements modular arithmetic
 - $UAdd_w(u, v) = (u + v) \mod 2^w$
- Need to drop carry bit, otherwise results will keep getting bigger
 - Example in base 10: $80_{10} + 40_{10} = 120_{10}$ (2-digit inputs become a 3-digit output!)



- Warning: C does not tell you that the result had an overflow!
 - **Unsigned** addition in C silently behaves like modular arithmetic

Signed (2's Complement) Addition

- Works exactly the same as unsigned addition!
 - Just add the numbers in binary, and the result will work out

- Signed and unsigned sum have the exact same bit-level representation
 - Computers use the same machine instruction and the same hardware!
 - That's a big reason 2's complement is so nice! Shares operations with unsigned

Signed addition example

- Same addition method as unsigned
- Example: Adding two 4-bit signed numbers

$$1011 (-8 + 3 = -5) + 0011 (-8 + 6 = -2) 1110 (-8 + 6 = -2)$$

•
$$-5_{10} + 3_{10} = -2_{10} \checkmark$$

Combining negative and positive numbers

- Overflow sometimes makes signed addition work!
- Example: Adding two 4-bit signed numbers

$$\begin{array}{c} {}^{1}1111\\1101\\+ 0011\\10000 \end{array} (-8+5=-3)\\+ 3) \end{array}$$

- $\cdot -3_{10} + 3_{10} = 0_{10}$
 - Too large for 4 bits! Drop the carry bit
 - Result is what we expect as long as we truncate

Signed addition and overflow

- Overflow can still happen in signed addition though
- Example: Adding two 4-bit signed numbers

$$+ \frac{011}{1000}$$

•
$$5_{10} + 3_{10} = -8_{10}$$
 (+8 is too big to fit)

• Remember, this was also unsigned $\mathbf{5_{10}} + \mathbf{3_{10}} = \mathbf{8_{10}}$

Signed addition and negative overflow

- Overflow also happens in the negative direction
- Example: Adding two 4-bit signed numbers

$$^{1} 1011 \\ + 1011 \\ 10110$$

•
$$-5_{10} + -5_{10} = +6_{10}$$
 (-10 was too small to fit)

Overflow: hardware vs C standard

- Hardware implementations for unsigned and signed addition are the same
 - Both implement modular arithmetic

• Unsigned overflow in C is defined as modular arithmetic

- Signed overflow in C is **UNDEFINED BEHAVIOR**
 - Compiler *probably* does modular result
 - But there are no promises about this and it can make *assumptions*
 - So don't rely on it

17

Special boss in Chrono Trigger

- Dream Devourer
 - Special boss in the Nintendo DS edition
- Wanted to make it even more challenging
 - 32000 hit points
 - Takes *forever* to defeat
- Hit points stored as a 16-bit signed integer
 Range: -32768 to +32767
- How do speedrunners defeat the boss?

Chrono Trigger signed overflow bug

• Solution: heal it

• Hit points go negative and it dies

Outline

Integer Operations

- Addition
- Negation and Subtraction
- Multiplication and Division
- Binary Operations
 - Boolean Algebra
 - Shifting
 - Bit Masks

Negating a number

- In C:
 - x = -y;

- Operation
 - Determine the negative, signed version of the number (two's complement)
 - Hardware method: flip it and add one

Negating via Complement & Increment

• Claim: The following is true for 2's complement

•
$$\sim x + 1 == -x$$

• Complement
• Observation: $\sim x + x == 1111...11_2 == -1$

$$x 10011101$$

$$+ \sim x 01100010$$

$$-1 11111111$$

• Increment

•
$$\sim x + 1 = = -x + x - x + 1 = -1 - x + 1 = -x$$

• $\sim x + 1 = -x$

- Example, 4 bits: $6_{10} = 0110_2$
 - Complement: $1001_2 \rightarrow \text{Increment} = 1010_2 = -8 + 2 = -6_{10}$

Subtraction in two's complement

- Subtraction becomes addition of the negative number
 - 5-3 = 5 + -3 = 2
- Both unsigned and signed subtraction
 - Convert subtractor to its two's complement negative form
 - i.e., negate it
 - Then do addition
 - Treat result as an unsigned number

$$\begin{array}{c} {}^{1} \stackrel{1}{0} \stackrel{1}{1} \stackrel{1}{0} \stackrel{1}{1} (+5) \\ + \underbrace{1101}_{10010} (-3) \end{array}$$

C rules vs hardware rules

• Exact same overflow rules apply

- Unsigned subtraction can wrap below zero to make a large number
 - Modular arithmetic

- Signed subtraction is **UNDEFINED BEHAVIOR**
 - And therefore should not be trusted

Break + practice

- Adding two 8-bit numbers:
 - Also determine the decimal version of the result

00010101 + 10110001

Break + practice

- Adding two 8-bit numbers:
 - Also determine the decimal version of the result

	11 1	Unsigned encoding		Signed encoding
	00010101	16+4+1 = 21		16+4+1 = 21
Ŧ	10110001	128+32+16+1 = 177	OR	-128+32+16+1 = -79
	11000110	128+64+4+2 = 198		-128+64+4+2 = -58

Break + practice

- Adding two 8-bit numbers:
 - Also determine the decimal version of the result

	11 1	Unsigned encoding		Signed encoding
	00010101	16+4+1 = 21		16+4+1 = 21
+	10110001	128+32+16+1 = 177	OR	-128+32+16+1 = -79
	11000110	128+64+4+2 = 198		-128+64+4+2 = -58

What about unsigned subtraction 21-79?

That would apply modulo arithmetic and result in the value 198

Outline

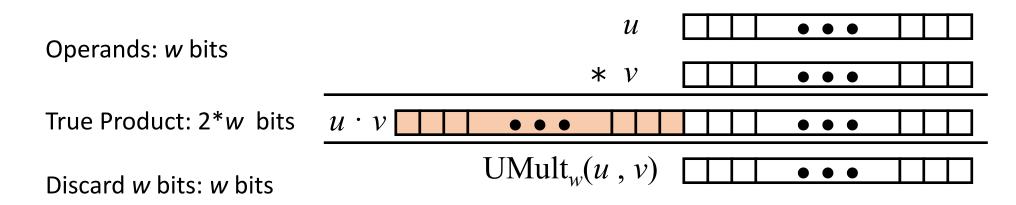
Integer Operations

- Addition
- Negation and Subtraction
- Multiplication and Division
- Binary Operations
 - Boolean Algebra
 - Shifting
 - Bit Masks

Multiplication

- Goal: Compute the Product of *w*-bit numbers *x*, *y*
 - Either signed or unsigned
- But, exact results can be bigger than *w* bits
 - Double the size (2*w*), in fact!
 - Example in base 10: $50_{10} * 20_{10} = 1000_{10}$
 - (2-digit inputs become a 4-digit output!)
- As with addition, result is truncated to fit in *w* bits
 - Because computers are finite, results can't grow indefinitely

Unsigned Multiplication

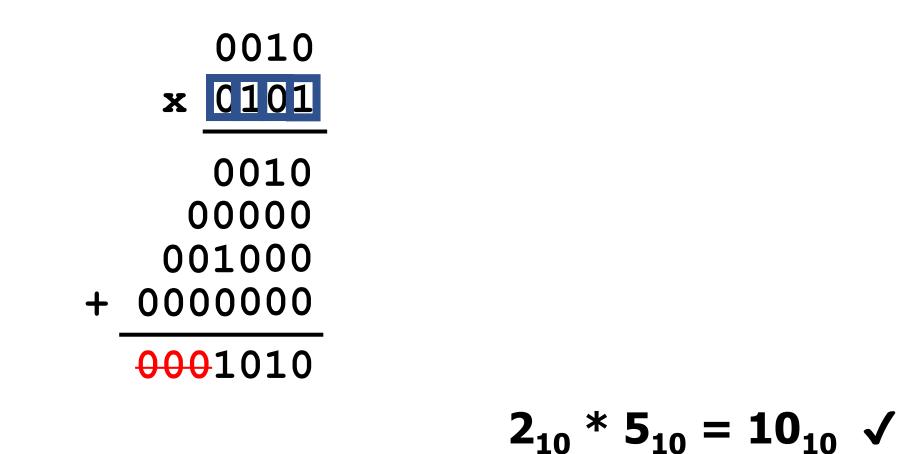


Standard Multiplication Function

- Equivalent to grade-school multiplication
- But ignores most significant *w* bits of the result
- As a person, we can do base 10 multiplication, convert to base 2, then truncate
- Implements modular arithmetic like addition does $UMult_{u}(u, v) = (u \cdot v) \mod 2^{w}$

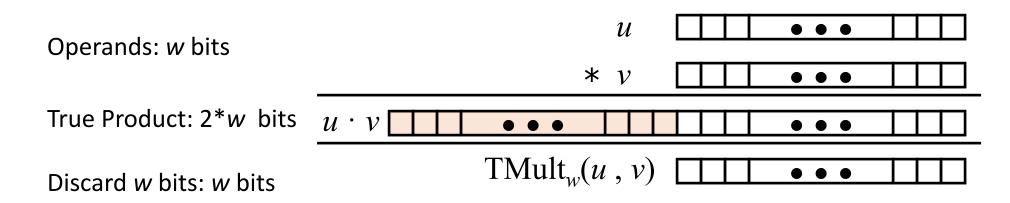
Unsigned multiplication

Example: Multiplying two 4-bit numbers



30

Signed (2's Complement) Multiplication



Standard Multiplication Function

- Ignores most significant *w* bits
- Lower bits still give the correct result
 - So we can use same machine instruction for both!
 - Again, that's one reason why 2's complement is so nice

In C, signed overflow is undefined

• ...but probably you'll see the two's complement behavior

Signed multiplication

Example: Multiplying two's complement 5-bit numbers

What are these two 5-bit numbers?

What is the result of this addition?

$$-2_{10} * 3_{10} = -6_{10} \checkmark$$

What about divide?

- Annoying operation, not going to discuss in this class
 - Similar to long division process
 - Tedious and complicated to get right
- I've worked on computers that don't have hardware support for division at all!!

- Important thing to remember is that integers don't have fractional parts
 - In C: 1/2 == 0
 - We'll need a new encoding for fractional numbers: floating point

Outline

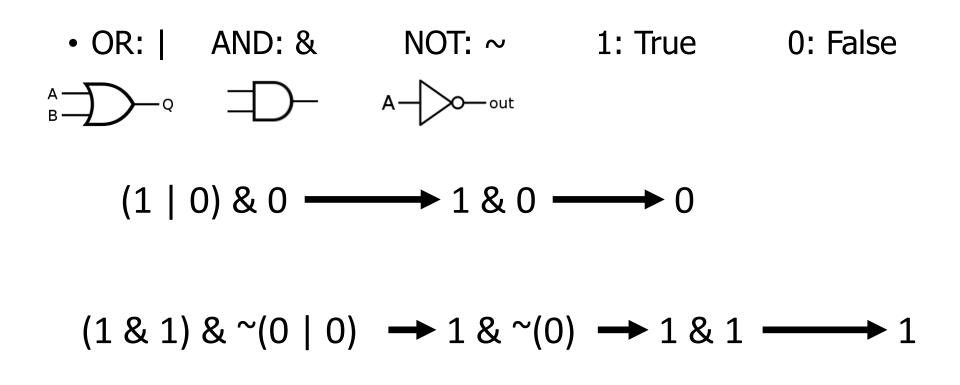
- Integer Operations
 - Addition
 - Negation and Subtraction
 - Multiplication and Division
- Binary Operations
 - Boolean Algebra
 - Shifting
 - Bit Masks

Boolean algebra

- You've programmed with and and or in earlier classes
 - Written & and || in C and C++
- Boolean algebra is a generalization of that
 - A mathematical system to represent (propositional) logic
 - 2 truth values: true = 1, false = 0
 - 3 operations: and = \mathbf{k} , or = \mathbf{I} , not (or complement) = \mathbf{v}

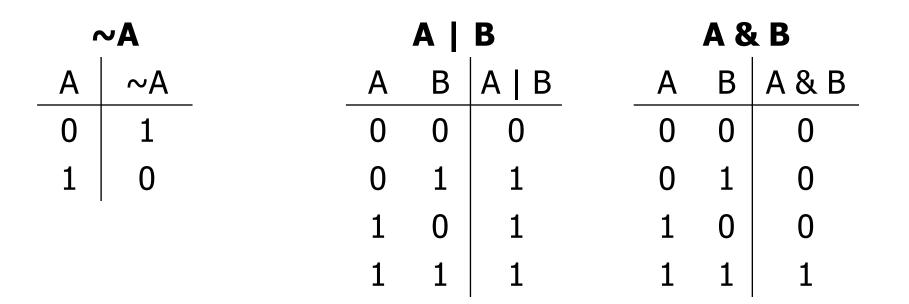
Performing Boolean algebra

- Follow the rules for each operation to compute results
 - Rules are the like those you know from programming



Truth tables for Boolean algebra

- For each possible value of each input, what is the output
 - Column for each input
 - Column for the output operation



Exclusive Or

A ^ B				
Α	В	A ^ B		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

- Some operations aren't available as C logical operators
 - Xor ^ either A or B, but not both
- We can build Xor out of &, |, and \sim
 - A^B = (~A & B) | (A & ~B)
 (exactly one of A and B is true)
 - A^B = (A | B) & ~(A & B)
 (either is true but not both are true)
- - The two definitions are equivalent
 - Produce the same Truth Table

Practice problem

(A & B) B				
Α	В	(A&B) B		
0	0			
0	1			
1	0			
1	1			

Practice problem

(A & B) B				
Α	В	(A&B) B		
0	0	0		
0	1	1		
1	0	0		
1	1	1		

Practice problem

(A & B) B				
Α	В	(A&B) B		
0	0	0		
0	1	1		
1	0	0		
1	1	1		

This is equivalent to B (A has no influence on the solution)

De Morgan's Law

• We can express Boolean operators in terms of the others

- De Morgan's laws: allow swapping & with |
 - A & B = ~(~A | ~B) → ~(A & B) = ~A | ~B
 (neither A nor B is false)
 - A | B = ~(~A & ~B) → ~(A | B) = ~A & ~B
 (A and B are not both false)
 - Useful for simplifying logical statements

Generalized Boolean algebra

- Boolean operations can be extended to work on vectors of bits (i.e., bytes)
- Operations are applied one bit at a time: *bitwise*

	01101001	01101001	01101001	
&	01010101	01010101	<u>^ 01010101</u>	~ 01010101
	01000001	01111101	00111100	10101010

- All of the properties of Boolean algebra still apply
 - Relationships between operations, etc.
- Bitwise operations are usable in C: &, |, ~, ^
 - Can operate on any integer type (long, int, short, char, signed or unsigned)

Warning: bitwise operations are NOT logical operations

- Logical operations in C: [], &&, ! (logical Or, And, and Not)
 - Only operate on a single bit
 - View 0 as "False"
 - View *anything nonzero* as "True"
 - Always return 0 or 1
 - Short-circuit evaluation: only checks the first operand if that is sufficient
- Examples
 - !0x41 -> 0x00 !0x00 -> 0x01
 - 0x59 && 0x35 -> 0x01
 - (p != NULL) && *p (short circuit avoids null pointer access)

!!0x41 -> 0x01 Useful for turning
many bits into 1 bit

• Don't confuse the two!! It's a common C mistake

rea	k +	Prac	tice			
1. 0x37 0xAA			. 2	. 0x	:06	^ 0xFF
	A	В			A ^	• B
A	A B	B A B		A	A ^ B	B A & B
A 0		1		A 0		1
0	В	A B		0	B 0	A & B
0	B 0	A B 0		0	В	A & B 0

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

В	real	k +	Prac	tice				
1.	0x	37	0xAA	2.	0x	06	^ 0xFF	:
ļ	10)10	0111 1010 1111	•	11	L11	0110 1111 1001	
		ΑΙ	В			A ^	B	
	Α	В	A B		А	В	A & B	
	0	0	0		0	0	0	
					•	U	Ŭ	
	0	1	1		0	1	Ū	
	0 1	1 0	1 1		0 1	-	Ū	

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Outline

- Integer Operations
 - Addition
 - Negation and Subtraction
 - Multiplication and Division

Binary Operations

- Boolean Algebra
- Shifting
- Bit Masks

Left Shift: x << y

- Shift bit-vector $\mathbf x$ left by $\mathbf y$ positions
 - Throw away extra bits on left
 - Fill empty bits with 0
 - Same behavior for signed or unsigned

Argument x	00000010
<< 3	<mark>000</mark> 00010 <u>000</u>

Argument x	10100010
<< 3	<mark>101</mark> 00010 <u>000</u>

- Equivalent to multiplying by 2^y
 - And then taking modulo (i.e. truncating overflow bits)
- Undefined behavior in C when:
 - y < 0, or $y \ge bit_width(x)$
 - Also when some non-0 bits get shifted off (*probably* they get truncated)

Right Shift: x >> y

- Shift bit-vector x right y positions
 Throw away extra bits on right
- But how to fill the new bits that open up?
 - Will depend on signed vs unsigned
- Unsigned: Logical shift
 - Always fill with 0's on left
- Signed: Arithmetic shift
 - Replicate most significant bit on left
 - Necessary for two's complement integer representation (sign extension!)
- Undefined behavior in C when:
 - y < 0, or $y \ge bit_width(x)$

Argument x	<u>0</u> 1100010
Logi. >> 2	<u>00</u> 011000
Arith. >> 2	<u>00</u> 011000

Argument x	<u>1</u> 0100010	
Logi. >> 2	<u>00</u> 101000	
Arith. >> 2	<u>11</u> 101000	

Practice shifting in C

unsigned char x = 0b10100010;Steps: $x \ll 3 = ? 0b00010000$ 0b10100010**000** 0b10100010**000** unsigned char x = 0b10100010;Steps: x >> 2 = ? 0b001010000b**00**10100010 0b**00**10100010 signed char x = 0b10100010;Steps: x >> 2 = ? 0b111010000b**11**10100010 0b**11**10100010

Note:

GCC supports the prefix **0b** for binary literals (like **0x**... for hex) directly in C. This is not part of the C standard! It may not work on other compilers. Concept: Not all operations are equally expensive!

- Some operations are pretty simple to perform in hardware
 - E.g., addition, shifting, bitwise operations
 - Also true of doing the same by hand on paper
- Others are much more involved
 - E.g., multiplication, or even more so division
 - Consider long multiplication / long division; quite tedious!
 - Hardware is not doing the exact same thing, but similar principle
- *Trick*: try to replace expensive operations with simple ones!
 - Doesn't work in all cases, but often does when mult/div by constants

Shift to divide

- Division by powers of two could be shifts
 - unsigned int x = y / 2; unsigned int x = y >> 1;
- Even more important because division is a complicated operation
 - Multiply is implemented in (relatively) simple hardware on most systems
 - Compiler might actually translate your divide by powers of two into shift operations though!
- Warning: rounding needs to be handled correctly for signed numbers and division
 - See bonus slides

Compilers automatically chose the best operations

- Should you use shifts instead of multiply/divide in your C code?
 NO
- Just write out the math
 - Math is more readable if that's what you meant
 - Compiler automatically converts code for you for best performance
- These two mean the same thing, but one is way more understandable
 - int x = y * 32;
 - int x = (y << 5);

Outline

- Integer Operations
 - Addition
 - Negation and Subtraction
 - Multiplication and Division

Binary Operations

- Boolean Algebra
- Shifting
- Bit Masks

Bit Masking

- How do you manipulate certain bits within a number?
- Combines some of the ideas we've already learned
 - ~, &, |, <<, >>
- Steps
 - 1. Create a "bit mask" which is a pattern to choose certain bits
 - 2. Use & or | to combine it with your number
 - 3. Optional: Use >> to move the bits to the least significant position

Bit mask values

- Selecting bits, use the AND operation
 - 1 means to select that bit
 - 0 means to not select that bit
- Writing bits
 - Writing a one, use the OR operation
 - 1 means to write a one to that position
 - 0 is unchanged
 - Writing a zero, use the AND operation
 - 0 means to write a zero to that position
 - 1 is unchanged

Select bottom four bits: num & 0x0F

Set 6th bit to one: num | (1 << 6) num | (0b0100000)

```
Clear 6<sup>th</sup> bit to zero:

num & (~(1 << 6))

num & (~(0b01000000))

num & (0b1011111)
```

Example: swap nibbles in byte

- Nibble 4 bits (one hex digit)
 - Input: 0x4F -> Output 0xF4
 - Method:
 - 1. Shift and select upper four bits
 - 2. Shift and select lower four bits
 - 3. Combine the two nibbles

What are the values of the new upper bits?

Unsigned -> Will be zero

```
uint8_t lower = input >> 4;
uint8_t upper = input << 4; // lower bits zeros
uint8 t output = upper | lower; // combines two halves
```

Shifting implicitly zero'd out irrelevant bits. Otherwise we would have needed an & operation.

Example: selecting bits

Select bits 2 and 3 from a number

©b01100100 ©b00001100 0b0000100

Finally, shift right by two to get the values in the least significant position:

0b00000<u>01</u>

Input: 0b0110<u>01</u>00 Mask: 0b00001100

In C:
result = (input & 0x0C) >> 2;

Outline

- Integer Operations
 - Addition
 - Negation and Subtraction
 - Multiplication and Division
- Binary Operations
 - Boolean Algebra
 - Shifting
 - Bit Masks

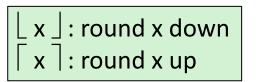
Outline

• Dividing with bit shift

- Bonus material isn't required and won't be on an exam
 - Unless it becomes main lecture material in a different lecture
- Usually the material is just for students who want more depth
 - As is the case here

Unsigned Power-of-2 Divide with Right Shift

- Quotient of unsigned by power of 2
 - $\mathbf{u} >> \mathbf{k}$ gives $\lfloor \mathbf{u} / \mathbf{2}^{\mathbf{k}} \rfloor$
 - Uses logical shift



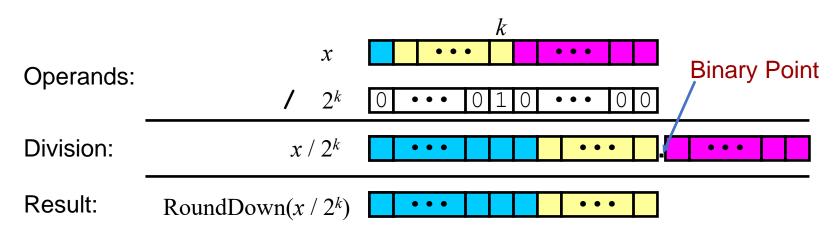
- Pink part would be remainder / fractional part (right of the point)
 - Shift just drops it: equivalent to rounding *down*

Operands:	u / 2^k	••• ••• 0 ••• 0 1	Binary Point
Division:	$u / 2^k$		•••
Result:	$\lfloor u / 2^k \rfloor$	0 • • • 0 0 • • •	

	Division	Computed	Hex	Binary
Х	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	0000000 00111011

Signed Power-of-2 Divide with Shift (Almost)

- Quotient of signed by power of 2
 - $\mathbf{x} >> \mathbf{k}$ gives $[\mathbf{x} / \mathbf{2}^{k}]$
 - Uses arithmetic shift
 - Also rounds down, again by dropping bits
 - But signed division should round *towards 0!* (that's its math definition)
 - That means rounding *up* for negative numbers!



• Example, 4 bits: -6 / 4 = -1.5 (should round towards 0, to -1)

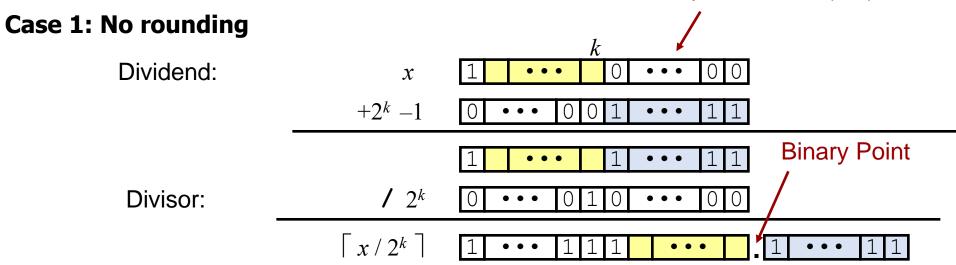
- $1010_2 >> 2 = 110_2 = -2_{10}$
- Rounds the wrong way!

Correct Signed Power-of-2 Divide

- Want $\lceil \mathbf{x} / \mathbf{2}^k \rceil$ (round towards 0)
 - Math identity: $[\mathbf{x} / \mathbf{y}] = [(\mathbf{x} + \mathbf{y} \mathbf{1}) / \mathbf{y}]$
 - Compute negative case as $\lfloor (x+2^k-1) / 2^k \rfloor \rightarrow$ gets us correct rounding!
 - Computing both cases in C: (x<0 ? (x + (1<<k)-1) : x) >> k
 - Biases dividend toward 0

٠

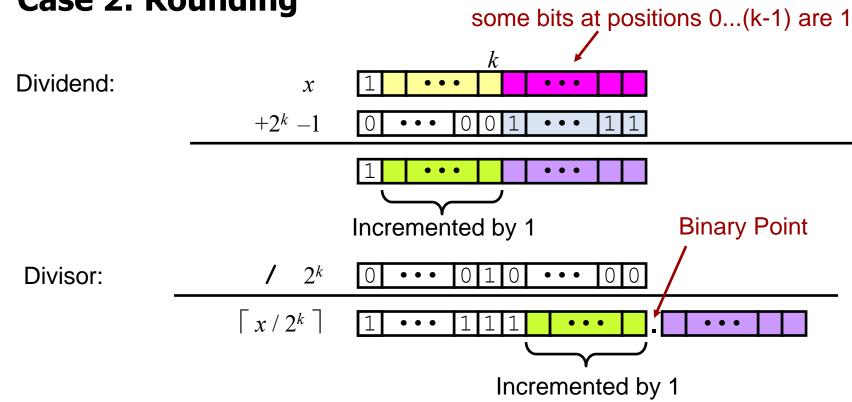
all bits at positions 0...(k-1) are 0



Biasing has no effect; all affected bits are dropped

- Example, 4 bits: $-8 / 2^2 = -2$ bias = (1 < < 2) 1 = 3
 - $(1000 + 0011) >> 2 = 1011 >> 2 = 1110 = -2_{10}$ (correct, no rounding)

Correct Signed Power-of-2 Divide (Cont.) Case 2: Rounding



Biasing adds 1 to final result; just what we wanted

- Example, 4 bits: $-6 / 2^2 = -1$ bias = (1 < < 2) 1 = 3
 - $(1010 + 0011) >> 2 = 1101 >> 2 = 1111 = -1_{10}$ (correct, rounds towards 0)
- Compiler does that for you (but you need to be able to read it!)