
Lecture 02
Representations

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Announcements

• Slides are posted on Canvas
• Recordings are under the Panopto tab on Canvas too

• Homework 1 available after class on Canvas page
• Practice problems on binary-to-hex-to-decimal conversion and integer

encodings

• Today’s lecture will finish the content you need for it

• Due next week Wednesday

• I need to create Gradescope so you can submit it. Should happen
tomorrow.

2

Today’s Goals

• Discuss data representation in memory

• Explore data representations
• Integers, signed and unsigned

• Different bit widths

• Translating between encoding schemes

• Other encodings besides integers

3

4

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

Byte-oriented memory organization

• We’ve seen how sequences of bits can express numbers
• And how we usually work with groups of 8 bits (bytes) for convenience

• In a computer system, bytes can be stored in memory
• Conceptually, memory is a very large array of bytes

• Each byte has its own address (≈ pointer)

• Compiler + run-time system control allocation
• Where different program objects should be stored
• Multiple mechanisms, each with its own region: static, stack, and heap

• • •

5

Most/least significant bits/bytes

• When working with sequences of bits (or sequences of bytes), need to
be able to talk about specific bits (bytes)

• Most Significant bit (MSb) and Most Significant Byte (MSB)
• Have the largest possible contribution to numeric value
• Leftmost when writing out the binary sequence

• Least Significant bit (LSb) and Least Significant Byte (LSB)
• Have the smallest possible contribution to numeric value
• Rightmost when writing out the binary sequence

10110110 01101010 10101010 01111100

Most significant bit

Most significant byte Least significant byte

Least significant bit
6

Addressing and byte ordering

• For data that spans multiple bytes, need to agree on two things
• 1. What should be the address of the object? (each byte has its

own!)

• And by extension, given an address, how do we find the relevant bytes
(same question!)

• 2. How should we order the bytes in memory?

• Do we put the most or least significant byte at the first address?

7

There isn’t always one correct answer

• Different systems can pick different answers! (mostly for 2nd Q)

• Very nice illustration of two overarching principles in systems:
You need to know the specifics of the system you’re using!

• Many questions don’t really have right or wrong answers!

• Instead, they have tradeoffs. What the “right” answer is depends on
context!

• Different answers across systems is perfectly fine

• But all the parts of a given system must agree with each other!

8

1. Addressing data in memory

• All addresses refer to bytes
• Never bits

• For multi-byte objects, the lowest address
refers to the entire object
• Addresses of successive objects differ by

4 (32-bit) or 8 (64-bit)

• Systems pretty much universally
use the address of the first byte as
the address for the whole object
• I’m not aware of any system that does

otherwise
• But there could be some weirdo systems

out there (or historically)

32-bitBytes

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

Addr.

0012

0013

0014

0015

64-bit

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

0000

0004

0008

0012

0000

0008

9

2. Byte ordering

• How to order bytes within a multi-byte object in memory
• Only relevant when working with data larger than a byte!

• Conventions

• Big Endian: Oracle/Sun (SPARC), IBM (PowerPC), Computer Networks

• Most significant byte has lowest address (comes first)

• Little Endian: Intel (x86, x86-64)

• Least significant byte has lowest address (comes first)

• Example
• 4-byte piece of data: 0x01234567

• Address of that data is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Increasing memory addresses

10

Practice: reading memory

• Assume memory is Little Endian
• So the Least Significant Byte comes first

1. What is the four-byte value at 0x2010?

2. What is the two-byte value at 0x2014?

3. What is the one-byte value at 0x2016?

11

Address Value

0x2010 0x37

0x2011 0x1A

0x2012 0xBE

0x2013 0x98

0x2014 0x0C

0x2015 0x80

0x2016 0x42

Practice: reading memory

• Assume memory is Little Endian
• So the Least Significant Byte comes first

1. What is the four-byte value at 0x2010?
0x98BE1A37

2. What is the two-byte value at 0x2014?
0x800C

3. What is the one-byte value at 0x2016?
0x42

12

Address Value

0x2010 0x37

0x2011 0x1A

0x2012 0xBE

0x2013 0x98

0x2014 0x0C

0x2015 0x80

0x2016 0x42

Practice: reading memory

• Change: assume memory is Big Endian
• So the Most Significant Byte comes first

1. What is the four-byte value at 0x2010?
0x371ABE98

2. What is the two-byte value at 0x2014?
0x0C80

3. What is the one-byte value at 0x2016?
0x42

13

Address Value

0x2010 0x37

0x2011 0x1A

0x2012 0xBE

0x2013 0x98

0x2014 0x0C

0x2015 0x80

0x2016 0x42

Note: endianness doesn’t
affect one-byte values!

14

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

What do bits and bytes mean in a system?

• The answer is: it depends!

• Depending on the context, the bits 11000011 could mean
• The number 195
• The number -61
• The number -19/16
• The character ‘├’
• The ret x86 instruction

• You have to know the context to make sense of any bits you have!
• Looking at the same bits in different contexts can lead to interesting results
• Information = bits + context!

• An encoding is a set of rules that gives meaning to bits

15

An example encoding: ASCII characters

• ASCII = American Standard Code for Information Interchange
• Standard dating from the 60s

• Maps 8-bit* bit patterns to characters
• (* the standard is actually 7-bit, leaving the 8th bit unused)
• We already know how to go from sequences of bits (base 2) to integers
• Need to take one more step, and interpret these integers as characters

• Examples
• 0100 00012 = 0x41 = 6510 = ‘A’
• 0100 00102 = 0x42 = 6610 = ‘B’
• 0011 00002 = 0x30 = 4810 = ‘0’
• 0011 00012 = 0x31 = 4910 = ‘1’

• Reference: https://www.asciitable.com/

16

https://www.asciitable.com/

Full
ASCII
table

Values listed
in:

Decimal

Hexadecimal

Octal

HTML

Character

17

Encodings are just determined by people

• There’s no inherent truth in the design of an encoding
• Although some encodings are nice or annoying for various reasons

• Example: it’s nice in ASCII that letters are in alphabetical order

• You could come up with an entirely new way of encoding
characters
• The hard part would be getting everyone else to agree to use it

18

Open Question + Break

• What things might we want to encode?

19

Open Question + Break

• What things might we want to encode?

• Numbers

• Signed and unsigned integers

• Real numbers

• Mathematical symbols: ∞ 𝛑

• Language

• Characters in various different languages ΩͶݽ서北

• Emoji 😱😡😁😭🤷🦃🎶🎂✨🐱‍🏍🍢

• Colors, Playing Cards, User Actions, anything!

20

21

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

Integer types in C

• C type provides both size and encoding rules

• Integer types in C come in two flavors
• Signed: short, signed short, int, long, …

• Unsigned: unsigned char, unsigned short, unsigned int, ...

• And in multiple different sizes
• 1 byte: signed char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int

• Etc.

Sizes of C types are system dependent

• Portability
• Some programmers assume

an int can be used to store
a pointer

• OK for most 32-bit machines,
but fails for 64-bit machines!

• How I program
• Use fixed width integer types

from <stdint.h>

• int8_t, int16_t, int32_t

• uint8_t, uint16_t, uint32_t

C Data Type Intel IA32 x86-64
C Standard*

(C99)

char 1 1 ≥1

short 2 2 ≥2

int 4 4 ≥2

long 4 8 ≥4

long long 8 8 ≥8

float 4 4

double 8 8

pointer 4 8
Widths for data,

code pointers may

differ!

Expressing C types in bits

• Two families of encodings to express integers using bits
• Unsigned encoding for unsigned integers

• Two’s complement encoding for signed integers

• Each encoding will use a fixed size (# of bits)
• For a given machine

• Size + encoding family determine which C type we’re representing

• Fixed size is because computers are finite!

24

Unsigned integer encoding

• Just write out the number in binary
• Works for 0 and all positive integers

• Example: encode 10410 as an unsigned 8-bit integer
• 10410 = 0×27 + 1×26 + 1×25 + 0×24 + 1×23 + 0×22 + 0×21 + 0×20

25

⇒ 01101000

⇒ 0x68

B2U(X) = xi 2
i

i=0

w−1


(Binary To Unsigned)

Bounds of unsigned integers

• For a fixed width w, a limited range of integers can be expressed

• Smallest value (we will call UMin):

• all 0s bit pattern: 000…0, value of 0

• Largest value (we will call UMax):

• all 1s bit pattern: 111...1, value of 2w – 1

• 2w – 1 = 1×2w-1 + 1×2w-2 + ... + 1×21 + 1×20 = 11111...

• Maximum 8-bit number = 28-1 = 256-1 = 255

26

27

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

Encoding signed integers

• What’s different about representing a signed number?
• It can be negative!

• So, we’re going to have to somehow represent values that are
negative and positive

• There are actually many different encodings capable of doing this
• This is when that “nice encoding” versus “annoying encoding” matters

28

Attempting signed encoding

• Goal: encode integers that can be positive or negative

• First attempt: we can use the most significant bit for sign
• “Sign-and-magnitude” encoding

• In 8-bits:

• +4 = 00000100

• -4 = 10000100

29

+0 = 00000000
-0 = 10000000

+127 = 01111111
-127 = 11111111

• Annoying problem: we have two representations of zero!

• Also annoying: hardware to do math with signed and unsigned numbers gets
complicated…

Two’s complement encoding

• Bad news: need to make the encoding more complicated

• Good news: it will actually work

• Plan:
• Start with unsigned encoding, but make ONLY the largest power negative

• Example: for 8 bits, most significant bit is worth -27 not +27 (other bits are still positive)

• To encode a negative integer
• First, set the most significant bit to 1 to start with a big negative number

• Then, add positive powers of 2 (the other bits) to “get back” to number we want

• Example: encode -6 as a 4-bit two’s complement integer

• -610 =
30

1 × -23 + 0 × 22 + 1 × 21 + 0 × 21 ⇒ 0b1010 ⇒ 0xa

Two’s complement examples

• Encode -100 as an 8-bit two’s complement number

• -10010 =

31

Problem becomes:
encode +28 as a 7-bit unsigned number

1 × -27

-128

+ 0 × 26

+ 0

+ 0 × 25

+ 0

+ 1 × 24

+ 16

+ 1 × 23

+ 8

+ 1 × 22 + 0 × 21 + 0 × 20

+4 +0 +0

• -10010 = 0b10011100 = 0x9C

• Shortcut: determine positive version of number, flip it, and add one
• 10010 = 0b01100100
• Flipped = 0b10011011
• Plus 1 = 0b10011100 = 0x9C We’ll talk about binary addition next lecture

Interpreting binary signed values

• Converting binary to signed:

• Note: most significant bit still tells us sign!! 1-> negative
• Checking if a number is negative is just checking that top bit

• Zero problem is solved too
• 0b00000000 = 0 0b10000000 = -128

• -1: 0b111…1 = -1 (regardless of number of bits!)

32

B2T (X) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2



Sign bit

Bounds of two’s complement integers

• For a fixed width w, a limited range of integers can be expressed

• Smallest value, most negative (we will call TMin):

• 1 followed by all 0s bit pattern: 100…0 = -2w-1

• Largest value, most positive (we will call TMax):

• 0 followed by all 1s bit pattern: 01...1, value of 2w-1 – 1

• Beware the asymmetry! Bigger negative number than positive

33

Ranges for different bit amounts

• Observations
• |TMin | = TMax + 1

• Asymmetric range

• UMax = 2 * TMax + 1

 W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

• C Programming
• #include <limits.h>

• Declares constants, e.g.,

• ULONG_MAX

• LONG_MAX

• LONG_MIN

• Values are platform specific

34

Unsigned & Signed Numeric Values

• Equivalence
• Same encodings for non-negative values

• Uniqueness
• Every bit pattern represents unique integer value

• Each representable integer has unique bit encoding

•  Can Invert Mappings
• Can go from bits to number and back, and vice

versa

• U2B(x) = B2U-1(x)

• Bit pattern for unsigned integer

• T2B(x) = B2T-1(x)

• Bit pattern for two’s complement integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

35

Practice + Break

• What range of integers can be represented with
5-bit two’s complement?

• A -31 to +31

• B -15 to +15

• C 0 to +31

• D -16 to +15

• E -32 to +31

36

Practice + Break

• What range of integers can be represented with
5-bit two’s complement?

• A -31 to +31 No asymmetry and 6-bits

• B -15 to +15 No asymmetry

• C 0 to +31 Unsigned

• D -16 to +15 Correct

• E -32 to +31 6-bits

37

38

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

Casting signed to unsigned

• C allows conversions from signed to unsigned (and vice versa)

• Resulting value
• Not based on a numeric perspective: keep the bits and reinterpret them!
• Non-negative values unchanged

• ux = 15213
• Negative values change into (large) positive values (and vice versa)

• uy = 50323

• Warning: Casts can be implicit in assignments or function calls!
• More on that in a few slides

short int x = 15213;

unsigned short int ux = (unsigned short) x;

short int y = -15213;

unsigned short int uy = y; /* implicit cast! */

39

Mapping Signed  Unsigned (4 bits)

Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+ 16 (i.e., 24)

- 16 (i.e., 24)

Large negative
factor becomes
large positive!

40

Signed vs Unsigned in C

• Constants
• By default constants are considered to be signed integers
• Unsigned with “U/u” as suffix: 0U, 4294967259U

• Expression evaluation
• If there is a mix of unsigned and signed in a single expression,

signed values are converted to unsigned
• Including comparison operations!! <, >, ==, <=, >=

• Can lead to surprising behavior!
• -1 < 0U ⇒ false!

• -1 gets converted to unsigned
• All 1s bit pattern ⇒ UMax! Definitely not less than 0!

41

Example

• Convert signed 8-bit number -120 into an unsigned number

1. Convert -120 into binary

2. Convert binary back into unsigned decimal

42

Example

• Convert signed 8-bit number -120 into an unsigned number

1. Convert -120 into binary
-120 = -128 + 8 =

2. Convert binary back into unsigned decimal

43

Example

• Convert signed 8-bit number -120 into an unsigned number

1. Convert -120 into binary
-120 = -128 + 8 =
1x(-128) + 0x64 + 0x32 + 0x16 + 1x8 + 0x4 + 0x2 + 0x1

2. Convert binary back into unsigned decimal

44

Example

• Convert signed 8-bit number -120 into an unsigned number

1. Convert -120 into binary
-120 = -128 + 8 =
1x(-128) + 0x64 + 0x32 + 0x16 + 1x8 + 0x4 + 0x2 + 0x1
0b 1000 1000

2. Convert binary back into unsigned decimal
1x128 + 0x64 + 0x32 + 0x16 + 1x8 + 0x4 + 0x2 + 0x1

128 + 8 = 136

45

Code Security Example

• Simplified example of code found in FreeBSD’s implementation of
getpeername

• There are legions of experts trying to find vulnerabilities in
programs, not all with good intentions

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

46

Typical Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf(“%s\n”, mybuf);

}

47

Malicious Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Declaration of library function memcpy */

void *memcpy(void *dest, void *src, size_t n);

size_t is unsigned!

48

49

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

Truncation

• May want to convert between numeric types of different sizes

• Going from a larger to a smaller number of bits is easy
• Truncation: drop bits from the most significant side until we fit

• Values that can be represented by both types are preserved!
• Including negative values!

• Values that can’t be represented by the smaller type are mapped to some that can
(modular (= modulo) behavior)

• Example
• 16 bits → 8 bits: 10110010 01001000 →

• Unsigned: 4564010 → 7210

• 7210 = 4564010 modulo 28

• Signed: -5266410 → 7210

• 7210 = -5266410 modulo 28

01001000

This can cause bugs!!

See Ariane 5 explosion…

Extension

• Going from smaller to larger: what to do with the “new” bits?
• These “new” bits go on the most significant side

• Unsigned: easy, pad with 0s!
• Always safe to add 0s on the most significant end: 1521310 = 0001521310

• Example: 8 bits → 16 bits: 01001000 →

• 7210 = 7210

• Value is preserved!

0100100000000000

Sign Extension

• Extending signed encodings takes more effort to preserve the value

• Duplicate Most significant bit when extending
• If it’s a zero, extend with zeros. If it’s a one, extend with ones.

• • •X

X’ • • • • • •

• • •

w

wk

Example sign extension

• Extend -128 from an 8-bit to bigger versions

• 8-bit version:
• -128 + 0 = 1x(-128) + all zeros = 0b1000 0000

• 9-bit version:
• -256 + 128 = 1x(-256) + 1x128 + all zeros = 0b1 1000 0000

• 10-bit version:
• -512 + 256 + 128 = 0b11 1000 0000

53

Sign Extension Examples

• Converting from smaller to larger integer data type

• C automatically performs sign extension for signed types
• If cast changes both sign and size, extends based on source signedness

• But less confusing to write code that makes the types (and casts) explicit

signed short x = 15213;

signed int ix = (int) x;

signed short y = -15213;

signed int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Break + Practice

• Convert 16-bit 0x3427 to an 8-bit signed integer

• Convert 8-bit 0xF0 to a 16-bit signed integer

56

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Break + Practice

• Convert 16-bit 0x3427 to an 8-bit signed integer

• Process: truncate extra bits

• Answer is 0x27

• Convert 8-bit 0xF0 to a 16-bit signed integer

• Process: sign extend. Is the most-significant bit one? Yes!

• Answer is 0xFFF0

57

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

58

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

Encoding strings (The C way)

• Represented by array of characters
• Each character encoded in ASCII format

• NULL character (code 0) to mark the end

• Compatibility
• Byte ordering not an issue (data all single-byte!)

• ASCII text files generally platform independent

• Except for different conventions of line termination
character(s)!

char S[6] = "18243";

Big-Endian Little-Endian

0x31

0x38

0x32

0x34

0x33

0x00

0x31

0x38

0x32

0x34

0x33

0x00

59

Encoding color

• RGB colors
• 3-byte values

• First byte is Red, then Green, then Blue

• Usually specified in hexadecimal
• #FF0000 -> maximum red, zero green or blue

• #4E2A84 -> 1/4 red, 1/8 blue, 1/2 green (Northwestern Purple)

• 224 possible colors = 16777216 colors

60

Interpreting file contents

• Collections of data
• Usually in permanent storage on your computer

• Regular files
• Arbitrary data

• Think of as a big array of bytes

61

Sidebar: what about types of regular files?

• Text files versus Executables versus Tar files
• All just differing patterns of bytes!

• It really is just all data. The meaning is in how you interpret it.

62

Executable
File

Archive
(tar)

Identifying regular files

• file in Linux command line can help determine the type of a file
• https://github.com/file/file

63

https://github.com/file/file

Encoding time

• Unix time:
• 32-bit signed integer counting seconds elapsed since initial time

• Initial time was January 1st at midnight UTC, 1970

• Current Unix time (as of last editing this slide): 1672850392
• Negative numbers would mean times before 1970

• Problem: when does Unix time hit the maximum value?
• 2147483647 seconds from January 1st 1970

• Result: January 19th, 2038

• This is the “Year 2038 Problem”

64

https://en.wikipedia.org/wiki/Year_2038_problem

Bonus xkcd comic

65https://xkcd.com/2697/

66

• Memory

• Encoding

• Integer Encodings
• Signed Integers

• Converting Sign

• Converting Length

• Other encodings

Outline

	Default Section
	Slide 1: Lecture 02 Representations

	Goals
	Slide 2: Announcements
	Slide 3: Today’s Goals

	Memory
	Slide 4: Outline
	Slide 5: Byte-oriented memory organization
	Slide 6: Most/least significant bits/bytes
	Slide 7: Addressing and byte ordering
	Slide 8: There isn’t always one correct answer
	Slide 9: 1. Addressing data in memory
	Slide 10: 2. Byte ordering
	Slide 11: Practice: reading memory
	Slide 12: Practice: reading memory
	Slide 13: Practice: reading memory

	Encoding
	Slide 14: Outline
	Slide 15: What do bits and bytes mean in a system?
	Slide 16: An example encoding: ASCII characters
	Slide 17: Full ASCII table
	Slide 18: Encodings are just determined by people
	Slide 19: Open Question + Break
	Slide 20: Open Question + Break

	Integer Encodings
	Slide 21: Outline
	Slide 22: Integer types in C
	Slide 23: Sizes of C types are system dependent
	Slide 24: Expressing C types in bits
	Slide 25: Unsigned integer encoding
	Slide 26: Bounds of unsigned integers

	Signed Integers
	Slide 27: Outline
	Slide 28: Encoding signed integers
	Slide 29: Attempting signed encoding
	Slide 30: Two’s complement encoding
	Slide 31: Two’s complement examples
	Slide 32: Interpreting binary signed values
	Slide 33: Bounds of two’s complement integers
	Slide 34: Ranges for different bit amounts
	Slide 35: Unsigned & Signed Numeric Values
	Slide 36: Practice + Break
	Slide 37: Practice + Break

	Converting Sign
	Slide 38: Outline
	Slide 39: Casting signed to unsigned
	Slide 40: Mapping Signed  Unsigned (4 bits)
	Slide 41: Signed vs Unsigned in C
	Slide 42: Example
	Slide 43: Example
	Slide 44: Example
	Slide 45: Example
	Slide 46: Code Security Example
	Slide 47: Typical Usage
	Slide 48: Malicious Usage

	Converting Length
	Slide 49: Outline
	Slide 50: Truncation
	Slide 51: Extension
	Slide 52: Sign Extension
	Slide 53: Example sign extension
	Slide 54: Sign Extension Examples
	Slide 56: Break + Practice
	Slide 57: Break + Practice

	Other encoding
	Slide 58: Outline
	Slide 59: Encoding strings (The C way)
	Slide 60: Encoding color
	Slide 61: Interpreting file contents
	Slide 62: Sidebar: what about types of regular files?
	Slide 63: Identifying regular files
	Slide 64: Encoding time
	Slide 65: Bonus xkcd comic

	Wrapup
	Slide 66: Outline

