
Lecture 01
Introduction

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Welcome to CS213!

• In brief: how does a computer work anyway?

• We will explore that question across four major sections:
• Representations of information on a computer

• How the machine executes software

• How memory is organized

• How the operating system manages this all for efficiency and security

2

Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech
• Master’s: University of Michigan
• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems
• Low-energy wireless networks
• Embedded operating systems

• Teaching
• Computer Systems

• CS211: Fundamentals of Programming II
• CS213: Intro to Computer Systems
• CS343: Operating Systems
• CE346: Microprocessor System Design
• CS397: Wireless Protocols for the IoT

3

Things I love

Today’s Goals

• Introduce the theme and goals of the course

• Describe how this class is going to function

• Discuss how a computer system works at a high level

• Begin exploring how computers represent information with bits
and bytes

4

5

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

Convenient computing

• Computers operate on integers, reals, structs, arrays, etc.

• Computers operate on variables and functions

• Computers execute conditionals, loops, etc.

• Memory is an infinite bag of objects my program can allocate

• Memory doesn’t have to be shared with any other program

• Memory is always equivalently fast to access

• Etc.

6

Convenient illusions in computing

• Computers operate on integers, reals, structs, arrays, etc.

• Computers operate on variables and functions

• Computers execute conditionals, loops, etc.

• Memory is an infinite bag of objects my program can allocate

• Memory doesn’t have to be shared with any other program

• Memory is always equivalently fast to access

• Etc.

• None of these are actually true!
• But we usually program as if they were, and we get away with it!

• What’s going on?

7

The power of abstraction

• These illusions are called abstractions

• They approximate reality, but leave out details
• Instead, they provide an interface that we can work and think with

• We can forget about those details, and be more productive

• Abstractions we love
• Abstract data types
• Asymptotic analysis
• High-level programming languages
• Operating systems
• Etc.

8

The Limits of Abstraction

• Sometimes, abstractions break down
• Their implementation is buggy
• Mismatch between expected interface and implementation
• Their performance is inadequate
• We need control over the details they hide
• Security concerns make these details important

• At that point, details come rushing back
• Can’t pretend they don’t exist anymore
• We must know how to deal with them

• This class prepares you to be ready when that happens

9

Complicated designs fail in unexpected ways

• Some software engineers at Microsoft came up with a cute way of
storing dates
• Two-digit year, month, date, hour, minute concatenated into a 10-digit

number
• Example: 2005230710 -> May 23, 2020 at 7:10 AM

• Stored as a 32-bit signed number
• Maximum value: 2147483647

• Result: Starting January 1st, 2022, Microsoft Exchange email
servers could no longer send email
• 2201010001 is greater than the largest 32-bit number
• Microsoft had to issue an emergency patch

10

Expectation mismatches lead to real-world problems

• Ariane 5 explosion (1996)
• Inertial reference system converted a 64-bit float to a 16-bit integer

• Expectation: converting from decimal to whole numbers is safe

• Had worked in the past in Ariane 4, but Ariane 5 was faster

• Speed too large to fit in a 16-bit integer -> software fault

• Reality: rocket explodes

11

double short

Hardware realities impact software performance

• Abstracted lower-level details can affect performance a lot!

• Question: does the order of iterating through an array matter?
• Each column in a row OR each row in a column?

• Answer: right code is 10-32 times slower on Intel systems
• Due to caches

12

void copyji(int src[4096][4096],
int dst[4096][4096])

{
for (int j=0; j<4096; j++){
for (int i=0; i<4096; i++){

dst[i][j] = src[i][j];
}

}
}

void copyij(int src[4096][4096],
int dst[4096][4096])

{
for (int i=0; i<4096; i++){
for (int j=0; j<4096; j++){

dst[i][j] = src[i][j];
}

}
}

Simple bugs can result in massive vulnerabilities

• 2014 vulnerability in OpenSSL

• Clients can check if server is
active by sending a message
and listening for echoed
response

• C library forgot to check
bounds of array and could be
abused to return important
memory

13

CS213 goals

1. Break through abstractions to understand how computer
processors and memories affect software design and
performance

2. Introduce concepts of “computer systems” areas:
• Architecture, Compilers, Security, Embedded, Operating Systems, etc.

14

Course design goal

• Most systems courses are builder-centric
• Computer Architecture: design a pipelined processor in Verilog
• Operating Systems: implement portions of an operating system
• Compilers: write a compiler for a simple language
• Networking: implement and simulate network protocols
• Fun, for sure

• But ultimately, many more of you will build on systems
• Rather than build systems directly

• This course is programmer-centric
• Purpose is to show that by knowing more about the underlying system, one can

be more effective as a programmer
• Not just a course for dedicated hackers

• We want to bring out the hacker in everyone!

15

16

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

Course Staff

• TA (1)
• Mohammad Kavousi

• PhD student in Computer Science

• PMs (13):
• Francis Brenner Kellen Bryant
• Adam Chen Huaxuan Chen
• Elena Fabian Joseph Grantham
• Dimitri Hatzisavas Alex Kang
• Dilan Nair Danny Pineda
• Sean Rhee Santi Roches
• Evan Waite

17

Their role: support student
questions via office
hours and piazza

Course details - how to learn stuff

• Lectures: here in class, Mondays and Wednesdays
• Please attend and ask questions!
• Panopto tab on Canvas should have best-effort recordings (a few hours

later)

• Textbook:
• Computer Systems: A Programmer’s Perspective 3rd Edition
• A very useful reference

• Office hours: (starting next week)
• Planning a mix of in-person and online (gather.town)
• More info will be posted to Piazza when schedule is ready

• Can reach out on Piazza to schedule a meeting too

18

Asking questions

• Class and office hours are always an option!
• We can do extra questions right after class too

• Piazza: (similar to Campuswire)
• Post questions
• Answer each other’s questions
• Find lab partners
• Find posts from the course staff
• Post private info just to course staff

• Please do not email me! Post to Piazza instead!
• I’ll be updating roster again a few times

19

Programming Labs

• Four labs
1. Pack Lab (new) – manipulate bits and bytes of a file
2. Bomb Lab – deconstruct software to understand it
3. Attack Lab – exploit security vulnerabilities in software
4. SETI Lab – make software faster with concurrency

• Work on these preferably as a group of two
• Work together and don’t split up assignments (otherwise you won’t learn)
• Individual is acceptable but less good
• We’ll do a pairing survey if you don’t already have a partner in mind

• Very different from CS211 style projects
• Emphasis on the thinking rather than the programming

20

Homeworks

• Worksheet-style practice problems to help you actually understand
what’s going on and practice for exams

• Four homeworks that cover class topics
1. Bits and Bytes (releases on Wednesday)

2. Floating Point

3. Assembly

4. Caches

21

Midterm Exams

• First midterm exam will be during class time
• Should be back in person well before then

• Second midterm exam will be during exam week
• Important: Wednesday of exam week is our scheduled slot

• Not cumulative, second midterm is second half of class
• But material in this class builds on itself…

22

Grades

• Grade breakdown
• 50% Programming Labs (4 labs at 12.5% each)

• 20% Homeworks (4 homeworks at 5% each)

• 15% Midterm Exam 1

• 15% Midterm Exam 2

• Exact number to letter mapping is a little flexible
• But this course is NOT curved

23

Late Policy

• You can submit homeworks and labs late

• 20% penalty to maximum grade per day late
• Example: three days late means maximum grade is 40%

• There are exceptions to this:

1. We will be flexible with deadlines for problems outside of your
control
• Sick, family emergency, broken computer

• Contact me (via Piazza)

24

Slip Days

2. Slip days let you turn in a homework late and receive no penalty

• Each student gets 3 slip days
• Apply to homeworks and labs
• You don’t need to tell us you’re using them, we’ll just automatically apply

them at the end of the year
• Be sure to coordinate about them on partner assignments

• Examples:
• Turn in homework 1 three days late
• Turn in homework 4 two days late and SETI lab one day late
• Turn in homework 2 four days late with only a one-day penalty

25

Academic Integrity

• This is something I take very seriously

• Collaboration good; plagiarism bad
• You should know where that line is, and be nowhere near it
• When in doubt, ask the instructor before you do something you’re not sure

about

• At no point should you see someone else’s solutions
• Not your colleagues’, not your friends’, not your cousin’s, not something

you found online

• I report everything suspicious to the dean

26

Break + Architecture of a lecture

27

A
tt

en
ti

o
n

Time (minutes)

0 20 25 50 53 78 80

Administrivia
+ stretch break

Summary
+ Bonus

Open
Question

Full

Expectations

• This class is hard
• And it’s hard in a different way. Lots of new material that builds on itself

• You have an opportunity to learn a lot from it

• I’m confident that you can all succeed
• Labs, Homeworks, Lecture, Office Hours are all designed to support you

• You’ll gain a much deeper understanding of how computers operate
• Maybe it’s not for you, maybe you’ll love it

28

How to succeed in this class

• Come to lecture

• Ask questions

• Consult the textbook for clarity and practice

• Start assignments early

• Stay on top of the material

29

30

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

Hello World

• What happens when you run “hello” on your system?
• And why does it happen?

• Goal: introduce key concepts, terminology, and components

/*

* hello world

*/

#include <stdio.h>

int main()

{

printf(“hello, world\n”);

}

31

Compiling hello

• Compiling hello

• GCC is our compiler

1. It takes our source code (hello.c)
• A text file containing characters
• Text file = readable by humans

2. And translates (compiles) it into assembly code
• A text representation of x86 instructions
• Here, not explicitly stored in a file
• We’ll be working with assembly a lot this quarter

3. Then translates (assembles) that into an executable (hello)
• A binary file containing x86 machine code
• Binary file = not meant to be read by humans (but sometimes we have to)

unix> gcc –o hello hello.c

32

Running hello

• Running hello

• What does the shell do?
• Prints a prompt
• Waits for you to type a command
• Interpret the command
• Then loads and runs the hello program

• What happens at the hardware level?

unix> ./hello

hello, world

unix>

33

Hardware organization

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

Buses: transfer data

Input/Output (I/O) Devices:

System connections to outside world.

Main mem.: Temporary storage

device. Holds both a program

and the data it manipulates.

Processor: Executes

instructions stored in

main memory

Disk: Persistent

storage device
34

Running hello

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

./hello

User types ./hello

Reading the ./hello command

from the keyboard

Mouse Keyboard

35

Running hello

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

Shell program loads the hello

executable into main memory

hello code

./hello

hello executable

stored on disk

Mouse Keyboard

36

Running hello

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

hello executable

stored on disk
"hello,world\n"

The processor reads the hello code,

executes instructions, and displays “hello…”

hello code

./hello

Mouse Keyboard

37

The Operating System (OS)

• Neither hello nor our shell interfaced with the hardware directly
• All interactions were mediated by the operating system

• Operating system: a layer of software interposed between the
application program and the hardware

• Primary goals
• Protect resources from misuse by applications
• Provide simple and uniform mechanisms for manipulating hardware devices
• Manage sharing of resources between applications

Application programs

Processor Main memory I/O devices

Operating system

Software

Hardware

38

A computer system is more than just HW

• A collection of intertwined hardware and software that must
cooperate to achieve the end goal – running applications
• Hardware: expensive, fast, immutable

• Software: cheap (comparatively), slow, flexible

• Different tradeoffs

• So we’ll use them for different roles!

• The rest of the course will expand on this

39

Open Question + Break

• What part of the hello example takes the longest to run
on a computer?

40

Open Question + Break

• What part of the hello example takes the longest to run
on a computer?

• The user typing (seconds)

• Maybe that’s cheating and we should start after they hit enter

41

Open Question + Break

• What part of the hello example takes the longest to run
on a computer?

• The user typing (seconds)

• Maybe that’s cheating and we should start after they hit enter

• Almost certainly loading the program from disk (milliseconds)

• Possibly sending text to graphics (microseconds – milliseconds)

• Definitely not executing the code (nanoseconds – microseconds)

42

43

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

Learning binary

• To understand how a computer really works we need to
understand that data it operates on

• Computers hold data in memory as individual ones and zeros
• These ones and zeros make up binary values

• So, we’re going to need to understand binary
• Binary will definitely come up again in this and other classes

44

Positional Numbering Systems

• The position of a numeral (e.g., digit) determines its contribution
to the overall number
• Makes arithmetic simple (compared to, say, roman numerals)

• Any number has one canonical representation

• Example: base 10
• 1045610 = 1*104 + 0*103 + 4*102 + 5*101 + 6*100

• Usually, we leave out the zeros:

• 1*104 + 4*102 + 5*101 + 6*100

45

Other bases are also possible

• Base 60, used by the Babylonians
• The source of 60 seconds in a minute, 60 minutes in an hour

• And 360 degrees in a circle

• Base 20, used by the Maya and Gauls
• Parts of this remain in French today

• Base 2, used by computers
• Example: 100100102

• Same idea as before: 1*27 + 1*24 + 1*21 = 12810 + 1610 + 210 = 14610

46

Base 2 Example

• Computer Scientists use base 2 a LOT (especially in computer systems)

• Let’s convert 13810 to base 2

• We need to decompose 13810 into a sum of powers of 2
• Start with the largest power of 2 that is smaller or equal to 13810

• Subtract it, then repeat the process

13810 – 12810 = 1010

1010 – 810 = 210

210 – 210 = 010

13810 = 1×128 + 0×64 + 0×32 + 0×16 + 1×8 + 0×4 + 1×2 + 0×1

13810 = 100010102

13810 = 1×27 + 0×26 + 0×25 + 0×24 + 1×23 + 0×22 + 1×21 + 0×20

47

Binary practice

• Convert 1012 to decimal

• = 1×22 + 0×21 + 1×20

• = 4 + 0 + 1

• = 510

• Convert 410 to binary:1002 (one less than 5)

• Convert 610 to binary: 1102 (one more than 5)

48

Why computers use Base 2

• Simple electronic implementation
• Easy to store with bi-stable elements
• Reliably transmitted on noisy and inaccurate wires

• Straightforward implementation of arithmetic functions

• (Pretty much) all computers use base 2

0.0V

0.5V

2.8V

3.3V

0 1 0

49

V
o
lt
a
g
e

Time

Why don’t computers use Base 10?

• Because implementing it electronically is a pain
• Hard to store

• ENIAC (first general-purpose electronic computer)
used 10 vacuum tubes / digit

• Hard to transmit
• Need high precision to encode

10 signal levels on single wire

• Messy to implement digital logic functions
• Addition, multiplication, etc.

• (See CE203 for details)

50

Base 16: Hexadecimal

• Writing long sequences of 0s and 1s is tedious and
error-prone
• And takes up a lot of space on a page!

• So we’ll often use base 16 (also called hexadecimal)

•

• Base 2 = 2 symbols (0, 1)
Base 10 = 10 symbols (0-9)
Base 16, need 16 symbols
• Use letters A-F once we run out of decimal digits

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

51

Base 16: Hexadecimal

• 16 = 24, so every group of 4 bits becomes a
hexadecimal digit (or hexit)
• If we have a number of bits not divisible by 4, add 0s on

the left (always ok, just like base 10)

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

1 0 1 0 0 1 0 1 1 1 1 0 1 1 0x297B0 0

“0x” prefix = it’s in hex

52

Bytes

• A single bit doesn’t hold much information
• Only two possible values: 0 and 1

• So we’ll typically work with larger groups of bits

• For convenience, we’ll refer to groups of 8 bits as bytes
• And usually work with multiples of 8 bits at a time

• Conveniently, 8 bits = 2 hexits

• Some examples
• 1 byte: 0b01100111 = 0x67

• 2 bytes: 11000100 001011112 = 0xC42F

53

“0b” prefix = it’s in binary

Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• Convert binary to decimal:

54

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• 0x4 -> 0b0100 0x2 -> 0b0010 0x42 -> 0b 0100 0010

• Convert binary to decimal:

55

Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• 0x4 -> 0b0100 0x2 -> 0b0010 0x42 -> 0b 0100 0010

• Convert binary to decimal:

• 1*26 + 1*21 = 64 + 2 = 66

56

Practice problem

• Convert 0x42 to decimal

• Alternate method:
• 0x42

• = 4×161 + 2×160

• = 64 + 2

• = 66

• But you’re honestly better off converting hex to binary for now
• It’s good practice!

57

Big idea: bits can be used to represent anything

• Depending on the context, the bits 11000011 could mean
• The number 195

• The number -61

• The number -1.1875

• The value True

• The character ‘├’

• The ret x86 instruction

• You have to know the context to make sense of any bits you have!
• People and software they write determine what the bits actually mean

59

60

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

61

• Backup: Boolean Algebra

Outline

Boolean Algebra

• You’ve programmed with and and or in earlier classes
• Written && and || in C and C++

• Boolean algebra is a generalization of that
• A mathematical system to represent (propositional) logic

• 2 truth values: true = 1, false = 0

• 3 operations: and = &, or = |, not (or complement) = ~

• Follow the rules for each operation to compute results
• Rules are the like those you know from programming

(1 | 0) & 0 1 & 0 0

(1 & 1) & ~(0 | 0) 1 & ~(0) 1 & 1 1

Truth Tables for Boolean Algebra

• For each possible value of each input, what is the output
• Axes are the inputs

• Inside of the table are the outputs

~

0 1

1 0

not: ~A

& 0 1

0 0 0

1 0 1

and: A & B

| 0 1

0 0 1

1 1 1

or: A | B

De Morgan’s Laws, Exclusive Or

• Can express boolean operators in terms of the others

• De Morgan’s laws: & using | and ~, | using & and ~
• A & B = ~(~A | ~B)

• A and B are true if and only if neither A nor B is false
• A | B = ~(~A & ~B)

• A or B are true if and only if A and B are not both false

• Can define new operators in terms of existing ones:
• Exclusive or (xor, ^) in terms of inclusive or (|)

• A ^ B = (~A & B) | (A & ~B)
• Exactly one of A and B is true

• A ^ B = (A | B) & ~(A & B)
• Either A is true, or B is true, but not both

• The two definitions are equivalent

^ 0 1

0 0 1

1 1 0

xor: A ^ B

Generalized Boolean Algebra

• Binary bits can represent truth values: 0 = false, 1 = true

• Boolean operations can be extended to work on vectors of bits
• Operations applied one bit at a time: bitwise

• All of the properties of Boolean algebra apply
• Relationships between operations, etc.

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

Bit-level operations in C

• Operations &, |, ~, ^ available in C
• Apply to any “integral” data type

• long, int, short, char, unsigned

• View arguments as bit vectors

• Arguments applied bit-wise

• Examples (char data type, single byte)
• ~0x00 → 0xFF

~000000002 → 111111112

• ~0x41 → 0xBE
~010000012 → 101111102

• 0x69 | 0x55 → 0x7D

011010012 | 010101012 → 011111012

Logic operations in C – not the same!

• Logical operations ||, && and ! (Logic OR, AND & Not)

• Contrast to bit-wise operators

• View 0 as “False”

• View anything nonzero as “True”

• Always return 0 or 1 (i.e., false or true) rather than a sequence of bits

• Early termination (if you can answer by just looking at the first argument, you are done)

• Examples (char data type)
• !0x41 → 0x00

• !0x00 → 0x01

• !!0x41 → 0x01

• 0x59 && 0x35 → 0x01

• 0x59 || 0x35 → 0x01

• p && *p (avoids null pointer access)

Watch out for && vs. &
(and || vs. |) …
one of the more
common slip-ups in
C programming

	Default Section
	Slide 1: Lecture 01 Introduction

	Goals
	Slide 2: Welcome to CS213!
	Slide 3: Branden Ghena (he/him)
	Slide 4: Today’s Goals

	Course Theme
	Slide 5: Outline
	Slide 6: Convenient computing
	Slide 7: Convenient illusions in computing
	Slide 8: The power of abstraction
	Slide 9: The Limits of Abstraction
	Slide 10: Complicated designs fail in unexpected ways
	Slide 11: Expectation mismatches lead to real-world problems
	Slide 12: Hardware realities impact software performance
	Slide 13: Simple bugs can result in massive vulnerabilities
	Slide 14: CS213 goals
	Slide 15: Course design goal

	Course Logistics
	Slide 16: Outline
	Slide 17: Course Staff
	Slide 18: Course details - how to learn stuff
	Slide 19: Asking questions
	Slide 20: Programming Labs
	Slide 21: Homeworks
	Slide 22: Midterm Exams
	Slide 23: Grades
	Slide 24: Late Policy
	Slide 25: Slip Days
	Slide 26: Academic Integrity
	Slide 27: Break + Architecture of a lecture
	Slide 28: Expectations
	Slide 29: How to succeed in this class

	Overview of Computer Systems
	Slide 30: Outline
	Slide 31: Hello World
	Slide 32: Compiling hello
	Slide 33: Running hello
	Slide 34: Hardware organization
	Slide 35: Running hello
	Slide 36: Running hello
	Slide 37: Running hello
	Slide 38: The Operating System (OS)
	Slide 39: A computer system is more than just HW
	Slide 40: Open Question + Break
	Slide 41: Open Question + Break
	Slide 42: Open Question + Break

	Basic Notations
	Slide 43: Outline
	Slide 44: Learning binary
	Slide 45: Positional Numbering Systems
	Slide 46: Other bases are also possible
	Slide 47: Base 2 Example
	Slide 48: Binary practice
	Slide 49: Why computers use Base 2
	Slide 50: Why don’t computers use Base 10?
	Slide 51: Base 16: Hexadecimal
	Slide 52: Base 16: Hexadecimal
	Slide 53: Bytes
	Slide 54: Practice problem
	Slide 55: Practice problem
	Slide 56: Practice problem
	Slide 57: Practice problem
	Slide 59: Big idea: bits can be used to represent anything

	Wrapup
	Slide 60: Outline

	Boolean Algebra
	Slide 61: Outline
	Slide 62: Boolean Algebra
	Slide 63: Truth Tables for Boolean Algebra
	Slide 64: De Morgan’s Laws, Exclusive Or
	Slide 65: Generalized Boolean Algebra
	Slide 66: Bit-level operations in C
	Slide 67: Logic operations in C – not the same!

