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Welcome to CS213!

• In brief: how does a computer work anyway?

• We will explore that question across four major sections:
• Representations of information on a computer

• How the machine executes software

• How memory is organized

• How the operating system manages this all for efficiency and security
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Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech
• Master’s: University of Michigan
• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems
• Low-energy wireless networks
• Embedded operating systems

• Teaching
• Computer Systems

• CS211: Fundamentals of Programming II
• CS213: Intro to Computer Systems
• CS343: Operating Systems
• CE346: Microprocessor System Design
• CS397: Wireless Protocols for the IoT
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Today’s Goals

• Introduce the theme and goals of the course

• Describe how this class is going to function

• Discuss how a computer system works at a high level

• Begin exploring how computers represent information with bits 
and bytes
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• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline



Convenient computing

• Computers operate on integers, reals, structs, arrays, etc.

• Computers operate on variables and functions

• Computers execute conditionals, loops, etc.

• Memory is an infinite bag of objects my program can allocate

• Memory doesn’t have to be shared with any other program

• Memory is always equivalently fast to access

• Etc.
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Convenient illusions in computing

• Computers operate on integers, reals, structs, arrays, etc.

• Computers operate on variables and functions

• Computers execute conditionals, loops, etc.

• Memory is an infinite bag of objects my program can allocate

• Memory doesn’t have to be shared with any other program

• Memory is always equivalently fast to access

• Etc.

• None of these are actually true!
• But we usually program as if they were, and we get away with it!

• What’s going on?
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The power of abstraction

• These illusions are called abstractions

• They approximate reality, but leave out details
• Instead, they provide an interface that we can work and think with

• We can forget about those details, and be more productive

• Abstractions we love
• Abstract data types
• Asymptotic analysis
• High-level programming languages
• Operating systems
• Etc.

8



The Limits of Abstraction

• Sometimes, abstractions break down
• Their implementation is buggy
• Mismatch between expected interface and implementation
• Their performance is inadequate
• We need control over the details they hide
• Security concerns make these details important

• At that point, details come rushing back
• Can’t pretend they don’t exist anymore
• We must know how to deal with them

• This class prepares you to be ready when that happens
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Complicated designs fail in unexpected ways

• Some software engineers at Microsoft came up with a cute way of 
storing dates
• Two-digit year, month, date, hour, minute concatenated into a 10-digit 

number
• Example: 2005230710 -> May 23, 2020 at 7:10 AM

• Stored as a 32-bit signed number
• Maximum value: 2147483647

• Result: Starting January 1st, 2022, Microsoft Exchange email 
servers could no longer send email
• 2201010001 is greater than the largest 32-bit number
• Microsoft had to issue an emergency patch
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Expectation mismatches lead to real-world problems

• Ariane 5 explosion (1996)
• Inertial reference system converted a 64-bit float to a 16-bit integer

• Expectation: converting from decimal to whole numbers is safe

• Had worked in the past in Ariane 4, but Ariane 5 was faster

• Speed too large to fit in a 16-bit integer -> software fault

• Reality: rocket explodes

11

double short



Hardware realities impact software performance 

• Abstracted lower-level details can affect performance a lot!

• Question: does the order of iterating through an array matter?
• Each column in a row OR each row in a column?

• Answer: right code is 10-32 times slower on Intel systems
• Due to caches
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void copyji(int src[4096][4096],
int dst[4096][4096])

{
for (int j=0; j<4096; j++){
for (int i=0; i<4096; i++){

dst[i][j] = src[i][j];
}

}
}

void copyij(int src[4096][4096],
int dst[4096][4096])

{
for (int i=0; i<4096; i++){
for (int j=0; j<4096; j++){

dst[i][j] = src[i][j];
}

}
}



Simple bugs can result in massive vulnerabilities

• 2014 vulnerability in OpenSSL

• Clients can check if server is 
active by sending a message 
and listening for echoed 
response

• C library forgot to check 
bounds of array and could be 
abused to return important 
memory
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CS213 goals

1. Break through abstractions to understand how computer 
processors and memories affect software design and 
performance

2. Introduce concepts of “computer systems” areas:
• Architecture, Compilers, Security, Embedded, Operating Systems, etc.
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Course design goal

• Most systems courses are builder-centric
• Computer Architecture: design a pipelined processor in Verilog
• Operating Systems: implement portions of an operating system
• Compilers: write a compiler for a simple language
• Networking: implement and simulate network protocols
• Fun, for sure

• But ultimately, many more of you will build on systems
• Rather than build systems directly

• This course is programmer-centric
• Purpose is to show that by knowing more about the underlying system, one can 

be more effective as a programmer
• Not just a course for dedicated hackers

• We want to bring out the hacker in everyone!
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• Logistics

• Running a program

• Representing numbers with binary
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Course Staff

• TA (1)
• Mohammad Kavousi

• PhD student in Computer Science

• PMs (13):
• Francis Brenner Kellen Bryant
• Adam Chen Huaxuan Chen
• Elena Fabian Joseph Grantham
• Dimitri Hatzisavas Alex Kang
• Dilan Nair Danny Pineda
• Sean Rhee Santi Roches
• Evan Waite
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Their role: support student 
questions via office 
hours and piazza



Course details - how to learn stuff

• Lectures: here in class, Mondays and Wednesdays
• Please attend and ask questions!
• Panopto tab on Canvas should have best-effort recordings (a few hours 

later)

• Textbook:
• Computer Systems: A Programmer’s Perspective 3rd Edition
• A very useful reference

• Office hours: (starting next week)
• Planning a mix of in-person and online (gather.town)
• More info will be posted to Piazza when schedule is ready

• Can reach out on Piazza to schedule a meeting too
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Asking questions

• Class and office hours are always an option!
• We can do extra questions right after class too

• Piazza: (similar to Campuswire)
• Post questions
• Answer each other’s questions
• Find lab partners
• Find posts from the course staff
• Post private info just to course staff

• Please do not email me! Post to Piazza instead!
• I’ll be updating roster again a few times
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Programming Labs

• Four labs
1. Pack Lab (new) – manipulate bits and bytes of a file
2. Bomb Lab – deconstruct software to understand it
3. Attack Lab – exploit security vulnerabilities in software
4. SETI Lab – make software faster with concurrency

• Work on these preferably as a group of two
• Work together and don’t split up assignments (otherwise you won’t learn)
• Individual is acceptable but less good
• We’ll do a pairing survey if you don’t already have a partner in mind

• Very different from CS211 style projects
• Emphasis on the thinking rather than the programming

20



Homeworks

• Worksheet-style practice problems to help you actually understand
what’s going on and practice for exams

• Four homeworks that cover class topics
1. Bits and Bytes (releases on Wednesday)

2. Floating Point

3. Assembly

4. Caches
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Midterm Exams

• First midterm exam will be during class time
• Should be back in person well before then

• Second midterm exam will be during exam week
• Important: Wednesday of exam week is our scheduled slot

• Not cumulative, second midterm is second half of class
• But material in this class builds on itself…
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Grades

• Grade breakdown
• 50% Programming Labs (4 labs at 12.5% each)

• 20% Homeworks (4 homeworks at 5% each)

• 15% Midterm Exam 1

• 15% Midterm Exam 2

• Exact number to letter mapping is a little flexible
• But this course is NOT curved
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Late Policy

• You can submit homeworks and labs late

• 20% penalty to maximum grade per day late
• Example: three days late means maximum grade is 40%

• There are exceptions to this:

1. We will be flexible with deadlines for problems outside of your 
control
• Sick, family emergency, broken computer

• Contact me (via Piazza)
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Slip Days

2. Slip days let you turn in a homework late and receive no penalty

• Each student gets 3 slip days
• Apply to homeworks and labs
• You don’t need to tell us you’re using them, we’ll just automatically apply 

them at the end of the year
• Be sure to coordinate about them on partner assignments

• Examples:
• Turn in homework 1 three days late
• Turn in homework 4 two days late and SETI lab one day late
• Turn in homework 2 four days late with only a one-day penalty
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Academic Integrity

• This is something I take very seriously

• Collaboration good; plagiarism bad
• You should know where that line is, and be nowhere near it 
• When in doubt, ask the instructor before you do something you’re not sure 

about

• At no point should you see someone else’s solutions
• Not your colleagues’, not your friends’, not your cousin’s, not something 

you found online

• I report everything suspicious to the dean
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Break + Architecture of a lecture
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Expectations

• This class is hard
• And it’s hard in a different way. Lots of new material that builds on itself

• You have an opportunity to learn a lot from it

• I’m confident that you can all succeed
• Labs, Homeworks, Lecture, Office Hours are all designed to support you

• You’ll gain a much deeper understanding of how computers operate
• Maybe it’s not for you, maybe you’ll love it

28



How to succeed in this class

• Come to lecture

• Ask questions

• Consult the textbook for clarity and practice

• Start assignments early

• Stay on top of the material

29
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• Logistics

• Running a program

• Representing numbers with binary
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Hello World

• What happens when you run “hello” on your system?
• And why does it happen?

• Goal: introduce key concepts, terminology, and components

/*

* hello world 

*/

#include <stdio.h>

int main()

{

printf(“hello, world\n”);

} 
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Compiling hello

• Compiling hello

• GCC is our compiler

1. It takes our source code (hello.c)
• A text file containing characters
• Text file = readable by humans

2. And translates (compiles) it into assembly code
• A text representation of x86 instructions
• Here, not explicitly stored in a file
• We’ll be working with assembly a lot this quarter

3. Then translates (assembles) that into an executable (hello)
• A binary file containing x86 machine code
• Binary file = not meant to be read by humans (but sometimes we have to)

unix> gcc –o hello hello.c
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Running hello

• Running hello

• What does the shell do?
• Prints a prompt
• Waits for you to type a command
• Interpret the command
• Then loads and runs the hello program

• What happens at the hardware level?

unix> ./hello

hello, world

unix>
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Hardware organization

Main

memory
I/O 

bridge
Processor

System bus Memory bus

Disk 

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

hello executable 

stored on disk

Buses: transfer data

Input/Output (I/O) Devices:

System connections to outside world.

Main mem.: Temporary storage 

device. Holds both a program 

and the data it manipulates.
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instructions stored in 

main memory

Disk: Persistent

storage device
34



Running hello
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Running hello
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Running hello

Main

memory
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bridge
Processor
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Disk 

controller

Graphics
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USB

controller

Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

hello executable 

stored on disk
"hello,world\n"

The processor reads the hello code,

executes instructions, and displays “hello…”

hello code

./hello

Mouse Keyboard

37



The Operating System (OS)

• Neither hello nor our shell interfaced with the hardware directly
• All interactions were mediated by the operating system

• Operating system: a layer of software interposed between the 
application program and the hardware

• Primary goals
• Protect resources from misuse by applications
• Provide simple and uniform mechanisms for manipulating hardware devices
• Manage sharing of resources between applications

Application programs

Processor Main memory I/O devices

Operating system

Software

Hardware
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A computer system is more than just HW

• A collection of intertwined hardware and software that must 
cooperate to achieve the end goal – running applications
• Hardware: expensive, fast, immutable

• Software: cheap (comparatively), slow, flexible

• Different tradeoffs

• So we’ll use them for different roles!

• The rest of the course will expand on this
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Open Question + Break

• What part of the hello example takes the longest to run 
on a computer?
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Open Question + Break

• What part of the hello example takes the longest to run 
on a computer?

• The user typing (seconds)

• Maybe that’s cheating and we should start after they hit enter
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Open Question + Break

• What part of the hello example takes the longest to run 
on a computer?

• The user typing (seconds)

• Maybe that’s cheating and we should start after they hit enter

• Almost certainly loading the program from disk (milliseconds)

• Possibly sending text to graphics (microseconds – milliseconds)

• Definitely not executing the code (nanoseconds – microseconds)
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• Logistics

• Running a program

• Representing numbers with binary
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Learning binary

• To understand how a computer really works we need to 
understand that data it operates on

• Computers hold data in memory as individual ones and zeros
• These ones and zeros make up binary values

• So, we’re going to need to understand binary
• Binary will definitely come up again in this and other classes
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Positional Numbering Systems

• The position of a numeral (e.g., digit) determines its contribution 
to the overall number
• Makes arithmetic simple (compared to, say, roman numerals)

• Any number has one canonical representation

• Example: base 10
• 1045610 = 1*104 +   0*103 +   4*102  +   5*101  +   6*100

• Usually, we leave out the zeros:

• 1*104 +  4*102  +   5*101  +   6*100
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Other bases are also possible

• Base 60, used by the Babylonians
• The source of 60 seconds in a minute, 60 minutes in an hour

• And 360 degrees in a circle

• Base 20, used by the Maya and Gauls
• Parts of this remain in French today

• Base 2, used by computers
• Example: 100100102

• Same idea as before: 1*27 + 1*24 + 1*21 = 12810 + 1610 + 210 = 14610
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Base 2 Example

• Computer Scientists use base 2 a LOT (especially in computer systems)

• Let’s convert 13810 to base 2

• We need to decompose 13810 into a sum of powers of 2
• Start with the largest power of 2 that is smaller or equal to 13810

• Subtract it, then repeat the process

13810 – 12810 = 1010

1010 – 810 = 210

210 – 210 = 010

13810 = 1×128 + 0×64 + 0×32 + 0×16 + 1×8 + 0×4 + 1×2 + 0×1

13810 = 100010102

13810 = 1×27 + 0×26 + 0×25 + 0×24 + 1×23 + 0×22 + 1×21 + 0×20
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Binary practice

• Convert 1012 to decimal

• = 1×22 + 0×21 + 1×20

• =     4  +    0   +   1

• =     510

• Convert 410 to binary:1002 (one less than 5)

• Convert 610 to binary: 1102 (one more than 5)
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Why computers use Base 2

• Simple electronic implementation
• Easy to store with bi-stable elements
• Reliably transmitted on noisy and inaccurate wires 

• Straightforward implementation of arithmetic functions

• (Pretty much) all computers use base 2

0.0V

0.5V

2.8V

3.3V

0 1 0
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Why don’t computers use Base 10?

• Because implementing it electronically is a pain
• Hard to store

• ENIAC (first general-purpose electronic computer) 
used 10 vacuum tubes / digit

• Hard to transmit
• Need high precision to encode

10 signal levels on single wire

• Messy to implement digital logic functions
• Addition, multiplication, etc.

• (See CE203 for details)
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Base 16: Hexadecimal

• Writing long sequences of 0s and 1s is tedious and 
error-prone
• And takes up a lot of space on a page!

• So we’ll often use base 16 (also called hexadecimal)

•

• Base 2 = 2 symbols (0, 1)
Base 10 = 10 symbols (0-9)
Base 16, need 16 symbols
• Use letters A-F once we run out of decimal digits

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111
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Base 16: Hexadecimal

• 16 = 24, so every group of 4 bits becomes a 
hexadecimal digit (or hexit)
• If we have a number of bits not divisible by 4, add 0s on 

the left (always ok, just like base 10)

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

1 0 1 0 0 1 0 1 1 1 1 0 1 1 0x297B0 0

“0x” prefix = it’s in hex
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Bytes

• A single bit doesn’t hold much information
• Only two possible values: 0 and 1

• So we’ll typically work with larger groups of bits

• For convenience, we’ll refer to groups of 8 bits as bytes
• And usually work with multiples of 8 bits at a time

• Conveniently, 8 bits = 2 hexits

• Some examples
• 1 byte: 0b01100111 = 0x67

• 2 bytes: 11000100  001011112 = 0xC42F
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Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• Convert binary to decimal:

54

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111



Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• 0x4 -> 0b0100 0x2 -> 0b0010 0x42 -> 0b 0100 0010

• Convert binary to decimal:
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Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• 0x4 -> 0b0100 0x2 -> 0b0010 0x42 -> 0b 0100 0010

• Convert binary to decimal:

• 1*26 + 1*21 = 64 + 2 = 66
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Practice problem

• Convert 0x42 to decimal

• Alternate method:
• 0x42

• = 4×161 + 2×160

• = 64 + 2

• = 66

• But you’re honestly better off converting hex to binary for now
• It’s good practice!
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Big idea: bits can be used to represent anything

• Depending on the context, the bits 11000011 could mean
• The number 195

• The number -61

• The number -1.1875

• The value True

• The character ‘├’

• The ret x86 instruction

• You have to know the context to make sense of any bits you have!
• People and software they write determine what the bits actually mean
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• Backup: Boolean Algebra

Outline



Boolean Algebra

• You’ve programmed with and and or in earlier classes
• Written && and || in C and C++

• Boolean algebra is a generalization of that
• A mathematical system to represent (propositional) logic

• 2 truth values: true = 1, false = 0

• 3 operations: and = &, or = |, not (or complement) = ~

• Follow the rules for each operation to compute results
• Rules are the like those you know from programming

(1 | 0) & 0 1 & 0 0

(1 & 1) & ~(0 | 0) 1 & ~(0) 1 & 1 1



Truth Tables for Boolean Algebra

• For each possible value of each input, what is the output
• Axes are the inputs

• Inside of the table are the outputs

~  

0 1 

1 0 
 

 

not: ~A

& 0 1 

0 0 0 

1 0 1 
 

 

and: A & B

| 0 1 

0 0 1 

1 1 1 
 

 

or: A | B



De Morgan’s Laws, Exclusive Or

• Can express boolean operators in terms of the others

• De Morgan’s laws: & using | and ~, | using & and ~
• A & B  =  ~(~A | ~B)

• A and B are true if and only if neither A nor B is false
• A | B  =  ~(~A & ~B)

• A or B are true if and only if A and B are not both false

• Can define new operators in terms of existing ones:
• Exclusive or (xor, ^) in terms of inclusive or (|)

• A ^ B  =  (~A & B) | (A & ~B)
• Exactly one of A and B is true

• A ^ B  =  (A | B) & ~(A & B)
• Either A is true, or B is true, but not both

• The two definitions are equivalent

^ 0 1 

0 0 1 

1 1 0 
 

 

xor: A ^ B



Generalized Boolean Algebra

• Binary bits can represent truth values: 0 = false, 1 = true

• Boolean operations can be extended to work on vectors of bits
• Operations applied one bit at a time: bitwise

• All of the properties of Boolean algebra apply
• Relationships between operations, etc.

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010



Bit-level operations in C

• Operations &,  |,  ~,  ^ available in C
• Apply to any “integral” data type

• long,  int,  short,  char, unsigned

• View arguments as bit vectors

• Arguments applied bit-wise

• Examples (char data type, single byte)
• ~0x00 → 0xFF

~000000002 → 111111112

• ~0x41 → 0xBE
~010000012 → 101111102

• 0x69 | 0x55 → 0x7D

011010012 | 010101012 → 011111012



Logic operations in C – not the same!

• Logical operations ||, && and ! (Logic OR, AND & Not)

• Contrast to bit-wise operators

• View 0 as “False”

• View anything nonzero as “True”

• Always return 0 or 1 (i.e., false or true) rather than a sequence of bits

• Early termination (if you can answer by just looking at the first argument, you are done)

• Examples (char data type)
• !0x41 → 0x00

• !0x00   → 0x01

• !!0x41  → 0x01

• 0x59 && 0x35   → 0x01

• 0x59 || 0x35   → 0x01

• p && *p (avoids null pointer access)

Watch out for && vs. &
(and || vs. |) … 
one of the more 
common slip-ups in 
C programming
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