
Pack Lab Overview
Rev 3.1

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2023

High-level overview

• You will be given a utility that can “Pack” a file

• Supports three operations
• Checksums - ensure data integrity

• Encrypts - file is only readable with password

• Compresses - reduces file size losslessly

• Your goal: write the “unpack” utility
• Unpacks a file and writes data to a new output file

2

Getting the lab files

• A tar of the lab file is available in the ~cs213/HANDOUT directory
• Must be on the class server: moore.wot.eecs.northwestern.edu

• Steps:
1. SSH into moore

2. Make a directory to hold the lab files in

3. Run the following command
tar xvf ~cs213/HANDOUT/packlab-starter.tar

• That will get you all the necessary lab files

3

Code files

• unpack.c
• Application for unpacking files
• Already written!

• unpack-utilities.c
• Utilities used by the application to perform operations
• You need to write this

• unpack-utilities.h
• Header file for unpacking utilities
• Includes comments about the purpose of each function

• test-utilities.c
• Test code for unpacking utilities
• You will add to this to test your code

4

Getting started

1. Understand what the existing code is doing

2. Implement parse_header()

3. Implement calculate_checksum()

4. Implement lfsr_step()

5. Implement decrypt_data()

6. Implement decompress_data()

Test as you go! Each of these functions can be tested independently

5

Submitting the lab files

• Gradescope will be used for grading your code

• You can submit any number of times

• But you won’t get feedback until after the deadline, except whether it compiles

• To submit your code, run:
~cs213/HANDOUT/submit213 submit --hw packlab unpack-utilities.c

• The first time you run the tool, it will ask you to log in with your Gradescope
credentials

• You MUST also mark your partnership on Gradescope. Click the button labeled
“Group Members” and select your partner from the dropdown
• Unfortunately, you have to do this each time you submit code

6

Grading

• 19% for correct implementations of the five major functions in unpack-
utilities.c

• parse_header(), calculate_checksum(), lfsr_step(),
decrypt_data(), decompress_data()

• 5% for the entire unpack program working on the example_files/

• With some partial credit given for partially working code

• Your code should successfully unpack any file that meets the specification,
and should also error and exit when necessary
• Invalid files, for example

• You are not graded on your tests

7

Changelog

• 1.0: Initial release

• 2.0: Correction, decryption uses LFSR state as little-endian
• 2.1: Clarified that the initial state for the LFSR is based on password

• 2.2: Added a link to a youtube video on LFSR

• 2.3: Clarify data_offset, redraw LFSR xor gates, clarify input_data,
note the need for bit masking

• 3.0: Add submission steps, clarify grading better
• 3.1: Clarify grading, clarify checksum implementation, example of

decompression

8

9

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

Outline

Format of packed files

10

• “Packed” files have two sections of bytes
• Header then File data

• Header (4–22 bytes)
• Identification and configuration of the packed file
• Includes “magic bytes” and version to identify a packed file
• Includes flags to determine which options are applied
• Includes configurations for particular options

• File Data (0–264 bytes)
• Contents of the original file
• Possibly encrypted and compressed

Header

File
data

Minimal header: Compression and Checksum disabled

11

• Magic
• Identifies this file as a “packed” file. Always 0x0213 (big-endian)

• Version
• Identifies which version of the “pack” protocol is used. Always 0x01

• Flags
• Determines which options are applied to the file

• 0 - disabled, 1 - enabled

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x01 Flags

Bit 7 6 5 4 3 2 1 0

Value Compress? Encrypt? Checksum? Unused: all zero

Compression enabled, Checksum disabled

12

• Compression dictionary
• 16-byte array used for compression

• Contains 16 most-used bytes from the original uncompressed file

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x01 Flags

4 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]

8 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]

12 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]

16 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]

Compression disabled, Checksum enabled

13

• Checksum
• 16-bit unsigned checksum value (big-endian)

• Was computed on the data after compression and encryption

• Note: you don’t need to calculate a checksum here, that will
happen later in a different function
• And comparing the two checksums happens for you in unpack.c

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x01 Flags

4 Checksum

Full header: Compression and Checksum enabled

14

• Compression dictionary, if used, always comes before Checksum

• Note: encryption does not add any fields to the header

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x01 Flags

4 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]

8 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]

12 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]

16 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]

20 Checksum

Decoding a header

Steps:

1. Verify that the magic bytes and version byte are correct.
Exit the program if the bytes are incorrect.

2. Check which options are set in “flags”.
That will determine the remaining bytes in the header, if any.

3. Pull out compression dictionary data (if enabled).

4. Pull out checksum value (if enabled).

15

Accessing individual bits

• There’s no native way in C to access individual bits of a byte

• Instead, you’ll need to use operations on the byte to pull out only
the bit(s) you need
• >>, <<, |, &, etc.

• See bit masking section of “Data Operations” lecture
• Slides 55-58: https://drive.google.com/file/d/12OVVoRf0Uf-

7DXLlTgY1ho3Qi9db05_h/view

16

https://drive.google.com/file/d/12OVVoRf0Uf-7DXLlTgY1ho3Qi9db05_h/view

Function: parse_header()

• Should parse the header from the input data
• input_data is an array of bytes. You can access it with []

• Configuration information should be written into the config struct

• Depending on the optional operations, some fields in the config
struct may not be used at all

• data_offset field is the offset to the start of file data
• It should equal the total number of bytes in the header

• 4-byte header means data_offset should be 4

17

18

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

Outline

What is a checksum?

• Allows verification of file data integrity
• If a byte in the file has changed, we can detect it!

• Concept
• Some kind of hash of file data into a much smaller number

• Process is repeatable and deterministic

• Integrity check: generate checksum twice
• Once when “packing” the file. Record result in file header

• Once when “unpacking” the file. Check against result in header

• If they don’t match, file contents have changed!

19

Checksum implementation

• Unsigned 16-bit integer, initialized to zero

• Add every byte of the file data to it, one-by-one
• Modular arithmetic occurs upon overflow

• Example
• File data: 0x01, 0x03, 0x04

• Checksum: 0x08

• If the checksum doesn’t match when unpacking, the unpack tool
should error and exit
• This code is written for you in unpack.c

20

Function: calculate_checksum()

• Calculates a 16-bit unsigned checksum value over the input data
• input_data is an array of bytes, you can access it with []

• input_data only contains data to calculate the checksum over, it does
not contain header bytes

• Must not modify the input data

• Returns the calculated checksum value

21

22

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

Outline

Basic stream cipher encryption

• Combine each individual byte of data with a random byte to encrypt it

1. Need some method for creating a series of random bytes
• Must be deterministic based on some initial state (a password)

2. Need some operation for combining random bytes with data
• XOR operation works well for this

• To decrypt, just XOR against the random byte a second time

• Note: the method we’re using is insufficient to provide good security
• Only 65535 possible starting states

• Could be brute-forced to decrypt the file

23

Method for creating a pseudorandom byte stream

• Linear-Feedback Shift Register (LFSR)
• Pattern of bit manipulations that is simple to implement in

hardware/software

• Creates sequences of bits that do not repeat for a very long time

• LFSR takes in an input state and creates an output state
• xors several bits together to create a new most-significant bit

• Shifts all bits in state one to the right

24

Background: 4-bit LFSR example

25

• Initial state: 0b0101

bit 3 bit 2 bit 1 bit 0

0 1 0 1

Background: 4-bit LFSR example, step 1

26

• Initial state: 0b0101
• XOR of bits 0 and 1 = 1
• Shift all bits right once, 0101 becomes 010

• The former least-significant bit (1) is deleted
• Set most-significant bit to xor result

bit 3 bit 2 bit 1 bit 0

1 0 1 0 1

Background: 4-bit LFSR example, step 2

27

• Initial state: 0b1010
• XOR of bits 1 and 0 = 1
• Shift all bits right once, 1010 becomes 101

• The former least-significant bit (1) is deleted
• Set most-significant bit to xor result

bit 3 bit 2 bit 1 bit 0

1 1 0 1 0

Background: 4-bit LFSR example, continued steps

28

• Next states:
• 0b1110, 0b1111, 0b0111, 0b0011, 0b0001, 0b1000, 0b0100, 0b0010,

0b1001, 0b1100, 0b0110, 0b1011, 0b0101 (repeat!)

• Iterates through 15 total states before repeating

• Never hits 0b0000 (it would stick there permanently)

bit 3 bit 2 bit 1 bit 0

1 1 0 1 0

Background: 4-bit LFSR example

• Still feel like LFSRs don’t make sense?

• Sometimes videos and animations can help!

• Here’s a youtube video our TA recommends:
https://www.youtube.com/watch?v=1UCaZjdRC_c

29

https://www.youtube.com/watch?v=1UCaZjdRC_c

Pack Lab LFSR design

• 16-bit LFSR
• Accesses bits 0, 11, 13, and 14

30

bit
15

14 13 12 11 10 9 8 7 6 5 4 3 2 1
bit
0

0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1

• Example initial state: 0x1337
• XOR of bits: 1

• Next state: 0b1000100110011011 -> 0x899B

Testing your LFSR

• We’ve provided some code for you that can test your LFSR
implementation
• Within test-utilities.c

1. LFSR should iterate in a known pattern

2. LFSR should hit all integers (except zero)

• If it’s not working, it can be annoying to debug
• Check the bit pattern for the input and output and work it out on paper

31

Decrypting data

• Once you’ve implemented the LFSR, you can use it to generate
16-bit pseudorandom numbers
• Each newstate returned is used as the pseudorandom number
• Never use the encryption key as a pseudorandom number, always LFSR step first

• To encrypt data:
• Generate a new LFSR state based on the previous state
• XOR the LFSR state against the next two bytes of data in little-endian order

• Example: data=[0x60, 0x5A] and LFSR output 0x8016
• 0x16 ^ 0x60 = 0x76
• 0x80 ^ 0x5A = 0xDA
• data = [0x76, 0xDA]

32

Initializing the LFSR

• The initial state for the LFSR is the encryption key
• Then each iteration after that, the state is the previous output

• The encryption key is a 16-bit unsigned integer formed by running
the checksum operation on the user’s entered password

• Note: this is ALSO not very secure
• There are many collisions where multiple passwords have the same value

• Password “ab” checksums to the same value as password “ba”

33

Decryption edge case

• When decrypting, there may be an odd number of bytes in the file
data!

• In that case, use the least-significant byte of the LFSR result, but
not the most-significant byte
• And then return from the decryption function

• Example: data=[0x60] and LFSR output 0x8016
• 0x16 ^ 0x60 = 0x76

• data = [0x76]

• (do nothing with the most-significant byte from the LFSR)

34

Function: lfsr_step()

• Determines the next LFSR state given an initial state input

• Returns the new LFSR state

• Should not save state internally. To iterate through multiple LFSR
states, use this function in some kind of loop
• state = lfsr_step(state);

35

Function: decrypt_data()

• Decrypts the input data and writes result into output data
• input_data is an array of bytes, you can access it with []

• input_data only contains data to decrypt, it does not contain header
bytes

• Uses lfsr_step() to generate pseudorandom numbers for
encryption
• Initial state for the LFSR should be the encryption_key

• The output state from the LFSR is used as both a random number and as
the input state for the LFSR in the next iteration

36

37

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

Outline

How do you make a file smaller?

• Compression is the act of making a file smaller
• Files can get really large, so it would be nice to make them smaller

• Actually, all of your pictures, music, and videos are compressed already

• Lossless compression means the process can be undone
(decompression) and the output will exactly match the original input
• Lossy compression is the other option, which is sometimes done for media

• For example: delete the parts of the audio file that humans can’t hear (MP3)

• We’re going to use lossless compression
• So the unpacked file should exactly match the original input file

38

Lossless compression algorithms

• There has been a lot of engineering put into compression
algorithms

• One really good algorithm comes up with new bit encodings for
each byte based on usage: Huffman Encoding
• It’s a little complex to implement though

• We will use a simpler algorithm: Run-length encoding

39

https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Run-length_encoding

Run-length encoding concept

• Run-length encoding looks for repeated bytes and replaces them
with an indication of how many times the byte repeated

• Conceptually: “aaaaabb” could turn into “five a’s and two b’s”
• If there are enough repeated characters, this can save a lot of space!

• This kind of algorithm works really well on text files and raw image
files

40

Pack Lab compression implementation

• We will use a version of run-length encoding where repeated bytes
get replaced by a two-byte sequence
• Specifies which byte and how many repeats

• Not all repeated bytes get reduced, we only reduce the 16 most-
popular bytes in the file
• The header contains a dictionary with the 16 most-popular bytes

41

Compression dictionary

• 16-byte array of uint8_t (unsigned bytes)

• Bytes are arranged in index order and are zero-indexed (0–15)

42

Byte offset 0 1 2 3

0 Magic: 0x0213 Version: 0x01 Flags

4 Dictionary[0] Dictionary[1] Dictionary[2] Dictionary[3]

8 Dictionary[4] Dictionary[5] Dictionary[6] Dictionary[7]

12 Dictionary[8] Dictionary[9] Dictionary[10] Dictionary[11]

16 Dictionary[12] Dictionary[13] Dictionary[14] Dictionary[15]

Special byte sequence

• When packing a file, if one of the 16 bytes in the dictionary
appears twice or more in-a-row
• Instead replace up to 15 repetitions with a special two-byte sequence

• First byte: “escape byte”
• Signifies that this is a special sequence, not normal data

• Always 0x07 which is unlikely to be used in text files at least

• Second byte:
• Information about which dictionary character and how many repetitions

43

Normal case: repeated character

• First byte signals that something special is happening

• Second byte contains a 4-bit unsigned “repeat count”

• Followed by a 4-bit unsigned “dictionary index”

• Example: 0x0737
• Three repetitions of dictionary entry 7

44

Bit bit
15

14 13 12 11 10 9 8 7 6 5 4 3 2 1
bit
0

Value
Escape Byte: 0x07 Repeat Count Dictionary Index

Special case: literal escape byte

• What if the file actually uses the byte value 0x07?

• Special case: if the first byte is 0x07 and the second byte is 0x00
• Then the output should be a single byte: 0x07

• Any other pattern with a “repeat count” of zero is invalid

45

Bit bit
15

14 13 12 11 10 9 8 7 6 5 4 3 2 1
bit
0

Value
Escape Byte: 0x07 Literal Escape Byte: 0x00

Decompression example

• Input data: {0x01, 0x07, 0x42}

• Dictionary: {0x30, 0x31, 0x32, 0x33 …} (didn’t write the rest due to space)

• Resulting output data: {0x01, 0x32, 0x32, 0x32, 0x32}

• Explanation
• First byte isn’t special and just gets copied over

• Second byte is the escape byte, which means the third byte holds a repeat
count (4) and dictionary index (2)

• So the output should be four copies of dictionary[2] (0x32)

46

Implementation guide

• Iterate through bytes in the input
• Either it’s a normal byte

• Or it’s an escape character

• For normal bytes, just copy them over to the output

• For special bytes, read the second byte and determine what to do
• Either multiple repetitions of a dictionary byte

• Or a single literal escape byte

• Be careful to not go past the end of the input!
• Check against lengths as you go

47

Function: decompress_data()

• Decompresses the input data and writes the result into output
data
• dictionary_data is the compression dictionary used when compressing

the data

• input_data is an array of bytes, you can access it with []

• input_data only contains data to decrompress, it does not contain
header bytes

• Returns the total length of the decompressed data

48

49

• Header Format

• Checksums

• Encryption
• Linear-Feedback Shift Register

• Stream Cipher

• Compression
• Compression dictionary

• Escape sequences

• Testing

Outline

Testing overview

1. Write tests in test-utilities.c

2. You can pack your own files using the pack application

3. We have provided some example packed files, and their original
versions, in the example_files/ directory

4. There are some other useful tools you should know about for
looking at files
• xxd and diff

50

Testing your utility function implementations

• Each operation takes in an array of data

• You can craft your own array of unsigned 8-bit data and pass it
into the function

• This is much easier than crafting full files files to unpack

51

Using the Pack application

./pack [-cek] inputfilename outputfilename

• -c: Optionally compresses the file

• -e: Optionally encrypts the (compressed) file with a password

• -k: Optionally checksums the (compressed & encrypted) file

• The three options can be combined in any way
• -e: Encryption only

• -ck: Compression and Checksum

• -cek: Compression, Encryption, and Checksum

• no flags: Add header, but perform no operations

52

Example packed files

• Original and packed versions of some files have been provided to
you in the example_files/ directory

• Each fits the pattern of filename.options.pack
• Where options are

• c – compress

• e – encrypt

• k – checksum

• The password for any encrypted file is: cs213

53

Other useful tools – seeing raw hex values inside a file

• xxd filename

• Dumps raw hex values of the file

• Format:
• On the left are addresses starting at 0x00000000

• In the middle are the hexadecimal values

• On the right are the same values interpreted as an ASCII encoding

• Example:

54

Ways to use xxd

• xxd filename | head –2

• Only show the first ten lines of hexadecimal output for a file

• Useful for looking at the header bytes of a file

• xxd filename > filename.hex

• Convert a normal file into hexadecimal

• xxd –r filename.hex > filename

• Convert hexadecimal back into a normal file

• Can do this after editing some bytes in the hex to craft your own input

55

Other useful tools – checking for differences in files

• diff filename1 filename2

• Checks for differences between two files

• Doesn’t output anything if they match

• Useful for determining if an unpacked file matches the original file

• If the two files do differ:
• For text files, it will show you the text that’s different

• For raw binary files, it will just say that they differ

• To see the difference for binary files, convert both into .hex files and then
diff those!

56

	Default Section
	Slide 1: Pack Lab Overview Rev 3.1

	Overview
	Slide 2: High-level overview
	Slide 3: Getting the lab files
	Slide 4: Code files
	Slide 5: Getting started
	Slide 6: Submitting the lab files
	Slide 7: Grading
	Slide 8: Changelog

	Header Format
	Slide 9: Outline
	Slide 10: Format of packed files
	Slide 11: Minimal header: Compression and Checksum disabled
	Slide 12: Compression enabled, Checksum disabled
	Slide 13: Compression disabled, Checksum enabled
	Slide 14: Full header: Compression and Checksum enabled
	Slide 15: Decoding a header
	Slide 16: Accessing individual bits
	Slide 17: Function: parse_header()

	Checksums
	Slide 18: Outline
	Slide 19: What is a checksum?
	Slide 20: Checksum implementation
	Slide 21: Function: calculate_checksum()

	Encryption
	Slide 22: Outline
	Slide 23: Basic stream cipher encryption
	Slide 24: Method for creating a pseudorandom byte stream
	Slide 25: Background: 4-bit LFSR example
	Slide 26: Background: 4-bit LFSR example, step 1
	Slide 27: Background: 4-bit LFSR example, step 2
	Slide 28: Background: 4-bit LFSR example, continued steps
	Slide 29: Background: 4-bit LFSR example
	Slide 30: Pack Lab LFSR design
	Slide 31: Testing your LFSR
	Slide 32: Decrypting data
	Slide 33: Initializing the LFSR
	Slide 34: Decryption edge case
	Slide 35: Function: lfsr_step()
	Slide 36: Function: decrypt_data()

	Compression
	Slide 37: Outline
	Slide 38: How do you make a file smaller?
	Slide 39: Lossless compression algorithms
	Slide 40: Run-length encoding concept
	Slide 41: Pack Lab compression implementation
	Slide 42: Compression dictionary
	Slide 43: Special byte sequence
	Slide 44: Normal case: repeated character
	Slide 45: Special case: literal escape byte
	Slide 46: Decompression example
	Slide 47: Implementation guide
	Slide 48: Function: decompress_data()

	Testing
	Slide 49: Outline
	Slide 50: Testing overview
	Slide 51: Testing your utility function implementations
	Slide 52: Using the Pack application
	Slide 53: Example packed files
	Slide 54: Other useful tools – seeing raw hex values inside a file
	Slide 55: Ways to use xxd
	Slide 56: Other useful tools – checking for differences in files

