
Lecture 17
Processes

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2022

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• SETI Lab due on Thursday!
• Beware, it’ll take quite a while to get feedback close to the deadline

• Run seti-eval as sparingly as possible

• It will give you very similar results to seti-perf

• Final exam next week Friday
• 12:00-1:20 pm in this classroom (Tech Ryan Auditorium)

• Allowed two sheets of standard paper, front and back, for notes

• Material from weeks 4 and onwards

• x86-64 Assembly Procedures through I/O & Networks (Thursday)

2

Common SETI Lab Errors

• Straight line performance
• Often better than 1.02x right away and graph does not have a curve shape
• Doesn’t vary thread count per the program argument

• Stuck at 0.3x
• Usually didn’t optimize
• Or maybe just optimized p_band_scan but not anything it relies on

• No Carrier Match
• Your code output didn’t match the original band_scan

• No Alien Match
• You didn’t correctly determine which of your generated signals is alien

3

Today’s Goals

• Explore various mechanisms by which OS and processes interact
• System calls and signals

• Discuss operations on files from processes

4

5

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

Outline

Reminder: view of a process

• Process: program that is being executed

• Contains code, data, and a thread
• Thread contains registers, instruction pointer, and stack

6

• Registers

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

• Instruction Pointer

• Condition Codes

• Stack

• Code and
Data

Questions remaining about processes

• Interaction mechanisms with OS
• How do processes make requests of the OS?

• How does the OS inform processes of various events?

• Both answered by the same basic mechanism:
exceptional control flow

7

Control flow

8

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

• Processors do only one thing:
• From startup to shutdown, a CPU simply reads and executes (interprets) a

sequence of instructions, one at a time

• This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

Altering control flow

• Instructions that change control flow allow software to react
changes in program state
• Jumps/branches
• Call/return

• Also need to react to changes in system state
• Data arrives at network adapter
• Instruction divides by zero
• User hits Ctrl-C on the keyboard
• System timer expires

• These mechanisms are known as “exceptional control flow”

9

Exceptional control flow

• Mechanisms
• Exceptions: events cause execution to jump to OS handler

• Context switch: request or timeout causes execution to jump to OS

• Signals: event plus OS causes execution to jump to process handler

10

Running process Other code (usually OS)

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

Exceptions

• Hardware detects an event that OS software needs to resolve

• Could be an error
• Invalid memory access
• Invalid instruction

• Could just be something the OS should handle
• Page fault
• USB device detected

• OS has a table of “exception handlers”, which are functions that handle
each exception class (also known as interrupt handlers)
• Hardware jumps execution to the proper handler

11

12

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

Outline

Things a program cannot do itself

• Print “hello world”
• because the display is a shared resource.

• Download a web page
• because the network card is a shared resource.

• Save or read a file
• because the filesystem is a shared resource, and the OS wants to check

file permissions first.

• Launch another program
• because processes are managed by the OS

• Send data to another program
• because each program runs in isolation, one at a time

13

How does a process ask the OS to do something?

• Certain things can only be accessed from kernel mode
• All of memory, I/O devices, etc.

• Kernel: the portion of the OS that is running and in memory

• Bad Idea to allow processes to switch into kernel mode
• We do NOT trust processes

• Requirements
1. Switch execution to the OS kernel

2. Change into kernel mode

3. Inform the OS kernel what you want it to do

14

Hardware can save us!

• Solution: trigger an exception to run an OS handler
• Hardware instruction: trap

• When instruction runs:
1. PC is moved to a known location in the kernel

2. Mode is changed to kernel mode

• Same mechanism is used for other exceptions
• Division by zero, invalid memory access

• Also very similar to hardware interrupts

15

System call example

• System call: making a request of the OS from a process
• Uses exceptional control flow to enter OS kernel

• Returns back to process when complete

• Instruction after the system call

16

User code Kernel code

Exception

Do the thing

Returns

syscall

next instruction

System call steps (simplification)

1. Process loads parameters into registers (just like a function call)

2. Process executes trap instruction (int, syscall, svc, etc.)

3. Hardware moves %rip to “handler” and switches to kernel mode

4. OS checks what the process wants to do from registers

5. OS decides whether the process is allowed to do so

17

Returning from a system call (simplification)

• After OS finishes whatever operation it was asked to do
• And when the process is scheduled to run again

1. OS places return result in a register (just like a function call)

2. OS sets process state to running

3. OS changes mode to user mode (and sets virtual memory stuff)

4. OS sets %rip to instruction after the system call

• Process continues and can use results of system call

18

Linux system calls

• Example system calls
• https://man7.org/linux/man-pages/man2/syscalls.2.html

19

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

https://man7.org/linux/man-pages/man2/syscalls.2.html

Example using system calls

• Let’s create new processes with system calls

• From process view:
• Just look like regular C functions

• Take arguments, return values

• Underneath:
• Function uses special assembly instruction to trigger exception

20

Process management system calls

pid_t fork(void);

• Create a new process that is a copy of the current one
• Returns either PID of child process (parent) or 0 (child)

void _exit(int status);

• Exit the current process (exit(), the library call cleans things up first)

pid_t waitpid(pid_t pid, int *status, int options);

• Suspends the current process until a child (pid) terminates

int execve(const char *filename, char *const argv[], char *const envp[]);

• Execute a new program, replacing the existing one
• Replaces code and data, clears registers, sets %rip to start again

21

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

printf("Child!\n");
} else {

printf("Parent!\n");
}

printf("Both!\n");
return 0;

}

22

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

printf("Child!\n");
} else {

printf("Parent!\n");
}

printf("Both!\n");
return 0;

}

23

Existential crisis

Executing a new program

#include <stdio.h>
#include <unistd.h>

int main(){
if(fork() == 0) {

execve("/bin/python3", ...);
} else {

printf("Parent!\n");
}

printf("Only parent!\n");
return 0;

}

24

Break + Question

• What does the following code
do?

#include <stdio.h>

#include <sys/types.h>

int main() {

while(1){

fork();

}

return 0;

}

27

Break + Question

• What does the following code
do?

#include <stdio.h>

#include <sys/types.h>

int main() {

while(1){

fork();

}

return 0;

}

28

• Creates a new process
• Then each process creates a

new process
• Then each of those creates a

new process…

• Known as a Fork bomb!
• Machine eventually runs out of

memory and processing power
and will stop working

• Defense: limit number of
processes per user

29

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

Outline

Files

• Collections of data
• Usually in permanent storage on your computer

• Types of files
• Regular files

• Arbitrary data
• Think of as a big array of bytes

• Directories
• Collections of regular files

• Special files
• Links, pipes, devices (see CS343)

30

Sidebar: what about types of regular files?

• Text files versus Executables versus Tar files
• All just differing patterns of bytes!

• It really is just all data. The meaning is in how you interpret it.

31

Executable
File

Archive
(tar)

Identifying regular files

• file in Linux command line can help determine the type of a file
• https://github.com/file/file

32

https://github.com/file/file

File permissions

• Files have owners and permissions associated with them

33

File permissions

• Files have owners and permissions associated with them

• Permissions for the owner and name of the owner
• Read, Write, eXecute

• Cannot execute `arguments.c`

• For directories: Read contents, Write new contents, Traverse directory

34

File permissions

• Files have owners and permissions associated with them

• Permissions for the group and name of the group
• Example: I could make a CS213 group, add you all to it, and only give that

group access to some folder or file

35

File permissions

• Files have owners and permissions associated with them

• Permissions for everyone else on the computer
• Not the owner and not in the group

• For my personal machine, not particularly relevant

• For Moore, probably don’t want to let others read your files…

36

How do we interact with files?

• Analogy: think of a file as a book
• Big array of characters (bytes)

1. Open the book, starting at the first page

2. Read from the book

3. Write to the book

4. Change pages (without reading everything in between)

5. Close the book when finished

37

System calls for interacting with files

1. Open the book, starting at the first page
• open()

2. Read from the book
• read()

3. Write to the book
• write()

4. Change pages (without reading everything in between)
• lseek()

5. Close the book when finished
• close()

38

Higher-level methods of file interaction

• Here, we’re talking about system calls to the OS

• C standard library also defines file interactions
• fopen, fread, fwrite, fseek, fclose

• All are wrappers on top of the actual syscalls

• Buffers your interactions to make them more efficient

• Reads/Writes large chunks of data at a time

• Might collect multiple fwrite’s before doing a single real write

• fflush() guarantees that the buffer is written now

39

Opening files

• int open(const char *pathname, int flags);

• pathname is the string path for the file
• “/home/brghena/class/cs213/s21/code/arguments.c”

• “./arguments.c”

• “arguments.c”

• flags include access permission requests
• Read only, Write only, Read and Write (O_RDONLY, O_WRONLY, O_RDWR)

• Also can choose to append to a file (O_APPEND)

• Or to create the file if it does not exist (O_CREAT)

40

Open returns a “file descriptor”

• int open(const char *pathname, int flags);

• OS keeps track of opened files for each process
• File descriptor is just a number referring to the opened file
• Non-negative number. Always the lowest unused, starting at zero

• A “handle” to the file

• File descriptor is used in other calls to reference the file
• That way the OS doesn’t have to look up pathname every time

• Negative number instead specifies an error (for all of these calls)

41

Reading files

• ssize_t read(int fd, void *buf, size_t count);

• fd is the file descriptor handle

• buf is a pointer to an array of bytes to read into

• count is the number of bytes to read

• Note: nowhere do we specify where to start reading
• OS kernel keeps track of a file offset with the descriptor

• Updated on each read

• First read of 100 bytes starts at zero, next starts 100 bytes in

42

How do we know when we finished the file?

• ssize_t read(int fd, void *buf, size_t count);

• Return from read is a “signed size”, a count of bytes actually read
• Negative means an error occurred

• Zero means we have reached the end of the file

• Positive number is the number of bytes read

• Probably how many we asked for, but maybe less

43

Writing files looks a lot like reading

• ssize_t write(int fd, const void *buf, size_t count);

• File descriptor, buffer to write from, count of bytes to write

• Returns number of bytes actually written

• Write occurs at the current file offset

44

Moving the file offset

• off_t lseek(int fd, off_t offset, int whence);

• Moves to offset for this file descriptor based on whence:
• SEEK_SET – set to offset (essentially start of file plus offset)

• SEEK_CUR – current location plus the offset

• SEEK_END – end of file plus the offset (which can be negative)

• Returns the resulting offset into the file
• Units: bytes from the beginning of the file

45

Closing a file

• int close(int fd);

• Closes the file descriptor

• It is an error to keep using the file descriptor after it is closed
• Descriptor might end up getting reused for a different file

46

Sidebar: how do you figure out how these calls work?

• Manual pages

• Online: https://man7.org/linux/man-pages/man2/close.2.html

47

https://man7.org/linux/man-pages/man2/close.2.html

Example: “kitten” command line tool

int main(int argc, char *argv[]) {

// check argument count

if (argc != 2) {

printf("Usage: ./kitten FILE\n");

return -1;

}

// try opening file

int fd = open(argv[1], O_RDONLY);

if (fd < 0) {

printf("Error opening file!\n");

return -1;

}

// array to hold read data

uint8_t read_size = 10;

uint8_t read_data[read_size];

48

while(true) {

// read from file

ssize_t read_length = read(fd, read_data, read_size);

if (read_length < 0) {

printf("Error reading file!\n");

return -1;

}

if (read_length == 0) {

break;

}

// print out data

for (int i=0; i<read_length; i++) {

printf("%c", read_data[i]);

}

}

return 0;

}

50

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

Outline

How do programs talk to users?

• We glossed over this before in CS211
• printf()
• gets()

• Work through the same file mechanism
• Three special files created for each program

• stdin – standard input (file descriptor 0)
• stdout – standard output (file descriptor 1)
• stderr – standard error (file descriptor 2)

• printf(…) -> fprintf(1, …) -> handle arguments & write(1, …)

51

Standard I/O is a process thing, not a C thing

• You can access them in Python, for instance
• https://docs.python.org/3/library/sys.html#sys.stdin

52

https://docs.python.org/3/library/sys.html#sys.stdin

Example: “kitten” write to standard output

int main(int argc, char *argv[]) {

// check argument count

if (argc != 2) {

printf("Usage: ./kitten FILE\n");

return -1;

}

// try opening file

int fd = open(argv[1], O_RDONLY);

if (fd < 0) {

printf("Error opening file!\n");

return -1;

}

// array to hold read data

uint8_t read_size = 10;

uint8_t read_data[read_size];

53

while(true) {

// read from file

ssize_t read_length = read(fd, read_data, read_size);

if (read_length < 0) {

printf("Error reading file!\n");

return -1;

}

if (read_length == 0) {

break;

}

// print out data

ssize_t write_length = write(STDOUT_FILENO,

read_data, read_length);

}

return 0;

}

Redirecting standard I/O

• Shells by default setup standard I/O to connect to the keyboard
and the screen
• But any file will work

• Shell I/O redirection commands
• COMMAND < filename

• Connect standard input to filename

• COMMAND > filename
• Connect standard output to filename (overwrite)

• COMMAND >> filename
• Connect standard output to filename (append)

54

Piping commands

• A command shell desire is to run multiple commands where the
output of the first feeds into the second

• COMMAND1 | COMMAND2
• Connects stdout of COMMAND1 to stdin of COMMAND2

• Example: print out files and sort by size
• ls –lah | sort –h

55

Sidebar: super useful command for testing

• tee [OPTION]... [FILE]...

• Reads from stdin and write to both stdout and file

• Example: prints out a list of files and saves results
• ls –lah | tee results.txt

• I run this with various programs I’m testing, so I can record the
results, but also seem them in real-time.

56

Example: redirection with kitten

• Standard I/O redirection is handled when the process is created
• So it does not need to be aware of it at all

• Our kitten tool works with redirection automatically!
• ./kitten arguments.c > OUTPUT_FILE

57

Break + Open Question

• How does printf() work?

58

Break + Open Question

• How does printf() work?

1. Read in arguments and determine what it needs to format

2. Create a new string buffer and write arguments into it

3. Call write() on STDOUT with the string

59

60

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

Outline

Alerting processes of events

• How do we let a process know there was an event?
• Errors

• Termination

• User commands (like CTRL-C or CTRL-\)

• Events could happen whenever
• Need to interrupt process control flow and run an event handler

• Linux mechanism to do so is called “signals”

61

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

62

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

63

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Errors

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

64

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Termination

Sending signals

• OS sends signals when it needs to

• Processes can ask the OS send signals with a system call
• int kill(pid_t pid, int sig);

• Users send signals through OS from command line or keyboard
• Shell command: kill -9 pid (SIGKILL)

• CTRL-C (SIGINT)

65

Handling signals

• Programs can register a function to handle individual signals
• signal(int sig, sighandler_t handler);

• What are you supposed to do about it?
• Do some quick processing to handle it

• Reset the process and try again

• Quit the process (default handler)

66

Signals Examples

67

Examples: sending a signal

> kill -11 pid (11 is SIGSEGV – a.k.a segfault)

68

Example: catching a signal

void sighandler (int signum) {

printf("HA HA You can't kill me!\n");

}

int main (void) {

signal(SIGINT, sighandler);

printf("Starting\n");

while(true) {

printf("Going to sleep for a second...\n");

sleep(1);

}

return 0;

}

69

#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>

#include <unistd.h>
#include <signal.h>

Example: catching a segfault

int* pointer = 0x00000000;

void sighandler (int signum) {

printf("Oops, that pointer wasn't valid. Let's try a different one\n");

pointer++;

printf("About to read from pointer 0x%08lX\n", (long)pointer);

}

int main (void) {

signal(SIGSEGV, sighandler);

printf("About to read from pointer 0x%08lX\n", (long)pointer);

int test = *pointer;

return(0);

}

70

#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

71

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

Outline

