
Lecture 15
Concurrency

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2022

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Attack Lab due today

• Homework 4 will be released tonight
• Due next week Thursday

• SETI Lab releases on Friday. Due in two weeks
(last Thursday of class)
• Today’s lecture has most of the information you need for it

• Tuesday’s lecture will add a few more details about optimization

2

Today’s Goals

• Discuss goals of concurrency and how it is achieved in software

• Understand the challenges of writing parallel software

• Explore how to practically use parallelism for simple examples

3

4

• Need for Parallelism

• Processes and Threads

• Concurrency Challenges

• Using Threads

Outline

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years time.

What do you do?

5

It’s the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years time.

What do you do? Take a vacation

6

Moore’s Law – CPU transistors counts

“Number of transistors in a chip
doubles every 18 months”

Transistors are getting
exponentially smaller!

How small? Today: 7nm!
< ½ the size of most viruses!

7

Processors kept getting faster too

8

Power is a major limiting factor on speed

• We could make processors go very fast
• But doing so uses more and more power

• More power means more heat generated
• And chips typically work up to around 100°C

• Hotter than that and things stop working

• We add heat sinks and fans and water coolers to keep chips cool
• But it’s hard to remove heat quickly enough from chips

• So, power consumption ends up limiting processor speed

9

Denard Scaling

• Moore’s Law corollary: Denar Scaling
• As transistors get smaller, the power density stays the same

• Which is to say that the power-per-transistor decreases!

• Making the processor clock speed faster uses more power
• But the two balance out for roughly net even power

• So not only do we get more transistors, but chip speed can be faster too

• From our Excel example:
• In two years, new hardware would run the existing software twice as fast

10

Then they stopped getting faster

11

~2006: Leakage
current becomes
significant

Now smaller
transistors doesn’t
mean lower power

So… now what?

In summary:

• Making transistors smaller doesn’t make them lower power,

• so if we were to make them faster, they would take more power,

• which will eventually lead to our processors melting…

• and because of that, we can’t reliably make performance better by
waiting for clock speeds to increase.

How do we continue to get better computation performance?

12

Exploit parallelism!

13

Parallelism Analogy

• I want to peel 100 potatoes as fast as possible:

• I can learn to peel potatoes faster

OR

• I can get 99 friends to help me

• Whenever one result doesn’t depend on another,
doing the task in parallel can be a big win!

14

Parallelism versus Concurrency Two processes A and B

15

BA

BA

B

A

B

A
OR

time

time

time time

Serial execution

Parallel execution

Concurrent execution

Parallelism versus Concurrency

• Parallelism
• Two things happen strictly simultaneously

• Concurrency
• More general term

• Two things happen in the same time window

• Could be simultaneous, could be interleaved

• Concurrent execution occurs whenever two processes are both active

16

B

A
OR

time time

OR

time

17

• Need for Parallelism

• Processes and Threads

• Concurrency Challenges

• Using Threads

Outline

How do we apply parallelism to software?

• Goal: make computer faster by performing multiple tasks

• Need multiple different software tasks

• Two particular ways of creating a software task
• Processes

• Threads

18

View of a process

• Process: a program that is currently being run

• Contents:

19

• Address Space • Registers

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

• Instruction Pointer

• Condition Codes

• Etc.

Process use case: separate programs

• Right now I am running:
• Powerpoint

• Chrome

• CLion

• Each is a separate process
• Have their own memory

• Have their own registers

• Operating System manages them

• No need for communication between them

20

Multiprocessor Systems (in pictures)

21

Processor 0

Control

Datapath
RIP

Registers

(ALU)

Memory

Bytes

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
RIP

Registers

(ALU)

Processor 1
Memory
Accesses

Alternate view of a process

• Process: code and data, plus a thread

• Thread: execution state
• Each process has at least one thread

22

• Registers

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

• Instruction Pointer

• Condition Codes

• Stack

• Code and
Data

Alternate view of a process

• A process could have multiple threads
• Each with its own registers and stack

23

• Code and
Data

Threads have separate:
• Instruction Pointer

• Registers

• Stack Memory

• Condition Codes

Threads share:
• Code

• Global variables

Thread use case: web browser

Let’s say you’re implementing a web browser:

You want a tab for each web page you open:
• The same code loads each website (shared code section)

• The same global settings are shared by each tab (shared data section)

• Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

24

Process address space with multiple threads

25

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

%RIP

(Thread 1)

%RIP

(Thread 3)%RIP

(Thread 2)

Data

Segment

Multithreading processors

Basic idea: Processor resources are expensive and should not
be left idle

Long memory latency to memory on cache miss?
• Hardware switches threads to bring in other useful work while

waiting for cache miss

• Cost of swapping between threads must be much less than cache
miss latency

26

Memory

Bytes

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

• Two copies of RIP and Registers inside processor hardware

• Looks like two processors to software
(hardware thread 0, hardware thread 1)

• Control logic decides which thread to execute an instruction
from next

27

Multithreading processor

Multithreading, multicore processors

• Combine capabilities
of both designs

• Run two processes
each with two threads

• Or run one process
with four threads

28

Memory

Bytes

Processor 0
Memory
Accesses

Processor 1
Memory
Accesses

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

Processor

Control

Datapath
RIP 0

Registers 0

(ALU)

RIP 1

Registers 1

Example: i7 processor

29

4 total cores
Each capable of 2 threads

≈ 8 processors

Break + Open Question

• How many “cores” does a computer need?

30

Break + Open Question

• How many “cores” does a computer need?

• Depends on the workload

• Personal computer

• ~2-10 processes running at once in the foreground

• Plus ~100 in the background

• Server

• Could be serving thousands of requests simultaneously

• Moore: 48 cores, Hanlon: 40 cores

31

32

• Need for Parallelism

• Processes and Threads

• Concurrency Challenges

• Using Threads

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

33

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

34

Imagine a program that takes 100 seconds to run

• 95 seconds in the blue part
• 5 seconds in the green part

We’re going to speed up the green part and take a
look at the net result

95 s 5 s

Speedup Example

35

95 s 5 s

Speedup from improvements

36

Speedup with
Improvement

=

Execution time without
improvement

Execution time with
improvement

5 s -> 2.5 s: Speedup = 100/97.5 = 1.026

5 s -> 1 s: Speedup = 100/96 = 1.042

5 s -> 0.001s: Speedup = 100/95.001 = 1.053

The impact of a performance improvement is relative
to the importance of the part being improved!

Amdahl’s Law (in pictures)

• The amount of speedup that can be achieved through parallelism is
limited by the non-parallel portion of your program! 😭
• And every program has at least some non-parallel parts

38

Parallel
portion

Serial
portion

Time

Number of Processors
1 2 3 4 5

Sp
e

e
d

u
p

Number of Processors

Challenges to concurrency

Concurrency is great! We can do so many things!!

But what’s the downside…?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

39

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

40

Thread 1:

void thread_fn(){

count += 1;

}

Thread 2:

void thread_fn(){

count += 1;

}

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

These instructions could be interleaved in any way.
41

Thread 1:

void thread_fn(){

mov $0x8049a1c, %edi

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

}

Thread 2:

void thread_fn(){

mov $0x8049a1c, %edi

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

}

Assuming “count” is
in memory location
0x8049a1c

Data race example

42

Thread 1 Thread 2

mov (%edi), %eax

add $0x1, %eax

mov %eax, ($edi)

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

Time

Thread 1 Thread 2

mov (%edi), %eax

mov (%edi), %eax

add $0x1, %eax

mov %eax, (%edi)

add $0x1, %eax

mov %eax, (%edi)

Final value of count: 2 Final value of count: 1

Assuming “count” is
in memory location
pointed to by %edi

Data race explanation

• Thread scheduling is non-deterministic
• There is no guarantee that any thread will go first or last or

not be interrupted at any point

• If different threads write to the same variable
• The final value of the variable is also non-deterministic
• This is a data race

• Avoid incorrect results by:
1. Not writing to the same memory address!!

OR

2. Synchronizing reading and writing to get deterministic behavior

43

Data race explanation

• Thread scheduling is non-deterministic
• There is no guarantee that any thread will go first or last or

not be interrupted at any point

• If different threads write to the same variable
• The final value of the variable is also non-deterministic
• This is a data race

• Avoid incorrect results by:
1. Not writing to the same memory address!!

OR

2. Synchronizing reading and writing to get deterministic behavior

44

We’ll pick this
one for CS213

CS343 explores this in depth

Avoiding shared memory data races

• Ensure that no two threads write to the same memory address

• Multiple threads reading from the same memory address is fine
• As long as no thread writes to that memory

• Where do you put results then? Simple solution:
• Make an array with a slot for each thread

• Each thread only writes to their own slot in the array

• After all threads are done, main thread iterates the array and determines
the final result

45

Question + Break

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?

46

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count -= 1;

}

Thread 3:

void main(){
count += 2;

}

Question + Break

Consider three threads with a shared global variable: int count = 0

What are the possible values of count? -1, 0, 1, 2, 3

How are you supposed to reason about this?!
Need mechanisms for sharing memory.

47

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count -= 1;

}

Thread 3:

void main(){
count += 2;

}

48

• Need for Parallelism

• Processes and Threads

• Concurrency Challenges

• Using Threads

Outline

Thread operations

• Create threads
• Shares all memory with all threads of the process.
• Scheduled independently of parent

• Join thread
• Waits for a particular thread to finish
• Can’t continue computation until all threads finish

• That’s it! Don’t really need anything else (for this class)
• Library also includes synchronization primitives to solve data races

• Can communicate between threads by reading/writing (shared) global
variables
• But we’re only going to read from shared variables for safety
• We’ll write to separate memory locations

POSIX Threads Library: pthreads

• https://man7.org/linux/man-pages/man7/pthreads.7.html

int pthread_create(pthread_t* thread, const pthread_attr_t* attr,
void* (*start_routine)(void*), void* arg);

• Thread is created executing start_routine with arg as its sole argument.
• Return is implicit call to pthread_exit

void pthread_exit(void* value_ptr);

• Terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void** value_ptr);

• Suspends execution of the calling thread until the target thread terminates.
• On return with a non-NULL value_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

50

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Basic thread example

51

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()

Terminates
main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Example: parallel sum of vector

double vector[vector_len] = {1, 2, 3, …, vector_len};

// determine result sequentially

double sequential_sum = 0;

for (int i=0; i<vector_len; i++) {

sequential_sum += vector[i];

}

52

Example: parallel sum of vector

double vector[vector_len] = {1, 2, 3, …, vector_len};

Parallelization Plan

1. Create num_threads different threads

2. Threads create “partial” sums for their portion of the work
• Each thread does (vector_len / num_threads) work
• Create an array for results with one slot per thread

3. Wait until done, then sum the partial results
• Main thread calls join() to wait for each thread to complete
• Main thread adds up results

53

Example: parallel sum of vector

1. Create num_threads different threads

pthread_t tid[num_threads];

for (long i=0; i<num_threads; i++) {

pthread_create(&(tid[i]), NULL, worker, (void*)i);

}

• Arguments to pthread_create
• thread_handle, attributes, thread_function, function_argument

54

Example: parallel sum of vector

2. Threads create “partial” sums for their portion of the work

void* worker(void* arg) {

long i = (long)arg;

int mystart = i * (vector_len/num_threads);

int myend = (i+1) * (vector_len/num_threads);

partial_sum[i] = 0;

for (int j=mystart; j<myend; j++) {

partial_sum[i] += vector[j];

}

pthread_exit(NULL); // Thread work is complete

}

55

Example: parallel sum of vector

3. Wait until done, then sum the partial results

for (int j=0; j<num_threads; j++) {

pthread_join(tid[i], NULL); // second argument is return result

}

double parallel_sum = 0;

for (int k=0; k<num_threads; k++) {

parallel_sum += partial_sum[k];

}

56

Trying this out for yourself

• See SETI Lab for example code you can run yourself

• We just went through a slightly reduced version of
parallel-sum-ex.c

57

Running the parallel sum application

$./parallel-sum-ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

58

Vector of 200 million length

No threads created

Only the sequential version is run

Running the parallel sum application

$./parallel-sum-ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

$./parallel-sum-ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles)

Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel-sum-ex 8 1 200000000

Sequential sum: 19999999900000000 (888810917 cycles)

Parallel sum: 19999999900000000 (1033659530 cycles)

59

Vector of 200 million length

1 to 8 threads created. No speedup??!

Starting threads takes time! Need to
make sure they’re doing enough work to
be worth it.

8 starts to pay back a little bit. But need
more parallelism for a big win.

Running the parallel sum application

$./parallel-sum-ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

$./parallel-sum-ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles)

Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel-sum-ex 8 1 200000000

Sequential sum: 19999999900000000 (888810917 cycles)

Parallel sum: 19999999900000000 (1033659530 cycles)

$./parallel-sum-ex 16 1 200000000

Sequential sum: 19999999900000000 (895258209 cycles)

Parallel sum: 19999999900000000 (693511997 cycles)

60

Vector of 200 million length

16 threads starts to win!

I don’t actually have that many cores,
but the system is swapping threads
whenever memory reads stall to improve
performance

Running the parallel sum application

$./parallel-sum-ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

$./parallel-sum-ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles)

Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel-sum-ex 8 1 200000000

Sequential sum: 19999999900000000 (888810917 cycles)

Parallel sum: 19999999900000000 (1033659530 cycles)

$./parallel-sum-ex 16 1 200000000

Sequential sum: 19999999900000000 (895258209 cycles)

Parallel sum: 19999999900000000 (693511997 cycles)

$./parallel-sum-ex 32 1 200000000

Sequential sum: 19999999900000000 (886174224 cycles)

Parallel sum: 19999999900000000 (609774231 cycles)

$./parallel-sum-ex 64 1 200000000

Sequential sum: 19999999900000000 (898098616 cycles)

Parallel sum: 19999999900000000 (426420305 cycles)

61

Vector of 200 million length

32 and 64 threads are really cruising

Down to half the time for the
computation

Running the parallel sum application

$./parallel-sum-ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

$./parallel-sum-ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles)

Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel-sum-ex 8 1 200000000

Sequential sum: 19999999900000000 (888810917 cycles)

Parallel sum: 19999999900000000 (1033659530 cycles)

$./parallel-sum-ex 16 1 200000000

Sequential sum: 19999999900000000 (895258209 cycles)

Parallel sum: 19999999900000000 (693511997 cycles)

$./parallel-sum-ex 32 1 200000000

Sequential sum: 19999999900000000 (886174224 cycles)

Parallel sum: 19999999900000000 (609774231 cycles)

$./parallel-sum-ex 64 1 200000000

Sequential sum: 19999999900000000 (898098616 cycles)

Parallel sum: 19999999900000000 (426420305 cycles)

$./parallel-sum-ex 128 1 200000000

Sequential sum: 19999999900000000 (891919128 cycles)

Parallel sum: 19999999900000000 (493951974 cycles)

62

Vector of 200 million length

128 threads is basically the same as 64
threads

Further parallelism isn’t helping very
much. (technically worse than 64, but it’s
within error bounds on timing)

63

• Need for Parallelism

• Processes and Threads

• Concurrency Challenges

• Using Threads

Outline

64

• Bonus: SIMD Instructions

Outline

SIMD Architectures

• Data-Level Parallelism (DLP): Executing one operation on multiple
data streams

• SIMD: Single Instruction Multiple Data

• Example: Multiplying a coefficient vector by a data vector (e.g. in
filtering)

y[i] := c[i] × x[i], 0≤i<n

• Sources of performance improvement:
– One instruction is fetched & decoded for entire operation

– Multiplications are known to be independent

– Pipelining/concurrency in memory access as well

Slide 65

66

Example SIMD Instructions

• To improve performance, Intel’s SIMD instructions
– Fetch one instruction, do the work of multiple instructions

– MMX (MultiMedia eXtension, Pentium II processor family)

– SSE (Streaming SIMD Extension, Pentium III and beyond)

67

Example: SIMD Array Processing

68

for each f in array

f = sqrt(f)
pseudocode

SISD

SIMD

for each f in array {

load f to the floating-point register

calculate the square root

write the result from the register to memory

}

for each 4 members in array {

load 4 members to the SSE register

calculate 4 square roots in one operation

write the result from the register to memory

}

SIMD in the Real World

• Today’s compilers can generate SIMD code!
– But in some cases we get better results by hand

• Intel’s x86 implements many SIMD instructions
– Which have the benefit of being usable on lab machines
– (and most of our own personal computers)

69

70

Intel SIMD has been continuously extended

71

And it has increased in size a lot

72

Intel SIMD Data Types

73

SSE Instruction Categories for Multimedia Support

74

• SSE-2+ supports wider data types to allow
16 × 8-bit and 8 × 16-bit operands

How do we use these SIMD instructions?

• Intrinsics:
– “function calls” that actually just execute an assembly instruction

Example:

_mm_add_epi32(first_values, second_values);

75

WHAT????

_mm_add_epi32(first_values, second_values)

76

MultiMedia extension
(They all start with this)

Arguments are
Extended Packed Integers,
each 32-bits in size
(signed)

first_values second_values

+

77

Sooooooo
fast

int add_no_SSE(int size, int *first_array, int *second_array) {

for (int i = 0; i < size; ++i) {

first_array[i] += second_array[i];

}

}

78

int add_SSE(int size, int *first_array, int *second_array) {

for (int i=0; i + 4 <= size; i+=4) { // only works if (size%4) == 0

// load 128-bit chunks of each array

__m128i first_values = _mm_loadu_si128((__m128i*) &first_array[i]);

__m128i second_values = _mm_loadu_si128((__m128i*) &second_array[i]);

// add each pair of 32-bit integers in the 128-bit chunks

first_values = _mm_add_epi32(first_values, second_values);

// store 128-bit chunk to first array

_mm_storeu_si128((__m128i*) &first_array[i], first_values);

}

...
}

https://www.cs.virginia.edu/~cr4bd/3330/F2017/simdref.html

https://www.cs.virginia.edu/~cr4bd/3330/F2017/simdref.html

You can do this with floating point numbers too!

79

Packed
Double

(PD)

Scalar
Double

(SD)

80

Example: Reversing an array in 7
steps
(animated)

