
Lecture 10
Structured Data

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2022

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Remember: drop deadline is Friday
• Please come by office hours if you’re concerned and want to talk

• Or email me and I can schedule a meeting whenever

• If I’m worried at all, I reached out to you

• So if you didn’t get an email, you’re doing fine

2

Administrivia

• Bomb Lab due on Thursday (2/10)
• Keep up the hard work on it!

• Remember, it’s tricky, but not trying to trick you

• You can trust function names to roughly do what they say

• New assignments will be released on Thursday/Friday

3

Today’s Goals

• Wrap up x86-64 assembly!
• Discuss how structures are accessed

• Memory layout details
• Explore details about how structure memory is aligned

• Introduce unions in C

• Bonus: deep-dive into how processors work

4

5

• Structure Layout

• Struct Padding and Alignment

• Unions

Outline

Structure representation in C

• Structure represented as block of memory
• Big enough to hold all of the fields

• Fields ordered according to declaration order
• Even if another ordering could yield a more compact representation
• (We’ll see how that could happen in a bit)

• Compiler determines overall size + positions of fields
• Looking at memory, no way to tell it’s a struct (like arrays); just bytes
• It’s all in how the code treats that region of memory!

a

r

i next

0 16 24 32

struct rec {

int a[4];

size_t i;

struct rec *next;

};

6

Structure access

• Accessing Structure Member
• Pointer r indicates first byte of structure
• Access member with offsets
• Offset of each structure member determined at compile time

• Another use for Displacement in memory addressing!

r+16

a

r

i next

0 16 24 32

struct rec {

int a[4];

size_t i;

struct rec *next;

};

size_t get_i(struct rec *r)

{

return r->i;

}

r in %rdi

movq 16(%rdi), %rax

ret

r is a pointer to a struct.
Dereference the ponter, then get the i field of the struct.

7

r in %rdi

idx in %rsi

movq (%rdi,%rsi,4), %rax

ret

int get_a (struct rec *r,

size_t idx)

{

return r->a[idx];

}

Array within a struct

• Same as before; just need to also index in the array
• Pointer r indicates first byte of structure

• Offset of each structure member determined at compile time
• Offset into array determined based on index and type

• Compute as *(structAddr + offset + K*index);

• Uses full addressing mode!

r+4*idx

a

r

i next

0 16 24 32

struct rec {

int a[4];

size_t i;

struct rec *next;

};

8

struct rec {

int j;

int i;

int a[2];

struct rec *n;

};

movl ______, _______

ret

void

set_i(struct rec *r,

int val)

{

r->i = val;

}

Structure Access Practice 1

%esi 4(%rdi)

9

Arguments:
1) %rdi

2) %rsi

3) %rdx

4) %rcx

5) %r8

6) %r9

struct rec {

int j;

int i;

int a[2];

struct rec *n;

};

movl ______, _______

ret

void

set_i(struct rec *r,

int val)

{

r->a[1] = val;

}

Structure Access Practice 2

%esi 12(%rdi)

10

Arguments:
1) %rdi

2) %rsi

3) %rdx

4) %rcx

5) %r8

6) %r9

struct rec {

int j;

int i;

int a[2];

struct rec *n;

};

movl ______, _________________

ret

void

set_i(struct rec *r,

int val,

int index)

{

r->a[index] = val;

}

Structure Access Practice 3

%esi

11

8(%rdi, %rdx, 4)

Arguments:
1) %rdi

2) %rsi

3) %rdx

4) %rcx

5) %r8

6) %r9

.L11: # loop:

movslq 24(%rdi), %rax # i = M[r+24]

movl %esi, 8(%rdi,%rax,4) # M[r+8+4*i] = val

movq (%rdi), %rdi # r = M[r]

testq %rdi, %rdi # Test r

jne .L11 # if !=0 goto loop

void set_val

(struct rec *r, int val)

{

while (r) {

int i = r->i;

r->a[i] = val;

r = r->next;

}

}

Following Linked List

Register Value

%rdi r

%rsi val

struct rec {

struct rec *next;

int a[4];

int i;

}; // DIFFERENT ORDER!

r

inext

0 8 24 28

a

By convention, null next
pointer indicates end of list

12

.L11: # loop:

movslq 24(%rdi), %rax # i = M[r+24]

movl %esi, 8(%rdi,%rax,4) # M[r+8+4*i] = val

movq (%rdi), %rdi # r = M[r]

testq %rdi, %rdi # Test r

jne .L11 # if !=0 goto loop

void set_val

(struct rec *r, int val)

{

while (r) {

int i = r->i;

r->a[i] = val;

r = r->next;

}

}

Following Linked List

Register Value

%rdi r

%rsi val

struct rec {

struct rec *next;

int a[4];

int i;

}; // DIFFERENT ORDER!

r

inext

0 8 24 28

a

By convention, null next
pointer indicates end of list

13

Load i

.L11: # loop:

movslq 24(%rdi), %rax # i = M[r+24]

movl %esi, 8(%rdi,%rax,4) # M[r+8+4*i] = val

movq (%rdi), %rdi # r = M[r]

testq %rdi, %rdi # Test r

jne .L11 # if !=0 goto loop

void set_val

(struct rec *r, int val)

{

while (r) {

int i = r->i;

r->a[i] = val;

r = r->next;

}

}

Following Linked List

Register Value

%rdi r

%rsi val

struct rec {

struct rec *next;

int a[4];

int i;

}; // DIFFERENT ORDER!

r

inext

0 8 24 28

a

By convention, null next
pointer indicates end of list

14

Write val
into r->a[i]

.L11: # loop:

movslq 24(%rdi), %rax # i = M[r+24]

movl %esi, 8(%rdi,%rax,4) # M[r+8+4*i] = val

movq (%rdi), %rdi # r = M[r]

testq %rdi, %rdi # Test r

jne .L11 # if !=0 goto loop

void set_val

(struct rec *r, int val)

{

while (r) {

int i = r->i;

r->a[i] = val;

r = r->next;

}

}

Following Linked List

Register Value

%rdi r

%rsi val

struct rec {

struct rec *next;

int a[4];

int i;

}; // DIFFERENT ORDER!

r

inext

0 8 24 28

a

By convention, null next
pointer indicates end of list

15

Move to next
node in list

.L11: # loop:

movslq 24(%rdi), %rax # i = M[r+24]

movl %esi, 8(%rdi,%rax,4) # M[r+8+4*i] = val

movq (%rdi), %rdi # r = M[r]

testq %rdi, %rdi # Test r

jne .L11 # if !=0 goto loop

void set_val

(struct rec *r, int val)

{

while (r) {

int i = r->i;

r->a[i] = val;

r = r->next;

}

}

Following Linked List

Register Value

%rdi r

%rsi val

struct rec {

struct rec *next;

int a[4];

int i;

}; // DIFFERENT ORDER!

r

inext

0 8 24 28

a

By convention, null next
pointer indicates end of list

16

NULL check

17

• Structure Layout

• Struct Padding and Alignment

• Unions

Outline

.L11: # loop:

movslq 16(%rdi), %rax # i = M[r+16]

movl %esi, (%rdi,%rax,4) # M[r+4*i] = val

movq ??(%rdi), %rdi # r = M[r+??]

testq %rdi, %rdi # Test r

jne .L11 # if !=0 goto loop

void set_val

(struct rec *r, int val)

{

while (r) {

int i = r->i;

r->a[i] = val;

r = r->next;

}

}

Problem: reordering can
lead to different layouts

Register Value

%rdi r

%rsi val

struct rec {

int a[4];

int i;

struct rec *next;

};

SOMETHING’S
WRONG….

r

i next

0 16 20 28

a

18

.L11: # loop:

movslq 16(%rdi), %rax # i = M[r+16]

movl %esi, (%rdi,%rax,4) # M[r+4*i] = val

movq 24(%rdi), %rdi # r = M[r+24]

testq %rdi, %rdi # Test r

jne .L11 # if !=0 goto loop

void set_val

(struct rec *r, int val)

{

while (r) {

int i = r->i;

r->a[i] = val;

r = r->next;

}

}

Register Value

%rdi r

%rsi val

struct rec {

int a[4];

int i;

struct rec *next;

};

r

i next

0 16 24 32

a pad

20

19

Padding is added to struct
to preserve alignment

Alignment

• Aligned data
• Primitive data type requires K bytes

• Address must typically be a multiple of K (e.g., 1,2,4 or 8)

• an address that is a multiple of K is called “K-byte aligned”

• Required on some machines; recommended on x86-64
• But not doing it will really slow down your program

• In our example, pointer needed 8-byte alignment
• offset 24 ok, 20 was not

20

The why and how of alignment

• Motivation for aligning data
• Inefficient to load or store datum that spans quad word boundaries

• Hardware is really good at loading, e.g., 8 bytes at address 16, or 24, or 32
• If you want 8 bytes at address 12, may need two memory reads. Oops…

• Secondary motivations
• Having one datum spanning 2 cache lines = two cache accesses per access

• See upcoming lecture on caching
• Virtual memory very tricky when a datum spans 2 pages

• See upcoming lecture on virtual memory

• The compiler manages alignment
• Inserts gaps in structure to ensure correct alignment of fields
• Also occurs on the stack!

21

Specific Cases of Alignment (x86-64, Linux)

• 1 byte: char
• 1-byte aligned (no restrictions on address)

• 2 bytes: short
• 2-byte aligned (lowest 1 bit of address must be 0)

• 4 bytes: int, float
• 4-byte aligned (lowest 2 bits of address must be 00)

• 8 bytes: long, long long, double, char* (any pointer)
• 8-byte aligned (lowest 3 bits of address must be 000)

• 16 bytes: long double
• 16-byte aligned (lowest 3 bits of address must be 0000)
• Max possible alignment requirement on x86-64

22

struct S1 {

char c;

int i[2];

double v;

} *p;

Satisfying Alignment within Structures

• Within structure
• Must satisfy each element’s alignment requirement

• Overall structure placement
• Each structure has alignment requirement K
• Where K = Largest alignment of any element

• Initial address & structure length must be multiples of K

• Example:
• K = 8, due to double element

c i[0] i[1] v3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8
23

Meeting Overall Alignment Requirement

• Entire struct must be a multiple of its largest element

• For largest alignment requirement K

• Overall structure must be multiple of K
• Trailing padding

24

struct S2 {

double v;

int i[2];

char c;

} *p;

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

Multiple of K=8

Arrays of Structures

• Arrays are the reason for the overall length requirement
• Each struct must start at a multiple of its largest member. This means the

member is aligned

• The compiler adds trailing padding even without array declaration

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

struct S2 {

double v;

int i[2];

char c;

} a[10];

25

Accessing Array Elements

• sizeof(S3)=12, including padding

• Compute array offset 12*idx

• Element j is at offset 8 within structure

• Assembly contains displacement a+8
• Compile-time constant resolved during linking

struct S3 {

short i;

float v;

short j;

} a[10];

short get_j(int idx)

{

return a[idx].j;

}

%rdi = idx

leaq (%rdi,%rdi,2),%rax # 3*idx

movzwl a+8(,%rax,4),%eax

a[0] • • • a[idx] • • •

a+0 a+12 a+12*idx

i 2 bytes v j 2 bytes

a+12*idx a+12*idx+8

26

Saving Space

• Put large data types first

• Effect: saved 4 bytes

• C compilers cannot do this automatically!
• They have to preserve field ordering

• Programmers must do it manually

• Other languages aren’t bound to preserve ordering. Rust may reorder for you

struct S4 {

char c;

int i;

char d;

} *p;

struct S5 {

int i;

char c;

char d;

} *p;

c i3 bytes d 3 bytes ci d 2 bytes

27

Break + Quiz

• What is the total size of this
struct?

typedef struct {

short a;

int b;

char* c[3];

char d;

}

28

Break + Quiz

• What is the total size of this
struct?

typedef struct {

short a;

int b;

char* c[3];

char d;

}

29

2 bytes for a

(2 bytes for padding)

4 bytes for b

(no padding needed, 8-aligned)
24 bytes for c

(no padding needed, 1-aligned)
1 byte for d

(7 bytes padding after struct)

= 40 bytes total

Could have been 32 bytes if reordered

30

• Structure Layout

• Struct Padding and Alignment

• Unions

Outline

Unions

• Structs = combine multiple pieces of
data into one
• Think: “all of the above”

• Unions = choose between multiple
different kinds of data
• Think: “any of the above”

• Typically used in conjunction with a
struct: variants
• That tells us which branch of

the union is used
• E.g., which_kind of 0 to mean

sandwich meal, 1 for pizza, etc.

typedef struct {

int n_pieces_bread;

char *toppings[2];

float mayo_ounces;

} Sandwich_t;

typedef union {

Sandwich_t s;

Pizza_t p;

Burrito_t b;

} MealKind_t;

typedef struct {

char which_kind;

char n_sides;

char cost;

MealKind_t mk;

} Meal_t;

31

Union allocation

• Principles
• Overlay union elements

• Allocate according to largest element (strictest)

• Can only use one field at a time

union U1 {

char c;

int i[2];

double v;

} up;

struct S1 {

char c;

int i[2];

double v;

} sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c 7 bytes

i[0] i[1]

v

up+0 up+4 up+8

Structs: All of the above,
together, one after the other.

Unions: One of the above,
you pick the one you want.

32

• Union: same bits, different contexts
• 8 bytes are allocated for the union

• Can be interpreted as any member

• Changing one member will change
some bits of the others

Union allocation

• Principles
• Overlay union elements

• Allocate according to largest element (strictest)

• Can only use one field at a time

union U1 {

char c;

int i[2];

double v;

} up;

struct S1 {

char c;

int i[2];

double v;

} sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c 7 bytes

i[0] i[1]

v

up+0 up+4 up+8

Quiz: If we had 3 ints in that array,
how much space would the union
take?

Answer: 16 bytes (8-byte aligned)

Structs: All of the above,
together, one after the other.

Unions: One of the above,
you pick the one you want.

33

typedef union {

float f;

unsigned u;

} bit_float_t;

unsigned float2bit(float f) {

bit_float_t temp;

temp.f = f;

return temp.u;

}

procedure with float arg

arg1 passed in %xmm0

movss = move single-precision

movss %xmm0, -4(%rsp)

movl -4(%rsp), %eax

ret

Using union to access bit patterns

34

f

u

0 4

• Store union using one type & access it
with another one

• Get direct access to bit representation
of float

• float2bit generates bit pattern from
float
• NOT the same as (unsigned) f !

• Doesn’t convert value to unsigned

• Keeps the same bits but interprets them
differently

• Assembly doesn’t have type info
• Just moves the bytes

unsigned float2bit(float f)

{

unsigned *p;

p = (unsigned *) &f;

return *p;

}

Access to Bit Pattern Non-Solution

35

Undefined behavior in C.

Don’t do that.

Byte ordering revisited

• Idea
• Words/long words/quad words stored in memory as 2/4/8 consecutive bytes
• At which byte address in memory is the most (least) significant byte stored?
• Can cause problems when exchanging binary data between machines

• Little Endian
• Least significant byte has lowest address
• Intel x86(-64), ARM Android and IOS

• Big Endian
• Most significant byte has lowest address
• Sun/Sparc, Networks

• Have to worry about it when working with unions!

36

Byte Ordering Example

37

for (int j = 0; j < 8; j++) {

dw.c[j] = 0xf0 + j;

}

printf("Chars 0-7 == [0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x]\n",

dw.c[0], dw.c[1], dw.c[2], dw.c[3],

dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf("Shorts 0-3 == [0x%x, 0x%x, 0x%x, 0x%x]\n",

dw.s[0], dw.s[1], dw.s[2], dw.s[3]);

printf("Ints 0-1 == [0x%x, 0x%x]\n",

dw.i[0], dw.i[1]);

printf("Long 0 == [0x%lx]\n",

dw.l[0]);

union {

unsigned char c[8];

unsigned short s[4];

unsigned int i[2];

unsigned long l[1];

} dw;

Byte ordering on Little Endian

38

Output:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

LSB MSB

union {

unsigned char c[8];

unsigned short s[4];

unsigned int i[2];

unsigned long l[1];

} dw;

Contents

Print

Characters 0-7 == [0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7]

Shorts 0-3 == [0xf1f0, 0xf3f2, 0xf5f4, 0xf7f6]

Ints 0-1 == [0xf3f2f1f0, 0xf7f6f5f4]

Long 0 == [0xf7f6f5f4f3f2f1f0]

Views

Byte ordering on Big Endian

39

Characters 0-7 == [0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7]

Shorts 0-3 == [0xf0f1, 0xf2f3, 0xf4f5, 0xf6f7]

Ints 0-1 == [0xf0f1f2f3, 0xf4f5f6f7]

Long 0 == [0xf0f1f2f3f4f5f6f7]

Output:

f0 f1 f2 f3 f4 f5 f6 f7

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

s[0] s[1] s[2] s[3]

i[0] i[1]

l[0]

MSB LSB

union {

unsigned char c[8];

unsigned short s[4];

unsigned int i[2];

unsigned long l[1];

} dw;

Contents

Print

Views

Break + Thinking

• We’ve covered everything we need to from assembly

• Do we know enough to “compile” C++ in x86-64?
• Yes!

• Classes are structs

• Likely with extra members to keep track of things

• And function pointers as members

• References are just pointers that the compiler handles for you

40

Lecture BONUS
Assembly to Transistors

CS213 – Intro to Computer Systems

Branden Ghena

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Assembly into machine code

42

• Machine code are the
numerical versions of
each instruction

• Number breaks down
into parts
• Operation
• Source
• Destination

• Immediates are stored
in the instruction
encoding

Machine code ideas

• Example:
• ADD $0x4351FF23, %rax

• ADD with destination %rax translates into 0x05
• Immediate is appended on to that

• Machine code: 0x0523FF5143

• Number of bytes for each instruction is variable
• 1-15 bytes depending on instruction and operands

• Translation in complicated
• We’re not going to do it by hand, although Attack Lab will touch it a bit

43

Representing instructions as numbers

• Why represent instructions as numbers?

1. Everything in memory is “just a number”
• And instructions go in memory

2. Hardware can “decode” number to figure out what to do
• Break number apart into bits (just like floating point)

• Some bits pick operation

• Some bits pick register or specify immediate

44

Computer Processor (in five easy steps)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

45

These steps are relatively easy (we’ll skip them)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

46

This is extremely complicated for x86-64 (skip it too)

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

47

We can talk about what execution means though!

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

48

Arithmetic Logic Unit (ALU)

• Piece of hardware

• Takes in two operands
• Source and Destination values

• Takes in an Opcode
• Which operation to run

• Performs operation and
outputs result

49

What can an ALU do?

• All the basic arithmetic operations
• Add
• Subtract
• Bitwise And
• Bitwise Or
• Bitwise Xor
• Arithmetic Shift Right
• Logical Shift Right
• Logical Shift Left

• Complex operations are separate hardware
• Multiply, Divide, Anything floating point

50

Let’s zoom in

51

Inside an ALU

• Input values go into
separate hardware blocks
for each operation

• Every operation occurs in
parallel, simultaneously
• We are in hardware so this is

essentially free

52

ALU Inputs

Inside an ALU – selecting the correct output

53

Selector
ALU Output

ALU Inputs

Opcode

Selects ALU
output based
on Opcode

Let’s zoom in

54

How is an ALU made?

• All of those arithmetic operations can be broken down into a series
of 1-bit Boolean operations
• Add is XOR for result + AND for carry
• Subtract is Flip bits (NOT), Add one (XOR + AND), then Add (XOR + AND)

• And/Or/Xor are just their respective operations
• Shifts are just move the bits around (simple in hardware, just move wires)

55

32-bit OR operation

• Perform OR operation on each individual bit
• Pictured is a series of 1-bit OR gates

56

32-bit ADD operation

• Below is the 1-bit version with carry-in/out
• Two 1-bit AND, two 1-bit XOR, one 1-bit OR

• Repeat 32 times, connecting carries together

57

Let’s zoom in

58

Logic gates can be created with transistors

• CMOS implementation of logic gates
• Complementary Metal-Oxide Semiconductor

59

Transistors are just
on/off switches

Let’s zoom in

60

Transistors are made out of silicon and other materials

• Turning gate on/off causes
source and drain to connect or
disconnect
• Acts as a switch

• We can make very small
transistors

61

That’s the bottom

62

Zooming out again

• Transistors make logic gates

63

1-bit AND gate

F

Zooming out again

• Logic gates make operations

64

1-bit AND gate
1-bit ADD operation

Zooming out again

• 1-bit operations make 32-bit operations

65

1-bit ADD operation

Zooming out again

• Operations make an ALU

66

Selector

ALU Output

ALU Inputs

Opcode

ALU allows us to execute operations

1. Reads instruction from memory

2. Decodes it into an Operation plus Configurations
• Immediates, Registers, Memory, etc.

3. Reads from source (based on configuration)

4. Executes that operation

5. Writes to destination (based on configuration)

67

All the way back to software

• C compiles into
assembly

• Assembly translates
into machine code

• Machine code specifies
what should be
executed

68

A processor is just a lot of transistors connected very carefully

• ALU plus other operations make up a Core
• And decode logic

• Multiple cores, plus registers, plus caches make up a Processor
• And other stuff these days like graphics

69

70

• Structure Layout

• Struct Padding and Alignment

• Unions

• Assembly to Transistors (and back)

Outline

