
Lecture 06
Arithmetic Instructions

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2022

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Data Lab due tonight
• 20% penalty per late day (or portion thereof)

• Slip days (3 total) can apply though

• Homework 2 released after class
• Floating point, Assembly addressing, Assembly loops (Tuesday)

• Bomb Lab released tomorrow
• Practice interpreting assembly code

2

Instruction Set Architecture sits at software/hardware interface

3

C Language

x86-64

Intel Pentium 4

Intel Core i7

AMD RyzenGCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple M1

ClangProgram
B

Program
A

CompilerSource code Architecture

Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware

Instruction set

x86-64 Integer Registers

%rax %eax %ax %ah %al

%rbx %ebx %bx %bh %bl

%rcx %ecx %cx %ch %cl

%rdx %edx %dx %dh %dl

%rsi %esi %si

%rdi %edi %di

%rbp %ebp %bp

%rsp %esp %sp

%r8 %r8d %r8w

32-bit registers

16-bit registers

8-bit

…

%r15 %r15d %r15w

… …
%sil

%dil

%bpl

%spl

%r8b

%r15b

64-bit registers

8-bit

4

Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

5

Cannot do memory-memory transfer with a single instruction

Three Basic Kinds of Instructions

1. Transfer data between memory and register
• Load data from memory into register

• %reg = Mem[address]

• Store register data into memory

• Mem[address] = %reg

2. Perform arithmetic operation on register or memory data
• c = a + b; z = x << y; i = h & g;

3. Control flow: what instruction to execute next
• Unconditional jumps to/from procedures

• Conditional branches

In x86-64 these basic types can often be combined

6

Remember: Memory
is indexed just like an
array of bytes!

Today’s Goals

• Continue exploring x86-64 assembly
• Arithmetic

• Discuss real-world x86-64
• Special cases

• Generating assembly

• Understand condition codes
• Method for testing Boolean conditions

7

8

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

Two-operand instructions

Some arithmetic operations

Instruction Effect Description

addq S,D D ← D + S Add

subq S,D D ← D – S Substract

imulq S,D D ← D * S Multiply

xorq S,D D ← D ^ S Exclusive or

orq S,D D ← D | S Or

andq S,D D ← D & S And

Instruction Effect Description

sarq k, D D ← D >> k Shift arithmetic right

shrq k, D D ← D >> k Shift logical right

salq k, D D ← D << k Shift left

shlq k, D D ← D << k Shift left (same as salq)

Shifts

Operand types
• Immediate
• Register
• Memory
(Only one can be memory)

Be careful with
operand order!!!
(Matters for some
operations)

9

A note on instruction names

• Instruction names can look somewhat arcane
• shlq? movzbl?

• But, good news: names (usually) follow conventions
• Common prefixes (add), suffixes (b, w, l, q), etc.
• So you can understand pieces separately
• Then combine their meanings

10

Some Arithmetic Operations

• Unary (one-operand) Instructions:

• See textbook Section 3.5.5 for more instructions:
mulq, cqto, idivq, divq

11

Instruction Effect Description

incq D D ← D + 1 Increment

decq D D ← D – 1 Decrement

negq D D ← -D Negate

notq D D ← ~D Complement

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

a = b + c;

12

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

a = b + c;

movq %rbx, %rax

addq %rcx, %rax

13

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

a = b + c;

movq $0, %rax

addq %rbx, %rax

addq %rcx, %rax

14

Is this okay?

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

a = b + c;

movq $0, %rax

addq %rbx, %rax

addq %rcx, %rax

15

Is this okay?

Yes: just a little slower

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

a = b + c;

addq %rbx, %rcx

movq %rcx, %rax

16

Is this okay?

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

a = b + c;

addq %rbx, %rcx

movq %rcx, %rax

17

Is this okay?

No: overwrites C
which could still be
used later in code!

op src, dst

Question + Break

• Suppose a → %rax, b → %rbx, c→ %rcx
Convert the following C statement to x86-64:

c = (a-b)+5;

18

Reminder
addq, src, dst → dst = dst + src

[A]
movq %rax, %rcx
subq %rbx, %rcx
addq $5, %rcx

[B]
movq %rax, %rcx
subq %rbx, %rcx
movq $5, %rcx

[C]
subq %rcx, %rax, %rbx
addq %rcx, %rcx, $5

[D]
subq %rbx, %rax
addq $5, %rax
movq %rax, %rcx

Question + Break

• Suppose a → %rax, b → %rbx, c→ %rcx
Convert the following C statement to x86-64:

c = (a-b)+5;

[A]
movq %rax, %rcx
subq %rbx, %rcx
addq $5, %rcx

[B]
movq %rax, %rcx
subq %rbx, %rcx
movq $5, %rcx

[C]
subq %rcx, %rax, %rbx
addq %rcx, %rcx, $5

[D]
subq %rbx, %rax
addq $5, %rax
movq %rax, %rcx

Reminder
addq, src, dst → dst = dst + src

c = 5

Not x86

Overwrites
a

19

20

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

x86-64 Integer Registers

%rax %eax %ax %ah %al

%rbx %ebx %bx %bh %bl

%rcx %ecx %cx %ch %cl

%rdx %edx %dx %dh %dl

%rsi %esi %si

%rdi %edi %di

%rbp %ebp %bp

%rsp %esp %sp

%r8 %r8d %r8w

32-bit registers

16-bit registers

8-bit

…

%r15 %r15d %r15w

… …
%sil

%dil

%bpl

%spl

%r8b

%r15b

64-bit registers

8-bit

21

Moving data of different sizes

• “Vanilla” move can only move between source and dest of the same size
• Larger → smaller: use the smaller version of registers

• Smaller → larger: extension! We have two options!

Instruction Effect Description

movX S,D

X ∈ {q, l, w, b}

D ← S Copy quad-word (8B), long-
word (4B), word (2B) or
byte (1B)

movsXX S,D

XX ∈ {bw, bl, wl, bq, wq, lq}

D ←
SignExtend(S)

Copy sign-extended byte to
word, byte to long-word,
etc.

movzXX S,D

XX ∈ {bw, bl, wl, bq, wq, lq}

D ←
ZeroExtend(S)

Copy zero-extended byte to
word, byte to long-word,
etc.

cltq

(convert long to quad)

%rax ←
SignExtend(%eax)

Sign-extend %eax to %rax

22

Example: moving byte data

• Note the differences between movb, movsbl and movzbl

• Assume %dl = 0xCD, %eax = 0x98765432

movb %dl,%al

movsbl %dl,%eax

movzbl %dl,%eax

%eax = 0x987654CD

%eax = 0xFFFFFFCD

%eax = 0x000000CD

23

op src, dst

32-bit Instruction Peculiarities

• Instructions that move or generate 32-bit values also set the upper
32 bits of the respective 64-bit register to zero, while 16 or 8 bit
instructions don't.

movabsq $0xffffffffffffffff, %rax # rax = 0xffffffffffffffff

movb $0, %al # rax = 0xffffffffffffff00

movw $0, %ax # rax = 0xffffffffffff0000

movl $0, %eax # rax = 0x0000000000000000

• This includes 32-bit arithmetic! (e.g., addl)

24

op src, dst

25

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

Complete Memory Addressing Modes

• General:
• D(Rb,Ri,S)

• Rb: Base register (any register)

• Ri: Index register (any register except %rsp)

• S: Scale factor (1, 2, 4, 8) (sizes of common C types)

• D: Constant displacement value (a.k.a. immediate)

• Mem[Reg[Rb] + Reg[Ri]*S + D]

26

Saving computed addresses

• Generally, any instruction with () in it, accesses memory
• Address is computed first

• Load if in a source operand

• Store if in a destination operand

• But what if what you really want is the address?
• lea – load effective address

• Exception to () rule. Does NOT load from memory

• Also generally useful for arithmetic

• This is the compiler’s favorite instruction

27

Address computation instruction

• leaq src, dst

• "lea" stands for load effective address

• src MUST be an address expression (any of the formats we’ve seen)

• dst is a register

• Sets dst to the address computed by the src expression
(does not go to memory! – it just does math)

• Example: leaq (%rdx,%rcx,4), %rax

• Uses:
• Computing addresses without a memory reference

• e.g. translation of p = &x[i];

• Computing arithmetic expressions of the form x+k*i+d

• Though k can only be 1, 2, 4, or 8

28

Example: lea vs. mov

29

0x120

0x118

0x110

0x108

0x100

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x4

0x100

%rdi

%rsi

leaq (%rdx,%rcx,4), %rax

movq (%rdx,%rcx,4), %rbx

leaq (%rdx), %rdi

movq (%rdx), %rsi

Example: lea vs. mov

30

0x120

0x118

0x110

0x108

0x100

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x8

0x4

0x100

%rdi

%rsi

leaq (%rdx,%rcx,4), %rax

movq (%rdx,%rcx,4), %rbx

leaq (%rdx), %rdi

movq (%rdx), %rsi

Example: lea vs. mov

31

0x120

0x118

0x110

0x108

0x100

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x8

0x4

0x100

%rdi 0x100

%rsi 0x1

leaq (%rdx,%rcx,4), %rax

movq (%rdx,%rcx,4), %rbx

leaq (%rdx), %rdi

movq (%rdx), %rsi

Why does the compiler love lea?

• Sometimes it’s good for computing addresses

• Usually the compiler uses it to do math in fewer instructions
• addq only adds a source and a destination, and overwrites destination

• leaq adds up to two register and an immediate, AND stores to a different
register!

32

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

....

}

rdi = x

rsi = y

rdx = z

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

33

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

....

}

rdi = x

rsi = y

rdx = z

leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

34

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

....

}

rdi = x

rsi = y

rdx = z

leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

leaq (%rsi,%rsi,2),%rsi # rsi = y + 2*y = 3*y

salq $4,%rsi # rsi = (3*y)*16 = 48*y (t4)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

35

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

....

}

rdi = x

rsi = y

rdx = z

leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

leaq (%rsi,%rsi,2),%rsi # rsi = y + 2*y = 3*y

salq $4,%rsi # rsi = (3*y)*16 = 48*y (t4)

addq %rdx,%rcx # rcx = z+t1 (t2)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

36

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

....

}

rdi = x

rsi = y

rdx = z

leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

leaq (%rsi,%rsi,2),%rsi # rsi = y + 2*y = 3*y

salq $4,%rsi # rsi = (3*y)*16 = 48*y (t4)

addq %rdx,%rcx # rcx = z+t1 (t2)

leaq 4(%rsi,%rdi),%rdi # rdi = t4+x+4 (t5)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

37

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

long t1 = x+y;

long t2 = z+t1;

long t3 = x+4;

long t4 = y * 48;

long t5 = t3 + t4;

long rval = t2 * t5;

....

}

rdi = x

rsi = y

rdx = z

leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

leaq (%rsi,%rsi,2),%rsi # rsi = y + 2*y = 3*y

salq $4,%rsi # rsi = (3*y)*16 = 48*y (t4)

addq %rdx,%rcx # rcx = z+t1 (t2)

leaq 4(%rsi,%rdi),%rdi # rdi = t4+x+4 (t5)

imulq %rcx,%rdi # rdi = t2*t5 (rval)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

38

Break + Say hi to your neighbors

• Things to share
• Name

• Major

• One of the following

• Favorite Candy

• Favorite Pokemon

• Favorite Emoji

39

Break + Say hi to your neighbors

• Things to share
• Name -Branden

• Major -Electrical and Computer Engineering, and Computer Science

• One of the following

• Favorite Candy - Twix

• Favorite Pokemon - Eevee

• Favorite Emoji -🍢

40

41

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

What can instructions do?

• Move data: ✓

• Arithmetic: ✓

• Transfer control: ✘
• Instead of executing next instruction, go somewhere else

• Let’s back out. Why do we want that?

• Sometimes we want to go from the red code to the green code
• But the blue code is what’s next!
• Need to transfer control! Execute an instruction that is not the next one
• And conditionally, too! (i.e., based on a condition)

if (x > y)

result = x-y;

else

result = y-x;

while (x > y)

result = x-y;

return result;

42

Condition codes

• Control is mediated via Condition codes
• single-bit registers that record answers to questions about values

• E.g., Is value x greater than value y? Are they equal? Is their sum even?

• Let’s keep “question” abstract for now. We’ll see the details in a bit.

• Terminology:

• a bit is set if it is 1

• a bit is cleared (or reset) if it is 0

43

Conditionals at the machine level

• At machine level, conditional operations are a 2-step process:
• Perform an operation that sets or clears condition codes (ask questions)

• Then observe which condition codes are set, do the operation (or not)

• Can express Boolean operations, conditionals, loops, etc.
• We will see the first today, and more control next lecture

• So now we need three things:
1. Instructions that compare values and set condition codes

2. Instructions that observe condition codes and do something (or not)

3. A set of actual condition codes (what questions do we track answers to?)

44

Carnegie Mellon

Two-Step Conditional Process: Bool Ops

• Lots of new pieces

• Lets give an example first, then learn more
about each
• Translate C code on right into assembly

bool gt (int x, int y)

{

return x > y;

}

cmpq %rsi, %rdi # Compare x:y

setg %al # Set when x > y (i.e., %rdi > %rsi)

ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

45

Carnegie Mellon

Two-Step Conditional Process: Bool Ops

• Step 1, cmpq: compare quad words
• compare the values in %rsi and %rdi,

keep track of all you can learn, and set the
relevant condition codes

• Are the two equal? Set the condition codes
that records they were equal

• Was the right one greater? Or less? Etc.

• We don’t know yet which answer we
are going to need! So just save them all.

bool gt (int x, int y)

{

return x > y;

}

cmpq %rsi, %rdi # Compare x:y

setg %al # Set when x > y (i.e., %rdi > %rsi)

ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

y x

46

cmpq %rsi, %rdi # Compare x to y

setg %al # Set when x > y (i.e., %rdi > %rsi)

ret

Carnegie Mellon

Two-Step Conditional Process: Bool Ops

• Step 2, setX: set destination register
to 1 if condition is met
• setg = set if the 2nd operand is greater

than the 1st (careful about the order!)

• There’s also setl for less than, etc.

• Reads the condition codes that encodes
the answer to that question

• Set the 1-byte register %al to 1 if true

al = (x > y) y x

47

bool gt (int x, int y)

{

return x > y;

}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

Step 1: Setting condition codes

• Analogy: Asking ALL the possible questions at once
• And recording the answers
• We don’t know yet which question is the one we care about!

• Done in one of two ways
• Implicitly: all* arithmetic instructions set (and reset) condition codes in addition

to producing a result
• * except lea; it’s not “officially” an arithmetic instruction

• Explicitly: by instructions whose sole purpose is to set condition codes
• E.g., cmpq
• They don’t actually produce results (in registers or memory)

• Condition codes are left unchanged by other operations

48

Implicitly Setting Condition Codes

• Condition codes on x86
• CF Carry Flag (for unsigned) SF Sign Flag (for signed)

• ZF Zero Flag OF Overflow Flag (for signed)

• PF Parity Flag

• Not an arbitrary set! By combining them, can keep track of answers to
many useful questions! (We’ll see exactly which in a bit.)

49

Implicitly Setting Condition Codes

• Set (or reset) based on the result of arithmetic operations
Example: addq Src,Dest # C-analog: t = a+b

• ZF set if t == 0

• SF set if t < 0 (as signed)

• CF set if carry out from most significant bit (unsigned overflow)
also CF takes the value of the last bit shifted (left or right)

• OF set if twos-complement (signed) overflow (pos/neg overflow)
(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

also, set if a 1-bit shift operation changes the sign of the result

• PF set if t has an even number of 1 bits
50

CF (Carry) SF (Sign) ZF (Zero) OF (Overflow) PF (Parity)

Carnegie Mellon

Explicitly Setting Condition Codes: Compare

• cmp{b,w,l,q} Src2, Src1

• cmpq b,a computes t = a-b, then throws away the result!
• And sets condition codes along the way, like subq would!

• Follows the rules we saw on the previous slide for arithmetic instructions!

• Beware the order of the cmp operands!

• Use cases
• ZF set if a == b

• SF set if (a-b) < 0 (as signed), i.e., b > a in a signed comparison!

• CF and OF used mostly in combinations with others (see in a few slides)

51

Carnegie Mellon

Explicitly Setting Condition Codes: Test

• test{b,w,l,q} Src2,Src1

• testq b,a computes t = a&b, then throws away the result!
• And sets condition codes like andq would (order doesn’t matter here)

• So again, same rules as arithmetic instructions

• Use cases
• ZF set when a&b == 0, i.e., a and b have no bits in common

• SF set when a&b < 0

• Useful when doing bit masking
• E.g., x & 0x1, to know whether x is even or odd

• If the result of the & is 0, it’s even, if 1, it’s odd

52

Carnegie Mellon

Step 2: Reading Condition Codes

•Cannot read condition codes directly; instead observe
via instructions
• And generally observe combinations of condition codes, not

individual ones

• Example: the setX family of instructions
• Write single-byte destination register based on combinations of

condition codes
• set{e, ne, s, …} D where D is a 1-byte register

• Example: sete %al

• means: %al=1 if flag ZF is set, %al=0 otherwise

53

Carnegie Mellon

Condition codes combinations

SetX Description Condition

sete Equal / Zero ZF

setne Not Equal / Not Zero ~ZF

sets Negative SF

setns Nonnegative ~SF

setg Greater (Signed) ~(SF^OF)&~ZF

setge Greater or Equal (Signed) ~(SF^OF)

setl Less (Signed) (SF^OF)

setle Less or Equal (Signed) (SF^OF)|ZF

seta Above (unsigned) ~CF&~ZF

setb Below (unsigned) CF

Note: suffixes do not
indicate operand sizes,
but rather conditions

These same suffixes
will come back when
we see other instructions
that read condition codes.

54

Using condition codes for comparison

• setle – Less than or equal (signed)
• (SF^OF)|ZF

• SF - Sign Flag (true if negative)
• OF – Overflow Flag (true if signed over/underflow occurred)
• ZF – Zero Flag (true if result is zero)

• All of the combos expect to be run after a cmp src,dst

• dst <= src (runs dst-src)

• If:
• The result is zero – src and dst were equal

• OR if one but not both:
• The result is negative (and didn’t overflow) – src was larger than dst
• The result overflowed (and is positive) – dst is negative, src is positive

55

Step 2: Reading Condition Codes

• setX (and others) read the current state of condition codes
• Whatever it is, and whichever instruction changed it last

• So when you see (for example) setne, work backwards!
• Look at previous instructions, to find the last one to change conditions

• Then you’ll know the two values that were compared

• Ignore instructions that don’t touch condition codes (like moves)

• Usually you’ll see a cmpX (or testX, or arithmetic) right before
• But not always, so know what to do in general

56

Question + Break

• %rax = 15, %rbx = 15

cmpq %rax, %rbx

• Which flag(s) are set?

57

CF (Carry) SF (Sign) ZF (Zero) OF (Overflow) PF (Parity)

Question + Break

• %rax = 15, %rbx = 15

cmpq %rax, %rbx

• Which flag(s) are set?

• ZF is set (because the two are equal and subtracted)

• PF is set (because there are an even number of 1 bits, four total)

58

CF (Carry) SF (Sign) ZF (Zero) OF (Overflow) PF (Parity)

59

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

How to Get Your Hands on Assembly

• From C source code, using a compiler

• gcc –O1 -S sum.c

• Produces file sum.s

• Online compiler, shows asm output: https://godbolt.org

• Warning: May get very different results on different machines due to
different versions of gcc and different compiler settings

C Code: sum.c
long plus(long x, long y);

void sum(long x, long y,

long *dest)

{

long t = plus(x, y);

*dest = t;

}

Generated x86-64 assembly: sum.s

sum:

pushq %rbx

movq %rdx, %rbx

call plus

movq %rax, (%rbx)

popq %rbx

ret

60

How to Get Your Hands on Assembly

• From machine code, using a disassembler

• objdump -d sum.o

• Within the gdb Debugger
linux> gdb prog

(gdb) disassemble sum

• gdb tutorial coming soon!

• Warning: Disassemblers are approximate; some information is lost during translation from
assembly to machine code
• Label names are lost, what is just data (vs code) is lost, etc.

• Useful if you don’t have the source

0000000000400595 <sum>:

400595: 53 push %rbx

400596: 48 89 d3 mov %rdx,%rbx

400599: e8 f2 ff ff ff callq 400590 <plus>

40059e: 48 89 03 mov %rax,(%rbx)

4005a1: 5b pop %rbx

4005a2: c3 retq
61

Godbolt

Ignore
“_dl_relocate_static_pie”

Play around with this to
try stuff on your own

https://godbolt.org/

62

https://godbolt.org/

• Godbolt example!

63

64

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

