
Lecture 05
Intro to x86-64 Assembly

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2022

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Welcome back to in-person classes!

• We’re all figuring this out together
• Please be patient and empathetic, and we will be too

• Masks in class are mandatory
• I will pause class, point at you, and ask you to put your mask on right

• If you are sick, do not come to class
• Even if there’s an exam that day!!
• We will be flexible with deadlines as necessary
• Lectures are being recorded automatically

• Office hours will stay online for now

2

Administrivia

• Data lab
• Due this Thursday (1/20) at 11:59 pm

• If you haven’t yet, get started right away!

• Especially make sure you don’t have issues logging into Moore

• Takes ~24 hours to fix and we won’t be giving extensions for it

3

Today’s Goals

• Introduce assembly and the x86-64 Instruction Set Architecture
• Discuss background of the factors that affected its evolution

• Understand registers: the analogy to variables in assembly

• Explore our first assembly instruction: mov

4

5

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Assembly (Also known as: Assembly Language, ASM)

• Purpose of a CPU: execute instructions

• High-level programs (like in C) are split into many small
instructions

• Assembly is a low-level programming language where the program
instructions match a particular architecture’s operations

• Assembly is a human-readable text representation of machine code

• Each assembly instruction is one machine instruction (usually)

6

Programs can be written in assembly or machine instructions

C Program (source code)

a = (b+c) – (d+e);

Assembly Program
addq %rdi, %rsi

addq %rdx, %rcx

subq %rcx, %rsi

movq %rsi, %rax

7

Machine Instructions
0x4889D3
0x488903
0x53
0x5B

There are many assembly languages

• Instruction Set Architecture: All programmer-visible components of
a processor needed to write software for it
• Operations the processor can execute

• The system’s state (registers, memory, program counter)

• The effect operations have on system state

• Each assembly language has instructions that match a particular
processor’s Instruction Set Architecture (ISA)

• Assembly is not portable to other architectures (like C is)

8

Which instructions should an assembly include?

Each assembly language has its own operations

There are some obviously useful instructions:

• Add, subtract, and bit shift

• Read and write memory

But what about:

• Only run the next instruction if these two values are equal

• Perform four pairwise multiplications simultaneously

• Add two ascii numbers together (‘2’ + ‘3’ = 5)

9

Instruction Set Philosophies

Early trend: add more instructions to do elaborate operations
Complex Instruction Set Computing (CISC)

• Handle many different types of operations
• More options for the compiler
• Complicated hardware runs more slowly

Opposite philosophy later began to dominate:
Reduced Instruction Set Computing (RISC)

• Simpler (and smaller) instruction set makes it easier to build fast hardware

• Let software do the complicated operations by composing simpler ones

Modern reality is somewhere between these two

10

Mainstream Instruction Set Architectures

11

Macbooks & PCs
(Core i3, i5, i7, M)
x86 Instruction Set

Smartphones (iPhone, Android),
M1 Macbooks, Raspberry Pi,
Embedded systems
ARM Instruction Set

Open-source
Relatively new, designed for
cloud computing, embedded
systems, academic use
RISCV Instruction Set

https://en.wikipedia.org/wiki/X86_instruction_listings
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/su18/img/riscvcard.pdf

Instruction Set Architecture sits at software/hardware interface

12

C Language

x86-64

Intel Pentium 4

Intel Core i7

AMD RyzenGCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple M1

ClangProgram
B

Program
A

CompilerSource code Architecture

Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware

Instruction set

Intel x86 Processors

• Dominate laptop/desktop/server market
• No longer completely dominant in laptops though

• Complex instruction set computer (CISC)
• Many different instructions with many different formats

• But, only small subset encountered by normal programs

• Design evolved over time
• Backwards compatible up until 8086, introduced in 1978

• Added more features as time goes on

• Historical legacy has large impact on architecture

13

Moore’s Law – CPU transistors counts

“Number of transistors in a chip
doubles every 18 months”

Transistors are getting
exponentially smaller!

How small? Today: 7nm!
< ½ the size of most viruses!

14

Evolution
of x86 ISA

Name Date Transistors Comments

8086 1978 29k 16b processor, basis for IBM PC & DOS; 1MB address space

80286 1982 134K Elaborate (!useful) addressing; basis for IBM PC and Windows

386 1985 275K Extended to 32b, added “flat addressing” that Linux/gcc uses

486 1989 1.9M Improved performance; integrated FP unit into chip

Pentium 1993 3.1M Improved performance

PentiumPro 1995 6.5M Conditional move instructions; big change in microarch. (P6)

Pentium II 1997 7M Merged Pentium/MMZ + PentiumPro, MMX instructions within P6

Pentium III 1999 8.2M Integer and floating point vector instructions (SSE); Level2 cache

Pentium 4 2001 42M 8B ints and floating point formats to vector instructions

Pentium 4E 2004 125M Hyperthreading (able to run 2 programs simultaneously), 64b

Core 2 2006 291M P6-like, multicore, no hyperthreading

Core i7 (Nehalem) 2008 781M Hyperthreading + multicore, TurboBoost (run fewer cores faster)

Core i3 (Nehalem) 2010 383M+177M GPU on second silicon die within package (at 2010 version)

Core i3, i5, i7

(Sandy Bridge)

2011 997M

(i7 – 4 cores)

Cores and GPU within the same processor die

Core i3, i5, i7

(Ivy Bridge)

2012 1400M

(i7 – 4 cores)

Tri-gate transistors, much lower power consumption

Xeon E7 8800 V4

(Broadwell-EX)

2016 >5690M

(22 cores)

14nm technology

15

Backwards Compatibility The cause of, and solution to, all of life’s problems.

• Programs that worked on one x86 processor should keep working on
the next one

• Old programs work on new processors, which makes upgrading possible
• Even today’s x86-64 processors boot thinking they are 8086s!

• Adding powerful new features while keeping backwards compatibility is
a careful balancing act

• Backwards compatibility introduces a lot of constraints
• May rule out “cleaner” designs that would break existing programs
• The cause of some “surprising” aspects of the design of x86-64

• “The x86 really isn't all that complex—it just doesn't make a lot of sense.”
— Mike Johnson (AMD's x86 architect), 1994

• Not just a hardware thing!

16

In this class

• x86-64/EMT64: The current standard
• Some asides on IA32: The traditional x86

• Presentation
• Book covers x86-64; web aside on IA32

• Labs will be based on x86-64

17

18

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Hardware uses registers for variables

• Unlike C, assembly doesn’t have variables as you know them

• Instead, assembly uses registers to store values

• Registers are:
• Small memories of a fixed size
• Can be read or written
• Limited in number
• Very fast and low power to access
• not typed like C

• the operation performed
determines how contents are treated

19

How many registers?

• Tradeoff between speed and availability
• More registers can hold more variables

• Simultaneously; all registers are slower

• Also registers take physical space within the chip

• x86-64 has 16 registers (for integer operations)
• Historically only 8 registers 😱
• Added 8 more with 64-bit extensions

20

How big should each register be?

• Registers are usually the size of a word
• The natural unit of data for a processor

• Width of the data type that a CPU can process in one instruction

• Likely the size of its registers

• Imprecise term that will inevitably slip in to explanations

• x86 processors started with 16-bit words

• IA32 upgraded to 32-bit “double word” registers

• x86-64 upgraded again 64-bit “quad word” registers

21

x86-64 Registers

22

%r8d%r8

%r9d%r9

%r10d%r10

%r11d%r11

%r12d%r12

%r13d%r13

%r14d%r14

%r15d%r15

%rsp %esp

%eax%rax

%ebx%rbx

%ecx%rcx

%edx%rdx

%esi%rsi

%edi%rdi

%ebp%rbp

64-bit names

32-bit names

Historical Register Purposes

Accumulate

Base

Counter

Data

Source Index

Destination Index

Stack Pointer (still important)

Base Pointer

23

%rsp %esp

%eax%rax

%ebx%rbx

%ecx%rcx

%edx%rdx

%esi%rsi

%edi%rdi

%ebp%rbp

Name Origin (mostly obsolete)

x86-64 Register Access Options

24

Registers can be accessed by any of these names to work with
8-byte, 4-byte, 2-byte, or 1-byte data

x86-64 Integer Registers

%rax %eax %ax %ah %al

%rbx %ebx %bx %bh %bl

%rcx %ecx %cx %ch %cl

%rdx %edx %dx %dh %dl

%rsi %esi %si

%rdi %edi %di

%rbp %ebp %bp

%rsp %esp %sp

%r8 %r8d %r8w

32-bit registers

16-bit registers

8-bit

…

%r15 %r15d %r15w

… …
%sil

%dil

%bpl

%spl

%r8b

%r15b

64-bit registers

8-bit

Registers versus Memory

• What if more variables than registers?
• Keep most frequently used in registers and move the rest to memory

(called spilling to memory)

• Why not all variables in memory?
• Smaller is faster: registers 100-500 times faster
• Memory Hierarchy

• Registers: 16 registers * 64 bits = 128 Bytes

• RAM: 4-32 GB

• SSD: 100-1000 GB

26

Memory Hierarchy

27

Memory

Registers

Break + Question

Which of these is FALSE?

[A] Registers are faster to access than memory

[B] Registers do not have a type

[C] Registers can have special purposes

[D] Registers are dynamically created as needed

29

Break + Question

Which of these is FALSE?

[A] Registers are faster to access than memory

[B] Registers do not have a type

[C] Registers can have special purposes

[D] Registers are dynamically created as needed

There are a fixed number of registers for a given architecture
30

31

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Writing Assembly Code? In 2022???

• Chances are, you’ll never write a program in assembly, but
understanding assembly is the key to the machine-level execution
model:

• Behavior of programs in the presence of bugs
• When high-level language model breaks down

• Tuning program performance
• Understanding compiler optimizations and sources of program

inefficiency
• Implementing systems software

• What are the “states” of processes that the OS must manage
• Using special units (timers, I/O co-processors, etc.) inside processor!

• Fighting malicious software
• Distributed software is in binary form

32

Example x86-64 Assembly

33

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Example x86-64 Assembly

34

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Various assembly
instructions

Example x86-64 Assembly

35

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Comments use the
symbol

Example x86-64 Assembly

36

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Labels are arbitrary
names that mark a
section of code

We’ll get back to these
later

Example x86-64 Assembly

37

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Assembler directives
(mostly ignore these)

Can be used to
specify data versus
code regions, make
functions linkable
with other code,
and many other
tasks.

x86-64 Instructions

• General Instruction Syntax:

op src, dst

• 1 operator, 2 operands
• op = operation name (“operator”)

• src1 = source location (“source”)

• dst = destination location (“destination”)

• Keep hardware simple via regularity

38

Careful! Two Syntaxes for Assembly

• Intel/Microsoft mnemonics vs. ATT
• Operands listed in opposite order: mov Dest, Src vs. movl Src, Dest

• Constants not preceded by ‘$’, Denote hex with ‘h’ at end: 100h vs. $0x100

• Operand size indicated by operands rather than operator suffix: sub vs. subq

• Addressing format shows effective address computation: [eax*4+100h] vs. $0x100(,%rax,4)

• gcc (gas), gdb, objdump work on the ATT format
• Therefore so do we

lea eax,[ecx+ecx*2]

sub esp,8

cmp dword ptr [ebp-8],0

mov eax,dword ptr [eax*4+100h]

leal (%ecx,%ecx,2),%eax

subl $8,%esp

cmpl $0,-8(%ebp)

movl $0x100(,%eax,4),%eax

Intel/Microsoft Format ATT Format

39

Example x86-64 Assembly

40

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

What might this instruction do?

(op src, dst)

41

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Three Basic Kinds of Instructions

1. Transfer data between memory and register
• Load data from memory into register

• %reg = Mem[address]

• Store register data into memory

• Mem[address] = %reg

2. Perform arithmetic operation on register or memory data
• c = a + b; z = x << y; i = h & g;

3. Control flow: what instruction to execute next
• Unconditional jumps to/from procedures

• Conditional branches

42

Remember: Memory
is indexed just like an
array of bytes!

Moving Data

• General form: mov_ source, destination

• Missing letter _ specifies size of operands

• Reminder: backwards compatibility means “word” = 16 bits

• Lots of these in typical code

• movb src, dst

• Move 1-byte “byte”

• movw src, dst

• Move 2-byte “word”

• movl src, dst

– Move 4-byte “long word”

• movq src, dst

– Move 8-byte “quad word”

– Native size for x86-64

43

Note: Instructions must be used with properly-sized register names

Operand Types (src and dst)

• Immediate: Constant integer data
• Examples: $0x400, $-533

• Like C literal, but prefixed with ‘$’

• Encoded with 1, 2, 4, or 8 bytes depending on the instruction

• Register: 1 of 16 integer registers
• Examples: %rax, %r13

• But %rsp reserved for special use

• Others have special uses for particular instructions

• Memory: Consecutive bytes of memory at a computed address

• Simplest example: (%rax) treats value of %rax as an address → access memory

• Various other “address modes” we’ll talk about later

44

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN (r8-r15)

MOV Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

45

Cannot do memory-memory transfer with a single instruction
• How would you do it?

MOV Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

46

Cannot do memory-memory transfer with a single instruction
• How would you do it? 1) Mem->Reg, 2) Reg->Mem

%rdi

%rsi

%rax

%rdx

Registers Memory

Register Variable

%rdi ⇔ xp

%rsi ⇔ yp

%rax ⇔ t0

%rdx ⇔ t1

void swap(long* xp, long* yp)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (%rdi), %rax

movq (%rsi), %rdx

movq %rdx, (%rdi)

movq %rax, (%rsi)

ret

Example of Move Instructions: swap()

47

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

48

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

Example of Move Instructions: swap()

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers Memory

123

456

123

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

49

Example of Move Instructions: swap()

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

123

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

50

Example of Move Instructions: swap()

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

456

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

51

Example of Move Instructions: swap()

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

123

456

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

52

Note: these did
not change

Example of Move Instructions: swap()

Break + Open Question

• How does the number of available registers affect a system?

• What if x86-64 only had two registers?

• What if x86-64 instead had 512 registers?

53

Break + Open Question

• How does the number of available registers affect a system?

• What if x86-64 only had two registers?

• “Register Pressure” becomes a problem

• Accessing 3+ things at once requires memory

• Way more memory reads/writes

• What if x86-64 instead had 512 registers?

• Most of the registers would never be used
• For any realistic program

• Could have spent that silicon on something more important

54

55

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Memory Addressing Modes: Basic

• Common need: interact with memory
• Exact address might be made of multiple parts

• Indirect: (R) Mem[Reg[R]]
• Data in register R specifies the memory address
• Like pointer dereference in C
• Example: movq (%rcx), %rax

• Displacement: D(R) Mem[Reg[R]+D]
• Data in register R specifies the start of some memory region
• Constant displacement D specifies the offset from that address
• Example: movq 8(%rbp), %rdx

56

Complete Memory Addressing Modes

• General:
• D(Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S+D]

• Rb: Base register (any register)

• Ri: Index register (any register except %rsp)

• S: Scale factor (1, 2, 4, 8) – why these numbers?

• D: Constant displacement value (a.k.a. immediate)

• Special cases (see textbook Figure 3.3 or next slide)
• D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (S=1)

• (Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S] (D=0)

• (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]] (S=1,D=0)

• (,Ri,S) Mem[Reg[Ri]*S] (Rb=0,D=0)

57

Sizes of
common C
types!

Full list of addressing mode forms

58

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

59

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx) %rdx + 0x8 0xf008

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

60

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx) %rdx + 0x8 0xf008

(%rdx,%rcx) %rdx + %rcx*1 0xf100

(%rdx,%rcx,4)

0x80(,%rdx,2)

61

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx) %rdx + 0x8 0xf008

(%rdx,%rcx) %rdx + %rcx*1 0xf100

(%rdx,%rcx,4) %rdx + %rcx*4 0xf400

0x80(,%rdx,2)

62

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx) %rdx + 0x8 0xf008

(%rdx,%rcx) %rdx + %rcx*1 0xf100

(%rdx,%rcx,4) %rdx + %rcx*4 0xf400

0x80(,%rdx,2) %rdx*2 + 0x80 0x1e080

63

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

64

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

