Lecture 03
Integer Operations

CS213 — Intro to Computer Systems
Branden Ghena — Winter 2022

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Administrivia

» You should all have access to Campuswire and Gradescope
« Contact me via email immediately if you don't!!

» Office hours are now running
« See Canvas homepage for office hours times
 Be sure to sign up on the queue that’s also on Canvas
« That's how we track what order to help people in

Administrivia

« Homework 1 due by end-of-day Thursday
« Submit on Gradescope

« Data Lab due next week Thursday
» Start working on the Integer Puzzles now
 Floating Point puzzles can wait until after lecture on Thursday
 Can be tricky. Don't spend forever on any one, jump around

Today’s Goals

 Explore operations we can perform on binary numbers
» Understand the edge cases of those operations

» Discuss performance of various operations

C versus the hardware

 Operations you can perform on binary numbers have edge
conditions

 Usually going above or below the bit width

« If we say what happens in that scenario, it'll be what
“the hardware” (i.e., a computer) does

 In today’s examples, pretty much every computer does the same thing

 That is not the same as what C does
» Unclear choices are left as: UNDEFINED BEHAVIOR (@)
« Which is to say, the compiler make any choice it wants

Outline
 Addition

« Negation and Subtraction

 Multiplication
» Shifting
» Bit Masks

» Optimizations

Unsigned Addition

» Like grade-school addition, but in base 2, and ignores final carry
« If you want, can do addition in base 10 and convert to base 2. Same
result!

- Example: Adding two 4-bit numbers

111

0101
+ 0011

1000

*5,0+3,0=8p vV

Unsigned Addition and Overflow
« What happens if the numbers get too big?

- Example: Adding two 4-bit humbers

1111

1101
+ 0011

10000

« 13,, + 3,0 = 164
 Too large for 4 bits! Overflow
« Result is the 4 least significant bits (all we can fit): so 04,
« Gives us modular (= modulo) behavior: 16 modulo 24 = 0

Modulo behavior in binary humbers

o~
1111 0001
1110 0010
1101 0011
1100 0100
1011 0101
1010 0110
1001 0111

u+v u+v<2V?

Basis for unsigned addition UAdd, () = {

u+v=-2" u+v>2"

« Implements modular arithmetic
« UAdd,(u,v) = (u+v) mod 2w

« Need to drop carry bit, otherwise results will keep getting bigger
- Example in base 10: 80,, + 40,, = 120,, (2-digit inputs become a 3-digit output!)

U
+ v

Operands: w bits

True Sum: w+1 bits utv [

UAdd Result: w bits UAdd, (u, v)

« Warning: C does not tell you that the result had an overflow!
« Unsigned addition in C behaves like modular arithmetic

Signed (2's Complement) Addition

« Works exactly the same as unsigned addition!
 Just add the numbers in binary, and the result will work out

* Signed and unsigned sum have the exact same bit-level representation
« Computers use the same machine instruction and the same hardware!
« That's a big reason 2’s complement is so nice! Shares operations with unsigned

« TAdd and UAdd have Identical Bit-Level Behavior
* Signed vs. unsigned addition in C:

int s, t, u, v;
s = (int) ((unsigned int) u + (unsigned int) v);

t=u+v
« Result: s == t (in all cases)

11

Signed addition example

« Same addition method as unsigned
- Example: Adding two 4-bit signed humbers

1011 (-8 + 3 = -5)
+ 0011 (+3)
1110 (-8 + 6 =-2)

* 5,0+ 310=-2yp ¥V

12

Combining negative and positive humbers

 Overflow sometimes makes signed addition work!
- Example: Adding two 4-bit signed humbers

1111
1101 (-8 +5=-3)
+ 0011 (+3)
10000

* =330 + 310 = 049
« Too large for 4 bits! Drop the carry bit
» Result is what we expect as long as we truncate

13

Signed addition and overflow

 Overflow can still happen in signed addition though
- Example: Adding two 4-bit signed humbers

111

0101
+ 0011

1000

* 550 + 310 = -8, (+8is too big to fit)

« Remember, this was also unsigned 5;¢ + 310 = 849

14

Signed addition and underflow

« Underflow happens in the negative direction
- Example: Adding two 4-bit signed humbers

1 11

1011
+ 1011
10110

« =50 + 519 = +6,, (-10 was too small to fit)

15

TAdd Overflow

 Can overflow two ways!

» By going too far into the positives
« ORtoo far into the negatives!
« Modular behavior either way

« BUT, beware signed overflow in C
- UNDEFINED BEHAVIOR

« Compiler probably does modular result

1
.I.
TAdd (u,v)=1

¥
=

- ut+tv+2%

ut+v

ut+v-2"

ut+tv< TMinW (NegOver)
TMin, Eu+vE TMax,

TMax, <u+v (PosOver)

Positive Overflow

TAdd(u , v) |
>0 \\i.

V

<°X

/<Ou>0

Negative Overflow 16

Special boss in Chrono Trigger

* Dream Devourer
 Special boss in the Nintendo DS edition

NINTENDBDS“

« Wanted to make it even more challenging
« 32000 hit points
 Takes forever to defeat

» Hit points stored as a 16-bit signed integer
« Range: -32768 to +32767

17

Chrono Trigger signed overflow bug

e Solution: heal it

« Hit points go negative
and it dies

Outline
« Addition

* Negation and Subtraction

 Multiplication
» Shifting
» Bit Masks

» Optimizations

Negating with Complement & Increment

 Claim: The following is true for 2's complement
* X+ 1==X x [1[oJo]1]2]z]o[x

+ ~x |0]1|1]|0|0OfO|1]|0O

« Complement
« Observation: ~x + x == 1111...11, == -1 -1 [Tl

 Increment

. ~x+1==@-x+1==@-x-l/1/==-x

e vX + 1 == -X

- Example, 4 bits: 6,5, = 0110,
« Complement: 1001, — Increment = 1010, = -8 + 2 = -64,

20

Subtraction in two’s complement

 Subtraction becomes addition of the negative number
+5-3 =5+-3 =2

 Unsigned subtraction
 Convert subtractor to its two’s complement negative form
Do addition
« Treat result as an unsigned number

11 1

0101 (+5)
+ 1101 (-3)
10010

21

Question + Break
* In 8-bit two’s complement binary:

> What iS 12010 - 2010?
* Solve as decimal. Then translate

Question + Break
* In 8-bit two’s complement binary:
¢ What iS 12010 - 2010?

* Solve as decimal. Then translate
> 10010 — 011001002

Question + Break
* In 8-bit two’s complement binary:
¢ What iS 12010 - 2010?

* Solve as decimal. Then translate
> 10010 — 011001002

- What is 0x84 - 0x20?
» Solve as hexadecimal. Then translate

Question + Break
* In 8-bit two’s complement binary:

> What iS 12010 - 2010?
* Solve as decimal. Then translate
> 10010 — 011001002

- What is 0x84 - 0x20?
» Solve as hexadecimal. Then translate
* Ox64 = 0b01100100

Outline
« Addition

« Negation and Subtraction

» Multiplication
» Shifting
» Bit Masks

» Optimizations

Multiplication

« Goal: Compute the Product of webit numbers x, y
« Either signed or unsigned

 But, exact results can be bigger than w bits
« Around double the size (2w), in fact!

« Example in base 10: 50,4, * 20,, = 1000,
* (2-digit inputs become a 4-digit output!)

« As with addition, result is truncated to fit in w bits
« Because computers are finite, results can’t grow indefinitely

27

Unsigned Multiplication

u o 00

Operands: w bits
X Vv o 00
True Product: 2*w bits u© Vv o0 0 o0 0
Discard w bits: w bits UMultW(u ’ V) 200

- Standard Multiplication Function
 Equivalent to grade-school multiplication
 But ignores most significant w bits of the result
« As a person, we can do base 10 multiplication, convert to base 2, then truncate

« Implements modular arithmetic like addition does
UMult (v, v) = (v v) mod 2

Unsigned multiplication

- Example: Multiplying two 4-bit humbers

0010
x 102011

0010
00000
001000

+ 0000000

0001010

2,0%5,0=10, ¢V

29

Signed (2's Complement) Multiplication

u (K)

Operands: w bits
X v XX
True Product: 2*w bits ¢ - v o o o o
Discard w bits: w bits TMultW(u) V) ©oe0 o

- Standard Multiplication Function
 Ignores most significant w bits
 Lower bits still give the correct result
« SO0 we can use same machine instruction for both!
« Again, that’s one reason why 2's complement is so nice

« In C, signed overflow is undefined
* ...but probably you’ll see the two’s complement behavior

30

Signed multiplication

- Example: Multiplying two’s complement 5-bit numbers

11110
x 00011

11110
+ 111100

1011010

-2
3

What are these two
5-bit numbers?

What is the result of
this addition?

210 % 310=-649 vV

31

Outline
« Addition

« Negation and Subtraction

 Multiplication
- Shifting
» Bit Masks

» Optimizations

Left Shift: x << y

» Shift bit-vector x left by y positions Argument x 00000010
- Throw away extra bits on left e

* Fill empty bits with 0 Argument x 10100010

« Same behavior for signed or unsigned << 3 10100010000

 Equivalent to multiplying by 2Y
« And then taking modulo (i.e. truncating overflow bits)

» Undefined behavior in C when:
*y < 0, or y 2 bit width (x)
 Also when some non-0 bits get shifted off (probably they get truncated)

33

Right Shift: x >> y

« Shift bit-vector x right y positions
« Throw away extra bits on right

 But how to fill the new bits that open up?
« Will depend on signed vs unsigned

« Unsigned: Logical shift
« Always fill with 0’s on left

 Signed: Arithmetic shift
 Replicate most significant bit on left

« Necessary for two’s complement integer representation (sign extension!)

« Undefined behavior in C when:
*y < 0, or y 2 bit width (x)

Argument x | 01100010
Logi.>> 2 | 00011000
Arith. >> 2 | 00011000
Argument x | 10100010
Logi.>> 2 | 00101000
Arith. >> 2 | 11101000

34

Practice shifting in C

unsigned char x = 0b10100010;

— o Steps:
x << 3 ? 0b00010000 0b10100010000

0b16100010000

unsigned char x = 0b10100010;

_ 5 Steps:
x >> 2 =? 0b00101000 0b0010100010

O0b00101000+6

signed char x = 0b10100010;

_ 5 Steps:
x >> 2 =? 0bl1101000 0b1110100010

0b11101000+6
Note:

GCC supports the prefix 0b for binary literals (like 0x... for hex) directly in C.

This is not part of the C standard! It may not work on other compilers.

35

Outline
« Addition

« Negation and Subtraction

 Multiplication
» Shifting
 Bit Masks

» Optimizations

Bit Masking

« How do you manipulate certain bits within a number?

» Combines some of the ideas we've already learned
¢ NI &I |I <<l >>

* Steps
1. Create a “bit mask” which is a pattern to choose certain bits
2. Use & or | to combine it with your number
3. Optional: Use >> to move the bits to the least significant position

37

Bit mask values

» Selecting bits, use the AND operation
* 1 means to select that bit
* 0 means to not select that bit

» Writing bits
 Writing a one, use the OR operation
« 1 means to write a one to that position
0 is unchanged

» Writing a zero, use the AND operation
» 0 means to write a zero to that position
1 is unchanged

Select bottom four bits:
num & OxOF

Set 6t bit to one:
num | (1 << 6)

num | (0Ob01000000)

Clear 6t bit to zero:
num & (~(1 << 6))
num & (~(0b01000000))
num & (0b10111111)
38

Example: selecting bits

 Select bits 2 and 3 from a number

0501100100
& 0b00001100

0b00000100

Finally, shift right by two to get the
values in the least significant position:

000000001

Input: 0001100100
Mask: 0b00001100

39

Outline
« Addition

« Negation and Subtraction

 Multiplication
» Shifting
» Bit Masks

« Optimizations

What about division?

» Similar to long division process
 Tedious and complicated to get right

« Even more complicated than multiply to make work in hardware
 ['ve worked on a computer that didn't even have divide

41

Concept: Not all operations are equally expensive!

« Some operations are pretty simple to perform in hardware
 E.g., addition, shifting, bitwise operations
* Also true of doing the same by hand on paper

 Others are much more involved
 E.g., multiplication, or even more so division
 Consider long multiplication / long division; quite tedious!
« Hardware is not doing the exact same thing, but similar principle

« Trick: try to replace expensive operations with simple ones!
« Doesn’t work in all cases, but often does when mult/div by constants

42

Multiplication as shift operations

« Multiply 2 x 5:

0010
x 0101

0010
00000
001000

+ 0000000

0001010

« This is actually just bit shifts and
additions

«2x5=(2<<0)+(2<<?2)
=2+38
= 10

43

Power-of-2 Multiply with Left Shift

- Operation
e u << k gives u * 2
 Both signed and unsigned

Operands: w bits

True Product: w+k bits

Discard k bits: w bits

« Examples
. u << 3 ==
e (u << 5) - (u << 3) ==

« Can combine muItiEIe shifts with addition to get multiplications

by non-powers-of-

k
u (I K
*2% [0 _eee TOITOI eee 10I0
u - 2k 00 eee |0]0]
UMult, (u ,2k) YY) o000 OJD_
TMult, (u , 2¥)
u * 8

u* 32 —u * 8 =u * 24

Shift to divide

» Division works too
e unsigned intx =y / 2; unsigned intx =y >> 1;

« Even more important because division is a complicated operation
« Multiply is implemented in (relatively) simple hardware on most systems

« Compiler might actually translate your divide by powers of two into shift
operations though!

« Warning: rounding needs to be handled correctly for signed
numbers and division

 See bonus slides

45

Compilers automatically chose the best operations

 Should you use shifts instead of multiply/divide in your C code?
* NO

» Just write out the math
« Math is more readable if that's what you meant
« Compiler automatically converts code for you for best performance

* These two mean the same thing, but one is way more
understandable
*Int x =y * 32;
* Int x = (y << 5H);

46

C code translation

» Steps for C

CALL

1. Compiler
2. Assembler
3. Linker

4. Loader

C program: foo.c

Assembly program: £foo.s

L e

Object (mach lang module): foo .o

Executable (mach lang pgm):
a.out

Memory

lib.o

47

Compiler

 Input: higher-level language code (C, C++, Java, etc.)
« Qutput: assembly language code (for a particular computer)

* Process
« Handle pre-processor (defines and includes)
 Preform optimizations on code
« Make it faster (such as divide-into-shift)
« Make it use less memory (eliminate unused variables)

 Entire course worth of material here: CS322

48

Outline
« Addition

« Negation and Subtraction

 Multiplication
» Shifting
» Bit Masks

» Optimizations

Outline

» Dividing with bit shift

Unsigned Power-of-2 Divide with Right Shift

« Quotient of unsigned by power of 2

e u>k gves Lu/ 2¢]
 Uses logical shift

| x |: round x down
|_x—|:roundxup

 Pink part would be remainder / fractional part (right of the point)
- Shift just drops it: equivalent to roupding down

Operands: Binary Point
/ 2k Ol eee [OITIO] e [0]0
Division: w2 O O T e
Result: Lu/2¢] [O] -~ JOJO
Division Computed Hex Binary

X 15213 15213 3B oD| 00111011 01101101
X >> 1 7606.5 7606 1D B6| 00011101 10110110
X >> 4 050.8125 950 03 B6| 00000011 10110110
x >> 8 | 594257813 59 00 3B| 00000000 0OO0111011

51

Signed Power-of-2 Divide with Shift (Almost)

« Quotient of signed by power of 2
- x > k gives |x / 2]
 Uses arithmetic shift
 Also rounds down, again by dropping bits
 But signed division should round towards 0! (that's its math definition)

« That means rounding up for negative numbers!
k

/ 2k O oo o O 1 O oo o O O

Division: x/ 2k XX XX _

Result: RoundDown(x / 2F)

- Example, 4 bits: -6 / 4 = -1.5 (should round towards O, to -1)

« Rounds the wrong way!

52

Correct Signed Power-of-2 Divide

« Want [x / 2%¥] (round towards 0)
. Math identity: [x /yl =L (x+y-1) /vy
« Compute negative case as | (x+2%-1)/ 2%k] — gets us correct rounding!
« Computing both cases in C: (x<0 ? (x + (1<<k)-1) : x) >> k

 Biases dividend toward 0
all bits at positions 0...(k-1) are O

- Case 1: No rounding) /

Dividend: X 1 O] e« |0O]O
+2k 1 O e |O]O]2] e [1]|1

il T -+ [1]1] Binary Point

Divisor: / 2k [0O] e« |O]L1]O] ¢+ |O]O /

/
I—X/Zk—| 1 eeo e 11111 eo e :1 eo e 111

Biasing has no effect; all affected bits are dropped

« Example, 4 bits: -8 / 22 = -2 bias = (1<<2)-1 =3
« (1000 + 0011) >>2=1011 >> 2 = 1110 = -2,, (correct, no rounding)

Correct Signed Power-of-2 Divide (Cont.)

Case 2: Roundmg some bits at positions 0...(k-1) are 1

4
Dividend: A AEEEE
+2k 1 O] o« JOJOJ1| 2 J1]1
1
LN v J
Incremented by 1 Binary Point
Divisor: / 2k |0] e+ JOJZ]O] -<- fO]O /
/
[x/2¢] [A] -~ JI[1[T f
LN J
Y

Incremented by 1

Biasing adds 1 to final result; just what we wanted

« Example, 4 bits: -6 / 22 = -1 bias = (1<<2)-1 =3
(1010 + 0011) >> 2 =1101 >> 2 = 1111 =-1,, (correct, rounds towards 0)

- Compiler does that for you (but you need to be able to read it!)

54

