
Lecture 03
Integer Operations

CS213 – Intro to Computer Systems

Branden Ghena – Winter 2022

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• You should all have access to Campuswire and Gradescope
• Contact me via email immediately if you don’t!!

• Office hours are now running
• See Canvas homepage for office hours times

• Be sure to sign up on the queue that’s also on Canvas

• That’s how we track what order to help people in

2

Administrivia

• Homework 1 due by end-of-day Thursday
• Submit on Gradescope

• Data Lab due next week Thursday
• Start working on the Integer Puzzles now

• Floating Point puzzles can wait until after lecture on Thursday

• Can be tricky. Don’t spend forever on any one, jump around

3

Today’s Goals

• Explore operations we can perform on binary numbers

• Understand the edge cases of those operations

• Discuss performance of various operations

4

C versus the hardware

• Operations you can perform on binary numbers have edge
conditions
• Usually going above or below the bit width

• If we say what happens in that scenario, it’ll be what
“the hardware” (i.e., a computer) does
• In today’s examples, pretty much every computer does the same thing

• That is not the same as what C does
• Unclear choices are left as: UNDEFINED BEHAVIOR 😱

• Which is to say, the compiler make any choice it wants

5

6

• Addition

• Negation and Subtraction

• Multiplication

• Shifting

• Bit Masks

• Optimizations

Outline

Unsigned Addition

• Like grade-school addition, but in base 2, and ignores final carry
• If you want, can do addition in base 10 and convert to base 2. Same

result!

• Example: Adding two 4-bit numbers

• 510 + 310 = 810 ✔

0101

+ 0011

1 000

111

7

Unsigned Addition and Overflow

• What happens if the numbers get too big?

• Example: Adding two 4-bit numbers

• 1310 + 310 = 1610

• Too large for 4 bits! Overflow
• Result is the 4 least significant bits (all we can fit): so 010

• Gives us modular (= modulo) behavior: 16 modulo 24 = 0

1101

+ 0011

0 000

111

1

1

8

Modulo behavior in binary numbers

9

1000

0000

01001100

0011

0010

0001

0111

0110

01011011

1010

1001

1111

1110

1101

+1-1

10000

Basis for unsigned addition

• Implements modular arithmetic
• UAddw(u , v) = (u + v) mod 2w

• Need to drop carry bit, otherwise results will keep getting bigger
• Example in base 10: 8010 + 4010 = 12010 (2-digit inputs become a 3-digit output!)

• Warning: C does not tell you that the result had an overflow!
• Unsigned addition in C behaves like modular arithmetic

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

UAdd Result: w bits UAddw(u , v)

UAddw(u,v) =
u + v u + v  2w

u + v − 2w u + v  2w




10

Signed (2’s Complement) Addition

• Works exactly the same as unsigned addition!
• Just add the numbers in binary, and the result will work out

• Signed and unsigned sum have the exact same bit-level representation
• Computers use the same machine instruction and the same hardware!

• That’s a big reason 2’s complement is so nice! Shares operations with unsigned

• TAdd and UAdd have Identical Bit-Level Behavior
• Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned int) u + (unsigned int) v);

t = u + v

• Result: s == t (in all cases)

11

Signed addition example

• Same addition method as unsigned

• Example: Adding two 4-bit signed numbers

• -510 + 310 = -210 ✔

1011 (-8 + 3 = -5)
+ 0011 (+3)

1 (-8 + 6 = -2)011

11

12

Combining negative and positive numbers

• Overflow sometimes makes signed addition work!

• Example: Adding two 4-bit signed numbers

• -310 + 310 = 010

• Too large for 4 bits! Drop the carry bit

• Result is what we expect as long as we truncate

1101 (-8 + 5 = -3)
+ 0011 (+3)

0 000

111

1

1

13

Signed addition and overflow

• Overflow can still happen in signed addition though

• Example: Adding two 4-bit signed numbers

• 510 + 310 = -810 (+8 is too big to fit)

• Remember, this was also unsigned 510 + 310 = 810

0101

+ 0011

1 000

111

14

Signed addition and underflow

• Underflow happens in the negative direction

• Example: Adding two 4-bit signed numbers

• -510 + -510 = +610 (-10 was too small to fit)

1011

+ 1011

10 011

111

15

TAddw(u,v) =

u+ v+ 2w u+ v <TMinw

u+ v TMinw £ u+ v £TMaxw

u+ v- 2w TMaxw < u+ v

ì

í
ïï

î
ï
ï

TAdd Overflow

• Can overflow two ways!
• By going too far into the positives

• OR too far into the negatives!

• Modular behavior either way

• BUT, beware signed overflow in C
• UNDEFINED BEHAVIOR

• Compiler probably does modular result

(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

u

v

Positive overflow

Negative overflow

16

Special boss in Chrono Trigger

• Dream Devourer
• Special boss in the Nintendo DS edition

• Wanted to make it even more challenging
• 32000 hit points

• Takes forever to defeat

• Hit points stored as a 16-bit signed integer
• Range: -32768 to +32767

17

Chrono Trigger signed overflow bug

• Solution: heal it

• Hit points go negative
and it dies

18

19

• Addition

• Negation and Subtraction

• Multiplication

• Shifting

• Bit Masks

• Optimizations

Outline

Negating with Complement & Increment

• Claim: The following is true for 2’s complement
• ~x + 1 == -x

• Complement
• Observation: ~x + x == 1111…112 == -1

• Increment
• ~x + 1 == ~x + x - x + 1 == -1 - x + 1 == -x
• ~x + 1 == -x

• Example, 4 bits: 610 = 01102
• Complement: 10012 → Increment = 10102 = -8 + 2 = -610

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

20

Subtraction in two’s complement

• Subtraction becomes addition of the negative number
• 5 – 3 = 5 + -3 = 2

• Unsigned subtraction
• Convert subtractor to its two’s complement negative form

• Do addition

• Treat result as an unsigned number

21

0101 (+5)
+ 1101 (-3)

10 001

111

Question + Break

• In 8-bit two’s complement binary:

• What is 12010 – 2010?

• Solve as decimal. Then translate

22

Question + Break

• In 8-bit two’s complement binary:

• What is 12010 – 2010?

• Solve as decimal. Then translate

• 10010 = 011001002

23

Question + Break

• In 8-bit two’s complement binary:

• What is 12010 – 2010?

• Solve as decimal. Then translate

• 10010 = 011001002

• What is 0x84 - 0x20?

• Solve as hexadecimal. Then translate

24

Question + Break

• In 8-bit two’s complement binary:

• What is 12010 – 2010?

• Solve as decimal. Then translate

• 10010 = 011001002

• What is 0x84 - 0x20?

• Solve as hexadecimal. Then translate

• 0x64 = 0b01100100

25

26

• Addition

• Negation and Subtraction

• Multiplication

• Shifting

• Bit Masks

• Optimizations

Outline

Multiplication

• Goal: Compute the Product of w-bit numbers x, y
• Either signed or unsigned

• But, exact results can be bigger than w bits
• Around double the size (2w), in fact!

• Example in base 10: 5010 * 2010 = 100010

• (2-digit inputs become a 4-digit output!)

• As with addition, result is truncated to fit in w bits
• Because computers are finite, results can’t grow indefinitely

27

Unsigned Multiplication

• Standard Multiplication Function
• Equivalent to grade-school multiplication

• But ignores most significant w bits of the result

• As a person, we can do base 10 multiplication, convert to base 2, then truncate

• Implements modular arithmetic like addition does
UMultw(u , v) = (u · v) mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

28

Unsigned multiplication

• Example: Multiplying two 4-bit numbers

210 * 510 = 1010 ✔

0010

x 0101

29

0010
0000
0010

+ 0000

0001010

0
00
000

Signed (2’s Complement) Multiplication

• Standard Multiplication Function
• Ignores most significant w bits
• Lower bits still give the correct result

• So we can use same machine instruction for both!
• Again, that’s one reason why 2’s complement is so nice

• In C, signed overflow is undefined
• ...but probably you’ll see the two’s complement behavior

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits TMultw(u , v)

• • •

30

Signed multiplication

• Example: Multiplying two’s complement 5-bit numbers

11110

x 00011

31

11110
0+ 11110

What are these two
5-bit numbers?

-2

3

What is the result of
this addition?

01 00 1111011010

-210 * 310 = -610 ✔

32

• Addition

• Negation and Subtraction

• Multiplication

• Shifting

• Bit Masks

• Optimizations

Outline

Left Shift: x << y

• Shift bit-vector x left by y positions
• Throw away extra bits on left
• Fill empty bits with 0

• Same behavior for signed or unsigned

• Equivalent to multiplying by 2y

• And then taking modulo (i.e. truncating overflow bits)

• Undefined behavior in C when:
• y < 0, or y ≥ bit_width(x)
• Also when some non-0 bits get shifted off (probably they get truncated)

00000010Argument x

00010000<< 3

10100010Argument x

00010000<< 3

0000001000000000010000

1010001000010100010000

33

Right Shift: x >> y

• Shift bit-vector x right y positions
• Throw away extra bits on right

• But how to fill the new bits that open up?
• Will depend on signed vs unsigned

• Unsigned: Logical shift
• Always fill with 0’s on left

• Signed: Arithmetic shift
• Replicate most significant bit on left
• Necessary for two’s complement integer representation (sign extension!)

• Undefined behavior in C when:
• y < 0, or y ≥ bit_width(x)

01100010Argument x

00011000Logi. >> 2

00011000Arith. >> 2

10100010Argument x

00101000Logi. >> 2

11101000Arith. >> 2

0001100000011000

0001100000011000

00101000

11101000

00101000

11101000

34

unsigned char x = 0b10100010;

x << 3 = ?

Practice shifting in C

0b00010000

Note:
GCC supports the prefix 0b for binary literals (like 0x… for hex) directly in C.
This is not part of the C standard! It may not work on other compilers.

0b00101000

0b11101000

signed char x = 0b10100010;

x >> 2 = ?

unsigned char x = 0b10100010;

x >> 2 = ?

35

Steps:
0b10100010000
0b10100010000

Steps:
0b0010100010
0b0010100010

Steps:
0b1110100010
0b1110100010

36

• Addition

• Negation and Subtraction

• Multiplication

• Shifting

• Bit Masks

• Optimizations

Outline

Bit Masking

• How do you manipulate certain bits within a number?

• Combines some of the ideas we’ve already learned
• ~, &, |, <<, >>

• Steps
1. Create a “bit mask” which is a pattern to choose certain bits

2. Use & or | to combine it with your number

3. Optional: Use >> to move the bits to the least significant position

37

Bit mask values

• Selecting bits, use the AND operation
• 1 means to select that bit

• 0 means to not select that bit

• Writing bits
• Writing a one, use the OR operation

• 1 means to write a one to that position

• 0 is unchanged

• Writing a zero, use the AND operation

• 0 means to write a zero to that position

• 1 is unchanged

38

Select bottom four bits:
num & 0x0F

Set 6th bit to one:
num | (1 << 6)

num | (0b01000000)

Clear 6th bit to zero:
num & (~(1 << 6))

num & (~(0b01000000))

num & (0b10111111)

Example: selecting bits

• Select bits 2 and 3 from a number

39

Input: 0b011001000b01100100

Mask: 0b00001100

0b01100100

& 0b00001100

0b00000100

Finally, shift right by two to get the
values in the least significant position:

0b00000001

40

• Addition

• Negation and Subtraction

• Multiplication

• Shifting

• Bit Masks

• Optimizations

Outline

What about division?

• Similar to long division process
• Tedious and complicated to get right

• Even more complicated than multiply to make work in hardware
• I’ve worked on a computer that didn’t even have divide

41

Concept: Not all operations are equally expensive!

• Some operations are pretty simple to perform in hardware
• E.g., addition, shifting, bitwise operations

• Also true of doing the same by hand on paper

• Others are much more involved
• E.g., multiplication, or even more so division

• Consider long multiplication / long division; quite tedious!

• Hardware is not doing the exact same thing, but similar principle

• Trick: try to replace expensive operations with simple ones!
• Doesn’t work in all cases, but often does when mult/div by constants

42

Multiplication as shift operations

• Multiply 2 x 5:

43

0010

x 0101

0010
0000
0010

+ 0000

0001010

0
00
000

• This is actually just bit shifts and
additions

• 2 x 5 = (2 << 0) + (2 << 2)

= 2 + 8

= 10

Power-of-2 Multiply with Left Shift

• Operation
• u << k gives u * 2k

• Both signed and unsigned

• Examples
• u << 3 == u * 8

• (u << 5) – (u << 3) == u * 32 – u * 8 = u * 24

• Can combine multiple shifts with addition to get multiplications
by non-powers-of-2

• • •

0 0 1 0 0 0•••

u

*2k

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

44

Shift to divide

• Division works too
• unsigned int x = y / 2; unsigned int x = y >> 1;

• Even more important because division is a complicated operation
• Multiply is implemented in (relatively) simple hardware on most systems

• Compiler might actually translate your divide by powers of two into shift
operations though!

• Warning: rounding needs to be handled correctly for signed
numbers and division
• See bonus slides

45

Compilers automatically chose the best operations

• Should you use shifts instead of multiply/divide in your C code?
• NO

• Just write out the math
• Math is more readable if that’s what you meant

• Compiler automatically converts code for you for best performance

• These two mean the same thing, but one is way more
understandable

• int x = y * 32;

• int x = (y << 5);

46

C code translation

• Steps for C

CALL

1. Compiler

2. Assembler

3. Linker

4. Loader

47

Memory

Loader

Executable (mach lang pgm):
a.out

Linker

Object (mach lang module): foo.o

Assembler

Assembly program: foo.s

Compiler

C program: foo.c

lib.o

Compiler

• Input: higher-level language code (C, C++, Java, etc.)

• Output: assembly language code (for a particular computer)

• Process
• Handle pre-processor (defines and includes)

• Preform optimizations on code

• Make it faster (such as divide-into-shift)

• Make it use less memory (eliminate unused variables)

• Entire course worth of material here: CS322

48

49

• Addition

• Negation and Subtraction

• Multiplication

• Shifting

• Bit Masks

• Optimizations

Outline

50

• Dividing with bit shift

Outline

Unsigned Power-of-2 Divide with Right Shift

• Quotient of unsigned by power of 2
• u >> k gives  u / 2k 

• Uses logical shift

• Pink part would be remainder / fractional part (right of the point)

• Shift just drops it: equivalent to rounding down

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k

••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

0

0 0 0•••0

.

Binary Point

 x  : round x down
 x  : round x up

51

Signed Power-of-2 Divide with Shift (Almost)

• Quotient of signed by power of 2
• x >> k gives  x / 2k 
• Uses arithmetic shift
• Also rounds down, again by dropping bits

• But signed division should round towards 0! (that’s its math definition)
• That means rounding up for negative numbers!

• Example, 4 bits: -6 / 4 = -1.5 (should round towards 0, to -1)
• 10102 >> 2 = 11102 = -210

• Rounds the wrong way!

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

52

Correct Signed Power-of-2 Divide

• Want  x / 2k  (round towards 0)

• Math identity: x / y =  (x + y - 1) / y 

• Compute negative case as (x+2k-1)/ 2k  → gets us correct rounding!

• Computing both cases in C: (x<0 ? (x + (1<<k)-1) : x) >> k

• Biases dividend toward 0

• Case 1: No rounding

• Example, 4 bits: -8 / 22 = -2 bias = (1<<2)-1 = 3

• (1000 + 0011) >> 2 = 1011 >> 2 = 1110 = -210 (correct, no rounding)

Divisor:

Dividend:

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect; all affected bits are dropped

all bits at positions 0...(k-1) are 0

53

Correct Signed Power-of-2 Divide (Cont.)

• Example, 4 bits: -6 / 22 = -1 bias = (1<<2)-1 = 3
• (1010 + 0011) >> 2 = 1101 >> 2 = 1111 = -110 (correct, rounds towards 0)

• Compiler does that for you (but you need to be able to read it!)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1•••1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result; just what we wanted

•••

Incremented by 1

Incremented by 1

.

Binary Point

some bits at positions 0...(k-1) are 1

54

