CS 213, Winter 2022
Data Lab: Manipulating Bits

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers and
floating point numbers. You’ll do this by solving a series of programming “puzzles.” Some of these puzzles
are artificial, but you’ll find yourself thinking much more about bits in working your way through them.
Other puzzles reflect what hardware actually does to implement common operations. Finally, a few puzzles
reflect algorithms that are important at all scales, from chip to cloud.

2 Logistics

You may work in a group of up to two people in solving the problems for this assignment. All handins are
electronic. Clarifications and revisions will be posted to the course discussion group.

3 Handout Instructions

You will need the file datalab—handout . tar, which you will find in the ~cs213/HANDOUT directory
on the class server:

* moore.wot.eecs.northwestern.edu

This directory will also be visible on the Wilkinson machines. Generally, moore is the best place to work,
as it is where we will be testing your code.

Please note that you will hand in your work on moore, which is also where it will be tested.

You will need a (protected) directory on a Linux machine in which to do your work. We recommend that
you simply use a class server for this. You can create a protected directory like this:

unix> cd ~/

unix> mkdir mydatalab
unix> chmod 700 mydatalab
unix> cd mydatalab



The chmod command will set things so that only the owner of the directory can read, write, or cd into it.

Next, give the command
unix> tar xvf ~cs213/HANDOUT/datalab-handout.tar

This will cause a number of files to be unpacked in the directory. The only file you will be modifying and
turning inis bits.c.

The bits. c file contains a function skeleton for each of the 13 programming puzzles that you will solve.
The lab tests each of your solutions for correctness, and for compliance with the set of low-level C operators
you are allowed to use and how many you are allowed to use (the coding rules.)

Please be sure to read the README file.

4 The Puzzles

The puzzles in bits.c break down into integer puzzles (Sections and floating point puzzles (Sec-
tion[4.2)). The rules are different for these.

4.1 Integer Puzzles

In the integer puzzles you must complete each function skeleton using only straightline code for the in-
teger puzzles (i.e., no loops or conditionals) and a limited number of C arithmetic and logical operators.
Specifically, you are only allowed to use the following eight operators:

L~ 8 N+ << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments in bits. c for detailed rules and a discussion of the desired coding style.

You may find the i show tool to be helpful.

Two’s Complement Arithmetic

Table [Tl describes a set of functions that make use of the two’s complement representation of integers. The
“Rating” field gives the difficulty rating (the number of points) for the puzzle, and the “Max Ops” field gives
the maximum number of operators you are allowed to use to implement the function. Refer to the comments
in bits.c and tests.c for more information. test.c contains reference functions to express the
correct behavior of your functions, although they don’t satisfy the coding rules for your functions.

"You may also find an 2’s complement calculator to be helpful, such as:
https://www.omnicalculator.com/math/twos—complement


https://www.omnicalculator.com/math/twos-complement

Name Description Rating | Max Ops
tmin () Return the minimum two’s complement integer 1 4
isTmax (x) Return 1 if x is the maximum two’s complement number, else 0 1 10
negate (x) Return —x 2 5
isGreater (x,y) | If x > y thenreturn 1, else return O 3 24

Table 1: Arithmetic Functions

Bit Manipulations

Table 2] describes a set of functions that manipulate and test sets of bits. See the comments in bits.c for
more details on the desired behavior of the functions. You may also refer to the test functions in tests. c.

Name Description Rating | Max Ops
bitOr (x,vy) Return x | vy 1 8
bitAnd (x,vy) Return x & y 1 8
alloddBits (x) Return 1 if all odd-numbered bits in x are set to 1 2 12
getByte (x,n) Extract byte n from word x 2 6
rotateRight (x, n | Rotate x to the right by n 3 25
bitParity (x) Returns 1 if x contains an odd number of 0’s 4 20

Table 2: Bit-Level Manipulation Functions.

4.2 Floating Point Puzzles

In the floating point puzzles you are allowed to use standard control structures (conditionals, loops), and
you may use both int and unsigned data types, including arbitrary unsigned and integer constants. You
may not use any unions, structs, or arrays. Most significantly, you may not use any floating point data types,
operations, or constants. Instead, any floating-point operand will be passed to the function as having type
unsigned, and any returned floating-point value will be of type unsigned. Your code should perform
the bit manipulations that implement the specified floating point operations.

Table 3] describes a set of functions that operate on the bit-level representations of floating-point numbers.
Refer to the comments in bits . c and the reference versions in tests . c for more information.

Name Description Rating | Max Ops
floatAbsVal (uf) Return absolute value of £, handling all cases 2 10
floatInt2Float (x) | Return (float) x, handling all cases 4 30
floatScaled (uf) Return 4 x £, handling all cases 4 30

Table 3: Floating-Point Functions. Value £ is the floating-point number having the same bit representation
as the unsigned integer uf.



All functions must handle the full range of range of possible argument values, including zeros, infinities,
and not-a-numbers (NaNs). The IEEE standard does not specify precisely how to handle NaN’s, and the
x64 behavior is a bit obscure. We will follow a convention that for any function returning a NaN value, it
will return the one with bit representation 0x7FC0000 OE

The included program fshow helps you understand the structure of floating point numbers. To compile
fshow, switch to the handout directory and type:

unix> make
You can use fshow to see what an arbitrary pattern represents as a floating-point number:
unix> ./fshow 2080374784

Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = £8, fraction = 000000
Normalized. 1.0000000000 X 27(121)

You can also give f show hexadecimal and floating point values, and it will decipher their bit structureJ

5 Evaluation

Your score will be computed out of a maximum of 60 points based on the following distribution:

30 Correctness points.
26 Performance points.

4 Style points.

Correctness points. The 13 puzzles you must solve have been given a difficulty rating between 1 and 4, such
that their weighted sum totals to 30. We will evaluate your functions using the btest program, which is
described in the next section. You will get full credit for a puzzle if it passes all of the tests performed by
btest, and no credit otherwise.

Performance points. Our main concern at this point in the course is that you learn enough about data
representations to be able to get the right answer for these exercises. However, we also want to instill in
you a sense of keeping things as short and simple as you can. Furthermore, some of the puzzles can be
solved by brute force, but we want you to be more clever. Thus, for each function we’ve established a
maximum number of operators that you are allowed to use for each function. This limit is very generous
and is designed only to catch egregiously inefficient solutions. You will receive two points for each correct
function that satisfies the operator limit.

2This is the “first positive quiet NaN”.
3You may also find a floating point calculator to be helpful, such as:
https://www.h—-schmidt.net/FloatConverter/IEEE754.html

4


https://www.h-schmidt.net/FloatConverter/IEEE754.html

Style points. Finally, we’ve reserved 4 points for a subjective evaluation of the style of your solutions and
your commenting. Your solutions should be as clean and straightforward as possible. Your comments should
be informative, but they need not be extensive.

Autograding your work

We have included some autograding tools in the handout directory — btest, dlc, and driver.pl —
to help you check the correctness of your work. You should test your code with driver.pl.

* driver.pl: This is a driver program that uses btest and dlc to compute the correctness and
performance points for your solution. It takes no arguments:

unix> ./driver.pl

Your instructors will use driver.pl to evaluate your solution. They will do so on moore.

* btest: This program checks the functional correctness of the functions in bits.c. To build and
use it, type the following two commands:

unix> make
unix> ./btest

Notice that you must rebuild bt est each time you modify your bits. c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can
use the — £ flag to instruct btest to test only a single function:

unix> ./btest -f bitAnd
You can feed it specific function arguments using the option flags -1, -2, and -3:
unix> ./btest -f bitAnd -1 7 -2 0xf

Check the file README for documentation on running the btest program.

* dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use
to check for compliance with the coding rules for each puzzle. The typical usage is:

unix> ./dlc bits.c

The program runs silently unless it detects a problem, such as an illegal operator, too many operators,
or non-straightline code in the integer puzzles. Running with the —e switch:

unix> ./dlc —-e bits.c

causes d1c to print counts of the number of operators used by each function. Type . /dlc -help
for a list of command line options.



6 Handin Instructions

To hand in your work, you will need to be on moore.

To hand in your work, you should first include a comment at the beginning of your bits. c file that
indicates your names and NetIDs. The comment should also indicate any issues you are aware of.

Next, you should create a copy of your file that includes your NetIDs, in alphabetical order, and separated
by hyphens, in the name:

unix> cp bits.c bits-netidl-netid2.c
Finally, copy this file to the class hand-in directory:
unix> cp bits-netidl-netid2.c ~cs213/HANDIN/datalab

This last command will only work correctly on moore.

7 Advice

* Don’t include the <stdio.h> header file in your bits. c file, as it confuses d1c and results in
some non-intuitive error messages. You will still be able to use printf in your bits. c file for
debugging without including the <stdio.h> header, although gcc will print a warning that you
can ignore.

* The d1c program enforces a stricter form of C declarations than is the case for C++ or that is enforced
by gcc. In particular, any declaration must appear in a block (what you enclose in curly braces) before
any statement that is not a declaration. For example, it will complain about the following code:

int foo(int x)

{
int a = x;
a *= 3; /* Statement that is not a declaration =/
int b = a; /* ERROR: Declaration not allowed here x/



	Introduction
	Logistics
	Handout Instructions
	The Puzzles
	Integer Puzzles
	Floating Point Puzzles

	Evaluation
	Handin Instructions
	Advice

