Lecture 15
Concurrency

CS2131 Intro to Computer Systems
Branden Ghenal Spring 2021

Slides adapted from:
StAmour, Hardavellas Bustamente (Northwestern), Bryant, O6 Ha | (CMW),0Garcia, Weaver (UC Berkeley)

Northwestern

Administrivia

AAttack Lab due today

1. Submit solution to grading server (
2. Submit text file with names and netlDs to canvas

AHomework 4 due next week Tuesday

ASETI Lab released today. Due in two weeks
ATodayodos |l ecture has all the infor mat

Midterm Exam 2

ANext week Thursday (June 3)

ASame style and setup as last time
AWill send out emails to students in special circumstances again soon

ACovers last half of the class (assembly procedures to virtual memory)

AMore details to come on Thursday

Todayos Goal s

ADiscuss goals of concurrency and how it is achieved insoftware
AUnderstand the challenges of writing parallel software

AExplore how to practically use parallelism for simple examples

Outline

ANeed for Parallelism

AProcesses and Threads

AConcurrency Challenges

AUsing Threads

| t 0s the mid 1990s and you wor k &

You need to double the speed of Excel in two years time.

What do you do?

| t 0s the mid 1990s and you wor k &

You need to double the speed of Excel in two years time.

What do you do? Take a vacation

Mo or e 0isCPU #&ansistors counts

Transistor count

50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

1,000,000
500,000

100,000
50,000

10,000 -,

5,000

1,000

® o
° . .
. 5%
®) Q QO
O/\ v o\/\b‘ Q/\‘L L{\J I\::{o\,

°
s ‘
°® @
- Ve
PR
ﬂ"oo°_°
8o
& PO ¢
T Iomay
®* ¢
o ©
‘o °
© .00
o
£C "
R4 ®
°.
X P R gk o> 0 o P & F
NOSIENMEIN N TN RN TN S S S

Q

of tr
every

ANumber
doubl es

Transistors are getting
exponentially smaller!

How small? Today: 7nm!
< Y the size of most viruses!

a

ns
18

S
m

Processors kept getting faster too

‘ AMD Phenom (4 cores)
Intel @ E 1

P Tran5|st0r‘
P Pentium 4 (MERR- (Thousancs)
' . ' Parallel App
5 | Performance
10 preesepnaesepa iR s S A s i e o R
104 _____________ t
Frequency
MHz
o S)
2 Typical Power
10 ; ('"(Watts)“””
1 jNumber
10 .. R T S S RN Uf.cores
100

1975 1980 1985 1990 1995 2000 2005

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olu

Denard Scaling

AMoore6s Law corollary:
AAs transistors get smaller, the power density stays the same

Al f Mooreds Law holds true, we
per watto every two year s!

AManufacturers could raise the clock frequency between generations
without more power consumption

ASo in our Excel example:
Aln two years new hardware would run the existing software twice as fast

10

a l

Then they stopped getting faster

- AMD Phenom (4 cores)
; ; ; Intel @ QRS
105 S .
- PR B R Parallel App ~2006: Leakage
s s : 7~ Performance
% ' ' . current becomes

significant

Tre{n sistors
(Thousands)

"\ Frequency
| MH
o (Z) Now smaller

Typical Power transi stor s

(Wars) mean lower power
Number

"'of-Q)omS""

1975 1980 1985 1990 1995 2000 2005 2010 2015

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

11

Soé now what ?

In summary:
AWe canot make transi stors faster

Aand because of that, we canét reliably make
walting for clock speeds to increase.

How do we continue to get better performing computation?
Any suggestions?

12

Exploit parallelism!

AMD Phenom (4 cores)

: : ; - - .':..:.f.:. : : Trefnsistorss
L poriums WMEM 1 (Tousanc

_ Paﬁallel App
7 Performance

Frequency
(MHz)

j Typical Power
S (Wtts)

. Nuinber

1975 1980 1985 1990 1995 2000 2005 2010 2015

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

13

Parallelism Analogy

Al want to peel 100 potatoes as fast as possible:

Al can learn to peel potatoes faster
OR

Al can get 99 friends to help me

AAny time one result doesnédét depe
parallel can be a big win!

14

Parallelism versus Concurrency

time

—_—p
Serial execution
time
Parallel execution :
B
time time

Two processes A and B

B

—

—
Concurrent execution OR llllllllll
B

15

Parallelism versus Concurrency

AParallelism
ATwo things happen strictly simultaneously

AConcurrency
AMore general term
ATwo things happen in the same time window
ACould be simultaneous, could be interleaved

A Concurrent execution occurs whenever two processes are both active

time time :

—
A . HHRREEERNE SENEEEERER
B OR
1

6

Outline

ANeed for Parallelism

AProcesses and Threads

AConcurrency Challenges

AUsing Threads

How do we apply parallelism to software?

AGoal: make computer faster by performing multiple tasks
ANeed multiple different software tasks

ATwo particular ways of creating a software task

AProcesses
AThreads

18

View of a process

AProcess: a program that is currently being run
AContents:

AAddress Space ARegisters

~ FFFFFFR,

stack

B S

heap

static data

code

Y%ax Vgax %r8 0%r8d
O%6bx 0ebX %r9 %r9d
%6CX eCX %r10 %r10d
%dXx %edx %rl1l %r11d
0&sSi Oesi O%r12 ___ [%ri2d |
%%di Vedi %r13 O%r13d
%6sp [%esp |[%0rl4 %rl14d
%bp [%ebp] [%r15 0br150

Alnstruction Pointer
ACondition Codes

AEtc.

19

Process use case: separate programs

ARight now | am running:
AZoom
APowerpoint
AChrome

AEach is a separate process
AHave their own memory
AHave their own registers
AOperating System manages them

ANo need for communication between them

20

Multiprocessor Systems (in pictures)

Processor O Memory
Control Processor O
Memory
2 A
Accesses

lDatapaPtg | .
E Registeré"
L e

Bytes =

Processor 1

Control Processor 1
L 2 A Memory

Datapath Accesses
PC /
Registers

IIWIII

Alternate view of a process

AProcess: code and data, plus athread

AThread: execution state
AEach process hasat /east one thread

ACode and (ARegisters

Data

%bax Y%eax %r8d
4 %bx Y%ebx %r9d
B 7 Y6CX Yecx %r100
heap %%dX %edx %r1ld
static data %6 Yesi %r12d |
%dI %edi %r13d
‘ code \ %%sp [Y&sp | Q%r14d
" Orer %bp [Y%ebp | Obri150

Alnstruction Pointer

ACondition Codes

AStack

~ FFFF FFFF ey

22

Alternate view of a process

AA process could have multiple threads
AEach with its own registers and stack

(- Registers . Instruction Pointer] | T hreads have separate:
[%rax [%eax | %8 [%r8d | . i+ : .
e ° condition Codes A Instruction Pointer
(%rcx [%ecx 11%r10 [%ried | .

ACOde and [%2rdx [%edx |[(%rll [%rild | Stack A RGngterS
[%rsi [%esi |[(%r12 [%ri2d] e« StAcC
Data_ Bordi [%edi |ri3__ Grisd] — - A Stack Memory
(%rsp [%esp |[%r14 %ridd] Slack . .
TR | o I A Condition Codes
4 \ y
r. 1 - - 1
heap Registers « Instruction Pointer Threads share:
g Wrax eax |Ar8 Trsd 1 .« Condition Codes reads share.
static data [%rbx___ [eebx | ero Térod |
(%rcx [%ecx 11%r10 [%ried] A COde
[(%rdx [%edx | [%ril [%rild | :
‘ code \ Gorsi Wesi [%ri2 [wiea] * Stack A Global variables
~0 [%2rdi [%edi |[%r13 [%r13d | —
hex (%rsp [%esp |[%r14 %ridd] —Stfc—

(%rbp [%ebp ||%r15 %r15d]

§ J

23

Thread use case: web browser

Let 0s say youore I mplementing a v

You want a tab for each web page you open:

A The same code loads each website (shared code section)
The same global settings are shared by each tab (shared data section)
A Each tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

24

Process address space with multiple threads

Stack (T1) <
Thread 2 > Stack (T2)

Stack (T3) <— Thread 3

Data Heap
Segment Static Data
<— %RIP

%RIP > Code (Thread 3)
(Thread 2) < %RIP

(Thread 1)

Thread 1

25

Multithreading processors

Basic idea: Processor resources are expensive and should not
be left idle

Long memory latency to memory on cache miss?

A Hardware switches threads to bring in other useful work while
waiting for cache miss

A Cost of thread context switch must be much less than cache miss
latency

26

Multithreading processor

A Two copies of PC and Registers inside processor hardware

A Looks like two processors to software
(hardware thread 0O, hardware thread 1)

A Control logic decides which thread to execute an instruction
from next

Processor
Control
v A
Datapath
I_ PCTO _| I_ PC1 _|
= Registers (F £ Registers 15

Memory

Bytes

Multithreading, multicore processors

Processor
C°$f°' Processor 0
A
Datapath Memory
| PC O] | PC1] ACCGSSGS
E Registers 0 E E Registers 1 E 4/"
Processor
Control P 1
v A rocessor
Datapath Memo ry
| PC1 |
— = -l | Accesses
= Registers 0 3 = Registers 1 3 /

Memory

Bytes

ACombine capabilities
of both designs

ARun two processes
each with two threads

AOr run one process
with four threads

28

Example: I7 processor

CPU

% Utilization over 60 seconds

Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz

Utilization Speed Base speed: 3.60 GHz

2% 408GHz oo 1 4 total cores

Processes Threads Handles (L:c?;; Processors. ; — EaCh Capable Of 2 threadS

236 2909 1 1 1 1 53 Virtualization: Enabled

Up time L1 cache: 256 KB o A~

12:02:28:40 Ceoe sows Fy LINEOSaazNh

Break + Open Question

AHow many fcoreso does a computer

30

Break + Open Question
AHow many fcoreso does a computer
ADepends on the workload
APersonal computer
A~2-10 processes running at once in the foreground
APlus ~100 in the background
AServer

ACould be serving thousands of requests simultaneously
AMoore: 48 cores, Hanlon: 40 cores

31

Outline

ANeed for Parallelism

AProcesses and Threads

AConcurrency Challenges

AUsing Threads

Challenges to concurrency

Concurrency Is great! We can do so many things!!
But what 6s the downsi deeée?

1. How much speedup can we get from it?
2. How hard is it to write parallel programs?

33

Challenges to concurrency

Concurrency Is great! We can do so many things!!
But what 6s the downsi deeée?

1. How much speedup can we get from it?
2. How hard is it to write parallel programs?

34

Speedup Example

-

Imagine a program that takes 100 seconds to run

A 95 seconds in the blue part
A 5 seconds in the green part

35

Speedup from improvements

Execution time without

- Improvement
95 s 5 < Speedup with _
Improvement Execution time with
Improvement

5s->25s. Speedup =100/97.5 =1.026

5s->1s: Speedup = 100/96 =1.042
5s->0.001s: Speedup =100/95.001 =1.053

The impact of a performance improvement is relative
to the importance of the part being improved!

36

Amdahl 6s Law

(I n pilctur es)

AThe amount of speedup that can be achieved through parallelism is
limited by the nonparallel portion of your program!

Time

Parallel
portion

Serial
portion

1 2 3 4 5
Number of Processors

Speedup

20,00

I~
1
18.00 //
/ Parallel Portion
16.00 - 50%
/ — 75%
14,00 90%
— 95%
12.00
10.00 / —
‘___——-"
8.00 /
6.00 A
4.00
(" —
an
2.00 s
ca—
0.00

rrrrrrr
— o w 3] T} — g g g 53] g E m
— ™~ 1] —
mmmmm

Number of Processors

38

Challenges to concurrency

Concurrency Is great! We can do so many things!!
But what 6s the downsi deeée?

1. How much speedup can we get from it?
2. How hard is it to write parallel programs?

39

Concurrency problem: data races

Consider two threads with a shared global variable: int count =0

Thread 1: Thread 2:

void thread fn (){ void thread fn (){
count +=1; count += 1;

} }

count could end up with a final value of 1 or 2. How?

Concurrency problem: data races

Consider two threads with a shared global variable: int count=0

Assumi ng NnNcc

Thread 1. Thread 2: in memory location
0x8049alc
void thread fn () void thread fn (){
mov $0x8049alc, % edi mov $0x8049alc, % edi
mov (Y% edi), % eax mov (% edi), % eax
add $0x1, % eax add $0x1, % eax
mov %eax, (% edi) mov %eax, (% edi)
} }

count could end up with a final value of 1 or 2. How?
These instructions could be interleaved in any way.

41

Assuming Acounto i s
Da‘ta race example in memory location
pointed to by %edi
Thread 1 Thread 2 Thread 1 Thread 2

Time

mov (% edi), % eax

mov (% edi), % eax

add $0x1, % eax

mov (%o edi), % eax

mov %eax, ($ edi)

add $0x1, % eax

mov (% edi), % eax

add $0x1, % eax

mov %eax, (% edi)

add $0x1, % eax

mov %eax, (% edi)

Final value of count: 2

mov %eax, (% edi)

Final value of count: 1

42

Data race explanation

A Thread scheduling is non -deterministic |
A There is no guarantee that any thread will go first or last or
not be interrupted at any point

A If different threads write to the same variable o
A The final value of the variable is also non-deterministic
A This is a data race

A Avoid incorrect results by:
1. Not writing to the same memory address!!

OR

2. Synchronizing reading and writing to get deterministic behavior

43

Data race explanation

A Thread scheduling is non -deterministic |
A There is no guarantee that any thread will go first or last or
not be interrupted at any point

A If different threads write to the same variable _
A The final value of the variable is also non-deterministic
A This is a data race

A Avoid incorrect results by:

iy Wedl |l pick
1 h
1. Not writing to the same memory address!! one for CS213

t hi

OR

2. Synchronizing reading and writing to get deterministic behavior
CS343 explores this in depth

44

Avoiding shared memory data races

AEnsure that no two threads write to the same memory address

AMultiple threads reading from the same memory address is fine
AAs long as no thread writes to that memory

AWhere do you put results then? Simple solution:
AMake an array with a slot for each thread
AEach thread only writes to their own slot in the array

A After all threads are done, main thread iterates the array and determines
the final result

45

Question + Break

Consider three threads with a shared global variable: int count =0

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count -=1;

}

Thread 3:

void main(){
count += 2;

}

What are the possible values of count?

46

Question + Break

Consider three threads with a shared global variable: int count =0

Thread 1. Thread 2: Thread 3:
void main(){ void main(){ void main(){
count +=1; count -=1; count += 2;
} } }
What are the possible values of count? -1,0,1, 2,3

How are you supposed to reason about this?!
Need mechanisms for sharing memory.

a7

Outline

ANeed for Parallelism

AProcesses and Threads

AConcurrency Challenges

AUsing Threads

Thread operations

ACreate threads
A Shares all memory with all threads of the process.
A Scheduled independently of parent

AJoin thread

A Waits for a particular thread to finish
ACandét continue computati on

AThat 6s it! Dondét really need anyth
A Library also includes synchronization primitives to solve data races

ACan %(I)mmunicate between threads by reading/writing (shared) global
variaples
ABut wedr e oraad yromgsbared \giriables for safety
Awedl |l write to separate memory | ocation

POSIX Threads Library:pthreads

Ahttps://man7.org/linux/man_-pages/man7/pthreads.7.html

int pthread_create (pthread_t * thread , const pthread_attr_t * attr ,
void* (* start_routine)(void*), void* arg);

A Thread is created executing start_routine with arg as its sole argument.
A Return is implicit call to pthread_exit

void pthread _exit (void* value ptr);
A Terminates the thread and makes value ptr available to any successful join

Int pthread join (pthread t thread , void* value ptr);
A Suspends execution of the calling thread until the target thread terminates.

A On return with a non -NULL value_ptr the value passed to pthread_exit() by the
terminating thread is made available in the location referenced by value pt‘r

50

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Basic thread example

Main thread

call Pthread_creatg()

.................................. Peer thread
Ca” Pthread_join() --------------------- .
printf ()
Main thread waits for return NULL;

peer thread to terminate Peer thread

"""""""""""""""""""""" terminates
Pthread_join() returns fe="

exit()
Terminates '
main thread and
any peer threads

Example: parallel sum of vector

double vector| vector len | = {1,

/I determine result sequentially
double sequential sum =0;

for (int i =0; i<vector_len ; i++){

sequential_sum +=vector[1];

2,

vestor lan,

%

52

Example: parallel sum of vector

double vector| vector len] = {1, 2, V&tor len, };

Parallelization Plan

1. Create num_threads different threads

2. Threads create nApartial o sums for
A Each thread does (vector len / num_threads) work
A Create an array for results with one slot per thread

3. Walit until done, then sum the partial results
A Main thread calls join() to wait for each thread to complete
A Main thread adds up results

53

Example: parallel sum of vector

1. Create num_threads different threads

pthread_t tid [num_threads |;

for (long | =0; i <num_threads ; i++){

pthread create (&(tid [1]), NULL, worker, (void*) 1);

AArguments to pthread_create
A thread_handle, attributes, thread_function, function_argument

54

Example: parallel sum of vector

N\

2 . Threads create npartial 0 s ums

void* worker(void* arg) {
long 1 =(long) arg;
Int mystart =1 *(vector _len /num_threads),
int myend = (i+1) * (vector_len / num_threads);
partial sum [1]=0;
for (int j= mystart ;j< myend; j++){
partial sum [1] += vector[]];

}
pthread _exit (NULL); // Thread work is complete

55

Example: parallel sum of vector

3. Wait until done, then sum the partial results

for (int j=0; j< num_threads ; j++){

pthread join (tid [i], NULL); // second argument is return result

double parallel sum = 0;
for (int k=0; k< num_threads ; k++) {

parallel_sum += partial_sum [K];

56

Trying this out for yourself

ASee SETI Lab for example code you can run yourself

AWe just went through a slightly reduced version of
parallel - sum- ex.c

57

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000
Sequential sum: 19999999900000000 (878576632 cycles)
Parallel sum: 0 (44 cycles)

Vector of 200 million length
No threads created

Only the sequential version is run

58

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000
Sequential sum: 19999999900000000 (878576632 cycles)
Parallel sum: 0 (44 cycles)

$./parallel - sum- ex 1 1 200000000
Sequential sum: 19999999900000000 (902438479 cycles)
Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel - sum- ex 8 1 200000000
Sequential sum: 19999999900000000 (888810917 cycles)
Parallel sum: 19999999900000000 (1033659530 cycles)

Vector of 200 million length

1 to 8 threads created. No speedup??!
Starting threads takes time! Need to
make sure theyore

be worth it.

8 starts to pay back a little bit. But need
more parallelism for a big win.

doi

59

r

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000 Vector of 200 million length
Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles) 16 threads starts to win!

$./parallel - sum- ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles) A

Parallel sum: 19999999900000000 (1169222739 cycles) | d @adually have that many cores,
but the system is swapping threads

$./parallel - sum- ex 8 1 200000000 i

Sequential sum: 19999999900000000 (888810917 cycles) whenever memory reads stall to Improve

Parallel sum: 19999999900000000 (1033659530 cycles) performance

$./parallel - sum- ex 16 1 200000000

Sequential sum: 19999999900000000 (895258209 cycles)
Parallel sum: 19999999900000000 (693511997 cycles)

60

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000
Sequential sum: 19999999900000000 (878576632 cycles)
Parallel sum: 0 (44 cycles)

$./parallel - sum- ex 1 1 200000000
Sequential sum: 19999999900000000 (902438479 cycles)
Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel - sum- ex 8 1 200000000
Sequential sum: 19999999900000000 (888810917 cycles)
Parallel sum: 19999999900000000 (1033659530 cycles)

$./parallel - sum- ex 16 1 200000000
Sequential sum: 19999999900000000 (895258209 cycles)
Parallel sum: 19999999900000000 (693511997 cycles)

$./parallel - sum- ex 32 1 200000000
Sequential sum: 19999999900000000 (886174224 cycles)
Parallel sum: 19999999900000000 (609774231 cycles)

$./parallel - sum- ex 64 1 200000000
Sequential sum: 19999999900000000 (898098616 cycles)
Parallel sum: 19999999900000000 (426420305 cycles)

Vector of 200 million length
32 and 64 threads are really crusing

Down to half the time for the
computation

61

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000
Sequential sum: 19999999900000000 (878576632 cycles)
Parallel sum: 0 (44 cycles)

$./parallel - sum- ex 1 1 200000000
Sequential sum: 19999999900000000 (902438479 cycles)
Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel - sum- ex 8 1 200000000
Sequential sum: 19999999900000000 (888810917 cycles)
Parallel sum: 19999999900000000 (1033659530 cycles)

$./parallel - sum- ex 16 1 200000000
Sequential sum: 19999999900000000 (895258209 cycles)
Parallel sum: 19999999900000000 (693511997 cycles)

$./parallel - sum- ex 32 1 200000000
Sequential sum: 19999999900000000 (886174224 cycles)
Parallel sum: 19999999900000000 (609774231 cycles)

$./parallel - sum- ex 64 1 200000000
Sequential sum: 19999999900000000 (898098616 cycles)
Parallel sum: 19999999900000000 (426420305 cycles)

$./parallel - sum- ex 128 1 200000000
Sequential sum: 19999999900000000 (891919128 cycles)
Parallel sum: 19999999900000000 (493951974 cycles)

Vector of 200 million length

128 threads is basically the same as 64
threads

Further parallelism

much. Technically worse than 64, but
likely within error bounds on timing

62

C

-

Outline

ANeed for Parallelism

AProcesses and Threads

AConcurrency Challenges

AUsing Threads

Outline

ABonus: SIMD Instructions

SIMD Architectures

A Data-Level Parallelism (DLFExecuting one operation on multiple
data streams

A SIMD: Single Instruction Multiple Data

A Example: Multiplying a coefficient vector by a data vector (e.g. in
filtering)

v[il:= c[i] x x[i], D<@

A Sources of performance improvement:
I One Iinstruction is fetched & decoded for entire operation
I Multiplications are known to be independent
I Pipelining/concurrency in memory access as well

SIMD Mode

Scalar Mode

nRrEe

66

Example SIMD Instructions

Ac2 AYLINROS LISNF2NXIYOSSE LyuaSft Qa
I Fetch one instruction, do the work of multiple instructions
I MMX (MultiMedia eXtension, Pentium Il processor family)
I SSE (Streaming SIMD Extension, Pentium Il and beyond)

Source 1 X3 X2 X1 X0

Source 2 Y3 Y2 Y1 YO0

Destination X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP YO

Example: SIMD Array Processing

for each f in array
f = sqrt(f)

for each f in array {
load f to the floatingpoint register
calculate the square root
write the result from the register to memory

}

for each 4 members in array {
load 4 members to the SSE register
calculate 4 square roots in one operation
write the result from the register to memory

}

\

J

— pseudocode

- SISD

- SIMD

68

SIMD In the Real World

ATodayc“)s compi |l ers can generate !
I Butin some cases we get better results by hand

Al ntel 6s x86 | mpl ements many SI M
I Which have the benefit of being usable on lab machines
I (and most of our own personal computers)

69

First SIMD Extensions:
MIT Li.ncoln Labs TX-2, 1957

QNE 36 BIT AE
(36)

e - - - - -

OPERAND WORD B
STRUCTURE

TWO I8 BIT AES D
(18,18)

e
e -

e - ———

c
A
B

OPERAND WORD [5]
STRUCTURE

ONE 27 BIT& D
ONE 9BIT AE C
(27,9) A

B

OPERAND WORD B
STRUCTURE

FOUR © BIT AE'S D
(9,9,9,9) c

A

=

oreRME woro e —— I —— S]

b - - - - —-

1999

SSE

SIMD: Continuous Evolution

Intel SIMD has been continuously extended

2000 004 2006 2007 2008 2009 2010\11
SSE2 SSE3 SSSE3 SSE4.1 SSE4.2 AES-NI AVX

70 instr

Single-
Precision
Vectors

Streaming
operations

144 instr 13 instr

Double- Complex
precision DELE!
Vectors

8/16/32

64/128-bit
vector
integer

8 instr

String /XML
processing

POP-Count
CRC

32 instr 47 instr
Decode Video

Graphics

building
blocks

Advanced
vector instr

7 instr

Encryption
and
Decryption

Key

Generation

~100 new
instr.

~300 legacy
sse instr
updated

256-bit
vector
3 and 4-

operand
instructions

71

And It has Increased In size a lot

72

