
Lecture 15
Concurrency

CS213 ïIntro to Computer Systems

Branden Ghena ïSpring 2021

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, OôHallaron(CMU), Garcia, Weaver (UC Berkeley)

Administrivia

ÅAttack Lab due today
1. Submit solution to grading server (like youôve been doing)

2. Submit text file with names and netIDs to canvas

ÅHomework 4 due next week Tuesday

ÅSETI Lab released today. Due in two weeks
ÅTodayôs lecture has all the information you need for it

2

Midterm Exam 2

ÅNext week Thursday (June 3)

ÅSame style and setup as last time
ÅWill send out emails to students in special circumstances again soon

ÅCovers last half of the class (assembly procedures to virtual memory)

ÅMore details to come on Thursday

3

Todayôs Goals

ÅDiscuss goals of concurrency and how it is achieved in software

ÅUnderstand the challenges of writing parallel software

ÅExplore how to practically use parallelism for simple examples

4

5

ÅNeed for Parallelism

ÅProcesses and Threads

ÅConcurrency Challenges

ÅUsing Threads

Outline

Itôs the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years time.

What do you do?

6

Itôs the mid 1990s and you work at Microsoft.

You need to double the speed of Excel in two years time.

What do you do? Take a vacation

7

Mooreôs Law ïCPU transistors counts

ñNumber of transistors in a chip
doubles every 18 monthsò

Transistors are getting
exponentially smaller!

How small? Today: 7nm!
< ½ the size of most viruses!

8

Processors kept getting faster too

9

Denard Scaling

ÅMooreôs Law corollary:
ÅAs transistors get smaller, the power density stays the same

ÅIf Mooreôs Law holds true, we also get a doubling of ñperformance
per wattò every two years!
ÅManufacturers could raise the clock frequency between generations

without more power consumption

ÅSo in our Excel example:
ÅIn two years new hardware would run the existing software twice as fast

10

Then they stopped getting faster

11

~2006: Leakage
current becomes
significant

Now smaller
transistors donôt
mean lower power

Soé now what?

In summary:

ÅWe canôt make transistors faster due to current leakage,

Åand because of that, we canôt reliably make performance better by
waiting for clock speeds to increase.

How do we continue to get better performing computation?

Any suggestions?

12

Exploit parallelism!

13

Parallelism Analogy

ÅI want to peel 100 potatoes as fast as possible:

ÅI can learn to peel potatoes faster

OR

ÅI can get 99 friends to help me

ÅAny time one result doesnôt depend on another, doing the task in
parallel can be a big win!

14

Parallelism versus Concurrency Two processes A and B

15

BA

BA

B

A

B

A
OR

time

time

time time

Serial execution

Parallel execution

Concurrent execution

Parallelism versus Concurrency

ÅParallelism
ÅTwo things happen strictly simultaneously

ÅConcurrency
ÅMore general term

ÅTwo things happen in the same time window

ÅCould be simultaneous, could be interleaved

ÅConcurrent execution occurs whenever two processes are both active

16

B

A
OR

time time

OR

time

17

ÅNeed for Parallelism

ÅProcesses and Threads

ÅConcurrency Challenges

ÅUsing Threads

Outline

How do we apply parallelism to software?

ÅGoal: make computer faster by performing multiple tasks

ÅNeed multiple different software tasks

ÅTwo particular ways of creating a software task
ÅProcesses

ÅThreads

18

View of a process

ÅProcess: a program that is currently being run

ÅContents:

19

ÅAddress Space ÅRegisters

code

static data

heap

stack
~ FFFF FFFFhex

~ 0hex

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

ÅInstruction Pointer

ÅCondition Codes

ÅEtc.

Process use case: separate programs

ÅRight now I am running:
ÅZoom

ÅPowerpoint

ÅChrome

ÅEach is a separate process
ÅHave their own memory

ÅHave their own registers

ÅOperating System manages them

ÅNo need for communication between them

20

Multiprocessor Systems (in pictures)

21

Processor 0

Control

Datapath
PC

Registers

(ALU)

Memory

Bytes

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers

(ALU)

Processor 1
Memory
Accesses

Alternate view of a process

ÅProcess: code and data, plus a thread

ÅThread: execution state
ÅEach process has at least one thread

22

ÅRegisters

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

ÅInstruction Pointer

ÅCondition Codes

ÅStack

ÅCode and
Data

Alternate view of a process

ÅA process could have multiple threads
ÅEach with its own registers and stack

23

ÅCode and
Data

Threads have separate:
ÅInstruction Pointer

ÅRegisters

ÅStack Memory

ÅCondition Codes

Threads share:
ÅCode

ÅGlobal variables

Thread use case: web browser

Letôs say youôre implementing a web browser:

You want a tab for each web page you open:
ÅThe same code loads each website (shared code section)

ÅThe same global settings are shared by each tab (shared data section)

ÅEach tab does have separate state (separate stack and registers)

Disclaimer: Actually, modern browsers use separate processes for each tab for a variety of
reasons including performance and security. But they used to use threads.

24

Process address space with multiple threads

25

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

%RIP

(Thread 1)

%RIP

(Thread 3)%RIP

(Thread 2)

Data

Segment

Multithreading processors

Basic idea: Processor resources are expensive and should not
be left idle

Long memory latency to memory on cache miss?
ÅHardware switches threads to bring in other useful work while

waiting for cache miss

ÅCost of thread context switch must be much less than cache miss
latency

26

Memory

Bytes

Processor

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

ÅTwo copies of PC and Registers inside processor hardware

ÅLooks like two processors to software
(hardware thread 0, hardware thread 1)

ÅControl logic decides which thread to execute an instruction
from next

27

Multithreading processor

Multithreading, multicore processors

ÅCombine capabilities
of both designs

ÅRun two processes
each with two threads

ÅOr run one process
with four threads

28

Memory

Bytes

Processor 0
Memory
Accesses

Processor 1
Memory
Accesses

Processor

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

Processor

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

Example: i7 processor

29

4 total cores
Each capable of 2 threads

Ғ у ǇǊƻŎŜǎǎƻǊǎ

Break + Open Question

ÅHow many ñcoresò does a computer need?

30

Break + Open Question

ÅHow many ñcoresò does a computer need?

ÅDepends on the workload

ÅPersonal computer

Å~2-10 processes running at once in the foreground

ÅPlus ~100 in the background

ÅServer

ÅCould be serving thousands of requests simultaneously

ÅMoore: 48 cores, Hanlon: 40 cores

31

32

ÅNeed for Parallelism

ÅProcesses and Threads

ÅConcurrency Challenges

ÅUsing Threads

Outline

Challenges to concurrency

Concurrency is great! We can do so many things!!

But whatôs the downsideé?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

33

Challenges to concurrency

Concurrency is great! We can do so many things!!

But whatôs the downsideé?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

34

Imagine a program that takes 100 seconds to run

Å95 seconds in the blue part
Å5 seconds in the green part

95 s 5 s

Speedup Example

35

95 s 5 s

Speedup from improvements

36

Speedup with
Improvement

=

Execution time without
improvement

Execution time with
improvement

5 s -> 2.5 s: Speedup = 100/97.5 = 1.026

5 s -> 1 s: Speedup = 100/96 = 1.042

5 s -> 0.001s: Speedup = 100/95.001 = 1.053

The impact of a performance improvement is relative
to the importance of the part being improved!

Amdahlôs Law (in pictures)

ÅThe amount of speedup that can be achieved through parallelism is
limited by the non-parallel portion of your program!

38

Parallel
portion

Serial
portion

Time

Number of Processors
1 2 3 4 5

S
p

e
e

d
u
p

Number of Processors

Challenges to concurrency

Concurrency is great! We can do so many things!!

But whatôs the downsideé?

1. How much speedup can we get from it?

2. How hard is it to write parallel programs?

39

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

40

Thread 1:

void thread_fn (){

count += 1;

}

Thread 2:

void thread_fn (){

count += 1;

}

Concurrency problem: data races

Consider two threads with a shared global variable: int count = 0

count could end up with a final value of 1 or 2. How?

These instructions could be interleaved in any way.
41

Thread 1:

void thread_fn (){

mov $0x8049a1c, % edi

mov (% edi), % eax

add $0x1, % eax

mov %eax , (% edi)

}

Thread 2:

void thread_fn (){

mov $0x8049a1c, % edi

mov (% edi), % eax

add $0x1, % eax

mov %eax , (% edi)

}

Assuming ñcountò is
in memory location
0x8049a1c

Data race example

42

Thread 1 Thread 2

mov (% edi), % eax

add $0x1, % eax

mov %eax , ($ edi)

mov (% edi), % eax

add $0x1, % eax

mov %eax , (% edi)

Time

Thread 1 Thread 2

mov (% edi), % eax

mov (% edi), % eax

add $0x1, % eax

mov %eax , (% edi)

add $0x1, % eax

mov %eax , (% edi)

Final value of count: 2 Final value of count: 1

Assuming ñcountò is
in memory location
pointed to by %edi

Data race explanation

ÅThread scheduling is non -deterministic
ÅThere is no guarantee that any thread will go first or last or

not be interrupted at any point

Å If different threads write to the same variable
Å The final value of the variable is also non-deterministic
Å This is a data race

ÅAvoid incorrect results by:
1. Not writing to the same memory address!!

OR

2. Synchronizing reading and writing to get deterministic behavior

43

Data race explanation

ÅThread scheduling is non -deterministic
ÅThere is no guarantee that any thread will go first or last or

not be interrupted at any point

Å If different threads write to the same variable
Å The final value of the variable is also non-deterministic
Å This is a data race

ÅAvoid incorrect results by:
1. Not writing to the same memory address!!

OR

2. Synchronizing reading and writing to get deterministic behavior

44

Weôll pick this
one for CS213

CS343 explores this in depth

Avoiding shared memory data races

ÅEnsure that no two threads write to the same memory address

ÅMultiple threads reading from the same memory address is fine
ÅAs long as no thread writes to that memory

ÅWhere do you put results then? Simple solution:
ÅMake an array with a slot for each thread

ÅEach thread only writes to their own slot in the array

ÅAfter all threads are done, main thread iterates the array and determines
the final result

45

Question + Break

Consider three threads with a shared global variable: int count = 0

What are the possible values of count?

46

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count - = 1;

}

Thread 3:

void main(){
count += 2;

}

Question + Break

Consider three threads with a shared global variable: int count = 0

What are the possible values of count? -1, 0, 1, 2, 3

How are you supposed to reason about this?!
Need mechanisms for sharing memory.

47

Thread 1:

void main(){
count += 1;

}

Thread 2:

void main(){
count - = 1;

}

Thread 3:

void main(){
count += 2;

}

48

ÅNeed for Parallelism

ÅProcesses and Threads

ÅConcurrency Challenges

ÅUsing Threads

Outline

Thread operations

ÅCreate threads
ÅShares all memory with all threads of the process.
ÅScheduled independently of parent

ÅJoin thread
ÅWaits for a particular thread to finish
ÅCanôt continue computation

ÅThatôs it! Donôt really need anything else (for this class)
ÅLibrary also includes synchronization primitives to solve data races

ÅCan communicate between threads by reading/writing (shared) global
variables
ÅBut weôre only going to read from shared variables for safety
ÅWeôll write to separate memory locations

POSIX Threads Library: pthreads

Åhttps://man7.org/linux/man -pages/man7/pthreads.7.html

int pthread_create (pthread_t * thread , const pthread_attr_t * attr ,
void* (* start_routine)(void*), void* arg);

ÅThread is created executing start_routine with arg as its sole argument.
ÅReturn is implicit call to pthread_exit

void pthread_exit (void* value_ptr);

ÅTerminates the thread and makes value_ptr available to any successful join

int pthread_join (pthread_t thread , void** value_ptr);

ÅSuspends execution of the calling thread until the target thread terminates.
ÅOn return with a non -NULLvalue_ptr the value passed to pthread_exit() by the

terminating thread is made available in the location referenced by value_ptr.

50

https://man7.org/linux/man-pages/man7/pthreads.7.html
https://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_exit.html

Basic thread example

51

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()

Terminates
main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf ()

Peer thread
terminates

Example: parallel sum of vector

double vector[vector_len] = {1, 2, 3, é, vector_len };

// determine result sequentially

double sequential_sum = 0;

for (int i =0; i <vector_len ; i ++) {

sequential_sum += vector[i];

}

52

Example: parallel sum of vector

double vector[vector_len] = {1, 2, 3, é, vector_len };

Parallelization Plan

1. Create num_threads different threads

2. Threads create ñpartialò sums for their portion of the work
ÅEach thread does (vector_len / num_threads) work
ÅCreate an array for results with one slot per thread

3. Wait until done, then sum the partial results
ÅMain thread calls join() to wait for each thread to complete
ÅMain thread adds up results

53

Example: parallel sum of vector

1. Create num_threads different threads

pthread_t tid [num_threads];

for (long i =0; i <num_threads ; i ++) {

pthread_create (&(tid [i]), NULL, worker, (void*) i);

}

ÅArguments to pthread_create
Åthread_handle, attributes, thread_function, function_argument

54

Example: parallel sum of vector

2. Threads create ñpartialò sums for their portion of the work

void* worker(void* arg) {

long i = (long) arg ;

int mystart = i * (vector_len / num_threads);

int myend = (i+1) * (vector_len / num_threads);

partial_sum [i] = 0;

for (int j= mystart ; j< myend; j++) {

partial_sum [i] += vector[j];

}

pthread_exit (NULL); // Thread work is complete

}

55

Example: parallel sum of vector

3. Wait until done, then sum the partial results

for (int j=0; j< num_threads ; j++) {

pthread_join (tid [i], NULL); // second argument is return result

}

double parallel_sum = 0;

for (int k=0; k< num_threads ; k++) {

parallel_sum += partial_sum [k];

}

56

Trying this out for yourself

ÅSee SETI Lab for example code you can run yourself

ÅWe just went through a slightly reduced version of
parallel - sum- ex.c

57

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

58

Vector of 200 million length

No threads created

Only the sequential version is run

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

$./parallel - sum- ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles)

Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel - sum- ex 8 1 200000000

Sequential sum: 19999999900000000 (888810917 cycles)

Parallel sum: 19999999900000000 (1033659530 cycles)

59

Vector of 200 million length

1 to 8 threads created. No speedup??!

Starting threads takes time! Need to
make sure theyôre doing enough work to
be worth it.

8 starts to pay back a little bit. But need
more parallelism for a big win.

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

$./parallel - sum- ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles)

Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel - sum- ex 8 1 200000000

Sequential sum: 19999999900000000 (888810917 cycles)

Parallel sum: 19999999900000000 (1033659530 cycles)

$./parallel - sum- ex 16 1 200000000

Sequential sum: 19999999900000000 (895258209 cycles)

Parallel sum: 19999999900000000 (693511997 cycles)

60

Vector of 200 million length

16 threads starts to win!

I donôt actually have that many cores,
but the system is swapping threads
whenever memory reads stall to improve
performance

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

$./parallel - sum- ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles)

Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel - sum- ex 8 1 200000000

Sequential sum: 19999999900000000 (888810917 cycles)

Parallel sum: 19999999900000000 (1033659530 cycles)

$./parallel - sum- ex 16 1 200000000

Sequential sum: 19999999900000000 (895258209 cycles)

Parallel sum: 19999999900000000 (693511997 cycles)

$./parallel - sum- ex 32 1 200000000

Sequential sum: 19999999900000000 (886174224 cycles)

Parallel sum: 19999999900000000 (609774231 cycles)

$./parallel - sum- ex 64 1 200000000

Sequential sum: 19999999900000000 (898098616 cycles)

Parallel sum: 19999999900000000 (426420305 cycles)

61

Vector of 200 million length

32 and 64 threads are really crusing

Down to half the time for the
computation

Running the parallel sum application

$./parallel - sum- ex 0 1 200000000

Sequential sum: 19999999900000000 (878576632 cycles)

Parallel sum: 0 (44 cycles)

$./parallel - sum- ex 1 1 200000000

Sequential sum: 19999999900000000 (902438479 cycles)

Parallel sum: 19999999900000000 (1169222739 cycles)

$./parallel - sum- ex 8 1 200000000

Sequential sum: 19999999900000000 (888810917 cycles)

Parallel sum: 19999999900000000 (1033659530 cycles)

$./parallel - sum- ex 16 1 200000000

Sequential sum: 19999999900000000 (895258209 cycles)

Parallel sum: 19999999900000000 (693511997 cycles)

$./parallel - sum- ex 32 1 200000000

Sequential sum: 19999999900000000 (886174224 cycles)

Parallel sum: 19999999900000000 (609774231 cycles)

$./parallel - sum- ex 64 1 200000000

Sequential sum: 19999999900000000 (898098616 cycles)

Parallel sum: 19999999900000000 (426420305 cycles)

$./parallel - sum- ex 128 1 200000000

Sequential sum: 19999999900000000 (891919128 cycles)

Parallel sum: 19999999900000000 (493951974 cycles)

62

Vector of 200 million length

128 threads is basically the same as 64
threads

Further parallelism isnôt helping very
much. Technically worse than 64, but
likely within error bounds on timing

63

ÅNeed for Parallelism

ÅProcesses and Threads

ÅConcurrency Challenges

ÅUsing Threads

Outline

64

ÅBonus: SIMD Instructions

Outline

SIMD Architectures

ÅData-Level Parallelism (DLP):Executing one operation on multiple
data streams

ÅSIMD: Single Instruction Multiple Data

ÅExample:Multiplying a coefficient vector by a data vector (e.g. in
filtering)

y [i] := c [i] × x [i], 0Òi <n

ÅSources of performance improvement:
ïOne instruction is fetched & decoded for entire operation

ïMultiplications are known to be independent

ïPipelining/concurrency in memory access as well

Slide 65

66

Example SIMD Instructions

Å¢ƻ ƛƳǇǊƻǾŜ ǇŜǊŦƻǊƳŀƴŎŜΣ LƴǘŜƭΩǎ {La5 ƛƴǎǘǊǳŎǘƛƻƴǎ
ïFetch one instruction, do the work of multiple instructions

ïMMX (MultiMedia eXtension, Pentium II processor family)

ïSSE (Streaming SIMD Extension, Pentium III and beyond)

67

Example: SIMD Array Processing

68

for each f in array

f = sqrt(f)
pseudocode

SISD

SIMD

for each f in array {

load f to the floating-point register

calculate the square root

write the result from the register to memory

}

for each 4 members in array {

load 4 members to the SSE register

calculate 4 square roots in one operation

write the result from the register to memory

}

SIMD in the Real World

ÅTodayôs compilers can generate SIMD code!
ïBut in some cases we get better results by hand

ÅIntelôs x86 implements many SIMD instructions
ïWhich have the benefit of being usable on lab machines
ï (and most of our own personal computers)

69

70

Intel SIMD has been continuously extended

71

And it has increased in size a lot

72

