
Lecture 14
Cache Performance

CS213 – Intro to Computer Systems

Branden Ghena – Spring 2021

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Today’s Goals

• Explore impacts of cache and code design

• Calculate cache performance based on array accesses

• Understand what it means to write “cache-friendly code”

2

3

• Memory Mountain

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Writing Cache-Friendly Code

• Caches are key to program performance
• CPU accessing main memory = CPU twiddling its thumbs = bad
• Want to avoid as much as possible

• Minimize cache misses in the inner loops of core functions
• That’s usually where your program spends most of its time (“hot” code)

• Programmers are notoriously bad at guessing these spots
• Use a profiler to find them (e.g., gprof)

• Repeated references to variables are good (temporal locality)
• Stride-1 reference patterns are good (spatial locality)

• I.e., accessing array elements in sequence, not jumping around

• Now that we know how cache memories work
• We can quantify the effect of locality on performance

4

The Memory Mountain

• Read throughput (read bandwidth)
• Number of bytes read from the memory subsystem per second (Mb/s)
• The higher it is, the less likely your CPU is to be waiting on memory

• Memory mountain: Measures read throughput as a function of spatial
and temporal locality.
• We run variants of the same program with different levels of spatial and temporal

locality, then measure read throughput
• Compact way to characterize memory system performance
• Different systems (with different caches) have different mountains!

• Observation: if you decrease locality, bandwidth drops
• As we’d expect; locality is key to having the right data in the cache
• And if data is not in the cache, need to get it from next level down

5

Mapping the Memory Mountain

/* The test function */

void test(int elems, int stride) {

int i, result = 0;

volatile int sink;

for (i = 0; i < elems; i += stride)

result += data[i];

sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */

double run(int size, int stride, double Mhz)

{

double cycles;

int elems = size / sizeof(int);

test(elems, stride);

cycles = fcyc2(test, elems, stride, 0);

return (size / stride) / (cycles / Mhz);

}

Lower = more spatial locality
(we visit close-by addresses
one after the other)

Lower = more temporal locality
(fewer elements = less likely to
get kicked out by conflicts)

Basically: a ton of memory reads in a loop
and nothing else (that takes much time)

Harness code
• Warms up cache

(don’t want to count cold misses)
• Measures read throughput

6

A Memory Mountain

6
4

M 8
M 1

M

1
2

8
K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1

1

s
1

3

s
1

5

s
3

2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

7

A Memory Mountain

6
4

M 8
M 1

M

1
2

8
K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1

1

s
1

3

s
1

5

s
3

2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Slopes of
spatial
locality

Throughput
≈ inv. prop.
to stride

8

A Memory Mountain

6
4

M 8
M 1

M

1
2

8
K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1

1

s
1

3

s
1

5

s
3

2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Slopes of
spatial
locality

Ridges of
Temporal

locality

L1

L2

Mem

L3

Throughput
≈ inv. prop.
to stride

Sharp drops when
data stops fitting in
each cache level
(capacity misses)
Plateaus get wider
as caches get larger

9

Contiguous Memory vs Indirection

• The rest of this lecture will focus on loops over arrays
• I.e., operating on contiguous blocks of memory

• Not all programs are like that
• “Pointer-chasing” is common

• E.g., traversing a linked list, following a pointer for every node
• (Usually) terrible for locality

• See earlier comment about some programs having >30% L2 misses
• A good allocator (malloc) can help some, but no miracles

• Specialized data structures can improve locality
• While still having a linked structure, e.g., for trees
• E.g., ropes, B-trees, HAMTs, etc.

10

11

• Memory Mountain

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
• Each row in contiguous memory locations
• Here, let’s assume we have a matrix of long or double (8 bytes)
• That matrix is so large that we can’t even fit a whole row in the cache

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];

• accesses successive elements
• if cache block size (B) > 8 bytes (element size), exploit spatial locality

• cold/compulsory miss rate = 1 miss / Elements in Block = 1/(Block size / 8) = 8 / Block size

• Stepping through rows in one column:
• for (i = 0; i < n; i++)

sum += a[i][0];

• accesses distant elements
• no spatial locality!

• cold/compulsory miss rate = 1 (i.e. 100%)

12

Example cache performance problem

• Cache parameters
• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

• Blocks per set: 1

• Sets: 256/16 = 16

• Assume data starts at address 0
and cache starts empty

13

int mat[6][16];

• First, think about how array
maps to the cache
• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache blocks

• First 4 rows * 16 cols fit in cache
without overlap
• Next 2 rows overlap with first 2

rows

Example: accessing elements in a row

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 cols * 16 rows fit in
cache without overlap

• Next 2 cols overlap with
first 2 cols

14

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j] = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate

Example: accessing elements in a row

15

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j] = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 cols * 16 rows fit in
cache without overlap

• Next 2 cols overlap with
first 2 cols

Example: accessing elements in a row

16

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j] = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate
• All four accesses within loop fit in a cache block!

• 1 miss, 3 hits

• The next set of columns repeat pattern
• The next row repeats pattern

• Nothing already in cache from before
• Never reference old cells again

• Miss rate: 25%

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 cols * 16 rows fit in
cache without overlap

• Next 2 cols overlap with
first 2 cols

Example: reordering element access

17

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j+2] = 2;

mat[i][j] = 0;

mat[i][j+3] = 3;

mat[i][j+1] = 1;

}

}

• Does this change anything?
• No! First access brings in entire block
• Later accesses within block are hits

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 cols * 16 rows fit in
cache without overlap

• Next 2 cols overlap with
first 2 cols

Example: accessing elements by column

18

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 6; i = i+1) {

mat[i][j] = 7;

}

}

• Calculate miss rate

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 cols * 16 rows fit in
cache without overlap

• Next 2 cols overlap with
first 2 cols

Example: accessing elements by column (graphically)

19

Example: accessing elements by column

20

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 6; i = i+1) {

mat[i][j] = 7;

}

}

• Calculate miss rate

• 6 misses for 1st load of each row
• 4 misses for 2nd column in the row (2 hits)
• 4 misses for 3rd column in the row (2 hits)
• 4 misses for 4th column in the row (2 hits)
• Repeat

• Miss rate = (6+4+4+4)/24 = 75%

int mat[6][16];

• First, think about how array
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache

blocks

• First 4 cols * 16 rows fit in
cache without overlap

• Next 2 cols overlap with
first 2 cols

Break + Question

21

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 4; i = i+1) { // 4!

mat[i][j] = 7;

}

}

• Calculate miss rate

int mat[4][16];

• Same cache from before:

• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

Break + Question

22

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 4; i = i+1) { // 4!

mat[i][j] = 7;

}

}

• Calculate miss rate

• Entire array fits in cache!
• No conflits

• 1 miss per four accesses

• Miss rate = 25%

int mat[4][16];

• Same cache from before:

• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

23

• Memory Mountain

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Our Benchmark: Matrix Multiplication

• Review from your linear algebra class

1 3
2 4

5 6
7 8

× =

1 3
2 4

5 6
7 8

5

1 × 5 + 3 × 7 = 26

1 × 6 + 3 × 8 = 30

2 × 5 + 4 × 7 = 38

2 × 6 + 4 × 8 = 44
26 630

1038 1244

26 30

38 44

24

Miss Rate Analysis for Matrix Multiply

• Assume:
• Line size = 32B (big enough for four 64-bit longs)
• Matrix dimension (N) is very large

• Approximate 1/N as 0.0
• Cache is not even big enough to hold even one row

• Analysis Method:
• Look at access pattern of inner loop

• Now we’ll see why the standard matrix multiplication is bad!
• From a performance standpoint, that is

A

k

i

B

k

j

C

i

j

25

26

A

B

C

N
N

N N

i

k

k

j

i

j

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Matrix Multiplication Example

 Multiply N x N matrices

 O(N3) total operations

 Each source element
read N times

 N values summed per
destination

Variable sum
held in register

26

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Misses per inner loop iteration:
A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wise Fixed

Column-
wise

0.25 1 0

Total misses/iteration: 1.25
27

Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Misses per inner loop iteration:
A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wise

Column-
wise

Fixed

0.25 1 0

Total misses/iteration: 1.25
28

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

Misses per inner loop iteration:
A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wiseFixed

Row-wise

0 0.25 0.25

Total misses/iteration: 0.5
29

Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

Misses per inner loop iteration:
A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wiseFixed

Row-wise

0 0.25 0.25

Total misses/iteration: 0.5
30

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

Misses per inner loop iteration:
A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

j

Column-
wise

Fixed

i

Column-
wise

1 0 1

Total misses/iteration: 2
31

Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

Misses per inner loop iteration:
A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

j

Column-
wise

Fixed

i

Column-
wise

1 0 1

Total misses/iteration: 2
32

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A

B

C
i

k

k
j

i

j

Row-wise Fixed

Column-
wise

A

B

C
i

k

k

j

i

j
Row-wiseFixed

Row-wise

A

B

C
i

k

k

j

j

Column-
wise

Fixed

i

33

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

C
y
c
le

s
 p

e
r

in
n

e
r

lo
o

p
 i
te

ra
ti

o
n

Array size (N)

jki
kji
ijk
jik
kij
ikj

jki / kji (2.0 misses/iter)

ijk / jik (1.25 misses/iter)

kij / ikj (0.5 misses/iter)

Essentially the same algorithm, just different data access patterns!
The most natural way to write code may not be the best one!

34

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

C
y
c
le

s
 p

e
r

in
n

e
r

lo
o

p
 i
te

ra
ti

o
n

Array size (N)

jki
kji
ijk
jik
kij
ikj

jki / kji (2.0 misses/iter)

ijk / jik (1.25 misses/iter)

kij / ikj (0.5 misses/iter)

Essentially the same algorithm, just different data access patterns!
The most natural way to write code may not be the best one!

35

For a sufficiently small N, any
implementation is “good enough”

Break + Open Question

• What about those writes? Do they have additional costs?

36

Break + Open Question

• What about those writes? Do they have additional costs?
• Assumption: write-back cache such that they don’t cost more than reads

until evicted

• As long as evictions of modified (dirty) data happen once per array cell,
we’re equivalent to the one write outside of the for loop

• This is not the case here since entire row doesn’t fit in cache

• If evictions of modified (dirty) data happen multiple times per array cell,
question becomes complicated

• How much does that hurt compared to extra cache misses?

• Writes can happen in the background (while processor is running)

• Likely need to measure real-world performance to understand

37

38

• Memory Mountain

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

Example: Matrix Multiplication

a b

i

j

*

c

=

double *c = (double *) malloc(sizeof(double)*n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

double sum = 0.0;

for (int k = 0; k < n; k++) {

sum += a[i*n + k] * b[k*n + j];

}

c[i*n+j] = sum;

} } }

A

B

C

i

k

k

j

i

j

Row-wise Fixed

Column-
wise

39

A

B

C

k

k

Cache Miss Analysis (approximate)

• Assume:
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C <<< n (much smaller than n)

• 1st iteration (i,j,k=0,0,*):
• n/8 + n + 1 =

9n/8+1 misses

A

B

C

k

k

Afterwards in cache:

8-wide

40

Cache Miss Analysis (approximate)

• Assume:
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C <<< n (much smaller than n)

• 2nd iteration (i,j,k=0,1,*):
• Again:

n/8 + n + 1 =
9n/8+1 misses

 Total misses:
▪ Every iteration: 9n/8 + 1

▪ # iterations: n2

▪ (9n/8+1)*n2 = (9/8)*n3 +n2

41

A

B

C

k

k

A

B

C

k

k
8-wide

Afterwards in cache:

Enter Blocking Algorithms

• Special class of algorithms designed specifically to have excellent temporal
and spatial locality

• Key idea: don’t operate on individual elements; instead operate on blocks !
• Treat the overall matrices as containing submatrices as elements

• See next slide

• General principle: use a piece of data as much as we can
• Then it’s ok to kick it out of the cache
• As opposed to using, kicking out, using again later, and so on

• Same result, but much nicer locality!
• And thus can leverage the cache better (more hits, fewer misses)
• Still same computational complexity

• May get a bit mind bending
• I want you to understand the general principle
• But you don’t need to fully understand the details of the algorithm

42

Matrices as Matrices of Submatrices

• Elements of are not scalars anymore
• But rather smaller matrices

• To compute a result submatrix
• Just do a smaller matrix multiplication!

1 3
2 4

5 7
6 8

9 11
10 12

13 15
14 16

17 19
18 20

21 23
22 24

1 3
2 4

25 27
26 28

(A*B)
+(C*D)

A

B

C
D

43

Blocked Matrix Multiplication
double * c = (double *) malloc(sizeof(double)*n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

for (int i = 0; i < n; i+=B) {

for (int j = 0; j < n; j+=B) {

for (int k = 0; k < n; k+=B) {

/* B x B mini matrix multiplications */

for (int i1 = i; i1 < i+B; i1++) {

for (int j1 = j; j1 < j+B; j1++) {

double sum = 0.0;

for (int k1 = k; k1 < k+B; k1++) {

sum += a[i1*n + k1] * b[k1*n + j1];

}

c[i1*n + j1] = sum;

} } } } } }

a b

i1

j1

*

c

=

Block size B x B 44

Cache Miss Analysis (approximate)

• Assume:
• Cache block = 8 doubles
• Cache size <<< n (much smaller than n)
• Three blocks fit into cache: 3B2 < Cache size

• First (block) iteration:
• B2/8 misses for each block
• 2B2/8 misses for each

BxB-block multiplication
(only counting A, B misses)

• # BxB multiplications: n/B
• B2/8 misses for C[] block total
• 2B2/8*n/B+B2/8 = nB/4+B2/8

• Afterwards in cache
• No waste! We used all that we brought in!

*=

A B

*
C =

Block size B x B

n/B blocks

45

Cache Miss Analysis (approximate)

• Assume:
• Cache block = 8 doubles
• Cache size << n (much smaller than n)
• Three blocks fit into cache: 3B2 < Cache size

• Second (block) iteration:
• Same as first iteration
• misses = nB/4+B2/8

• Total misses:
• #block iterations: (n/B)2

• (nB/4 +B2/8)* (n/B)2 = n3/(4B) + n2/8

*=

Block size B x B

n/B blocks

46

Performance Impact

• Misses without blocking: (9/8) * n3 + n2

• Misses with blocking: 1/(4B) * n3 + 1/8 * n2

• Largest possible block size B, but limit 3B2 < C → B = 𝐶/3

• e.g., Cache size = 32K = 32,768 Bytes, then pick B = 104 (note: 104=13*8)
• Blocking: 0.0024*n3 + 0.125*n2

• No blocking: 1.125*n3 + n2

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

• Data: 3n2, computation O(n3)
• Every array element used O(n) times! Make sure it is in cache!

• But program has to be written properly

468x 8x

47

48

• Memory Mountain

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline

