Lecture 14
Cache Performance

CS213 — Intro to Computer Systems
Branden Ghena — Spring 2021

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Today’s Goals

 Explore impacts of cache and code design
» Calculate cache performance based on array accesses

» Understand what it means to write “cache-friendly code”

Outline

 Memory Mountain

« Cache Performance for Arrays

» Improving code
« Rearranging Matrix Math
 Matrix Math in Blocks

Writing Cache-Friendly Code

 Caches are key to program performance
« CPU accessing main memory = CPU twiddling its thumbs = bad
« Want to avoid as much as possible

» Minimize cache misses in the inner loops of core functions
« That's usually where your program spends most of its time (“hot” code)
* Programmers are notoriously bad at guessing these spots
 Use a profiler to find them (e.g., gprof)

» Repeated references to variables are good (temporal locality)
« Stride-1 reference patterns are good (spatial locality)
» I.e., accessing array elements in sequence, not jumping around

* Now that we know how cache memories work
« We can quantify the effect of locality on performance

The Memory Mountain

« Read throughput (read bandwidth)
« Number of bytes read from the memory subsystem per second (Mb/s)
« The higher it is, the less likely your CPU is to be waiting on memory

« Memory mountain. Measures read throughput as a function of spatial
and temporal locality.

« We run variants of the same program with different levels of spatial and temporal
locality, then measure read throughput

« Compact way to characterize memory system performance
« Different systems (with different caches) have different mountains!

 Observation: if you decrease locality, bandwidth drops
« As we'd expect; locality is key to having the right data in the cache
« And if data is not in the cache, need to get it from next level down

Mapping the Memory Mountain

Basically: a ton of memory reads in a loop
and nothing else (that takes much time)

/* The test function */

int i, result = 0;
volatile int sink;

result += datali];

/* Run test (elems, stride)

{

double cycles;

test (elems, stride);

return (size / stride)

void test (int elems, int stride) {

and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)

int elems = size / sizeof (int) ;

cycles = fcyc2 (test, elems, stride, 0);
(cycles / Mhz);

/

Lower = more temporal locality
(fewer elements = less likely to
get kicked out by conflicts)

for (1 = 0; 1 < elems; i += stride) <——m

sink = result; /* So compiler doesn't optimize away the loop */

I
Lower = more spatial locality
(we visit close-by addresses
one after the other)

Harness code
* Warms up cache

(don’t want to count cold misses)
* Measures read throughput

A Memory Mountain Intel Core i7

32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache

8M unified L3 cache
7000

6000 All caches on-chip

5000

4000

f\'l)“\

Read throughput (MB/s)

o IR h=

1000

=

orking set size (bytes)

A Memory Mountain

w 7000

o0

=

= 6000

>

o

§ 5000

8 S, >

b= 4000 ‘W’

2 Y

© 3000 F I\

@ ape L]]

E o AR
Slopes of A ...'.".z <
spatial 16

locality

Throughput 0

= inv. prop.

to stride

W

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

orking set size (bytes)

A Memory Mountain Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

7000

All caches on-chip

6000

5000

4000

KNSt]
AN
2 Pallie

Ridges of
Temporal

/ locality
S

harp drops when
data stops fitting in

3000

Read throughput (MB/s)

Slopes of2 0
spatial 16

locality 0 = each cache level
Throughput (capacity misses)
= inv. prop. Plateaus get wider
to stride o - as caches get larger
. — L
Stride (x8 bytes) U % = © Working set size (bytes)
©

Contiguous Memory vs Indirection

« The rest of this lecture will focus on loops over arrays
« I.e., operating on contiguous blocks of memory

 Not all programs are like that
 “Pointer-chasing” is common
 E.g., traversing a linked list, following a pointer for every node
 (Usually) terrible for locality
 See earlier comment about some programs having >30% L2 misses
* A good allocator (malloc) can help some, but no miracles

» Specialized data structures can improve locality
« While still having a linked structure, e.g., for trees
« E.g., ropes, B-trees, HAMTs, etc.

10

Outline

 Memory Mountain

« Cache Performance for Arrays

» Improving code
« Rearranging Matrix Math
 Matrix Math in Blocks

Layout of C Arrays in Memory (review)

« C arrays allocated in row-major order
« Each row in contiguous memory locations
» Here, let's assume we have a matrix of Long or double (8 bytes)
« That matrix is so large that we can't even fit a whole row in the cache

 Stepping through columns in one row:
e for (i = 0; i < N; i++)
sum += a[0][i];
* accesses successive elements
« if cache block size (B) > 8 bytes (element size), exploit spatial locality
« cold/compulsory miss rate = 1 miss / Elements in Block = 1/(Block size / 8) = 8 / Block size

 Stepping through rows in one column:
e for (i = 0; 1 < n; i++)
sum += a[i] [0];
* accesses distant elements
* no spatial locality!
« cold/compulsory miss rate = 1 (i.e. 100%)

12

Example cache performance problem

» Cache parameters

» Direct-mapped data cache
« 256-byte total size
« 16-byte blocks

 Blocks per set: 1
« Sets: 256/16 = 16

 Assume data starts at address 0
and cache starts empty

int mat[6][1l6];

* First, think about how array
maps to the cache
* Element size: 4 bytes
* Array size: 384 bytes (too big)

4 elements per cache block
* Array row takes up 4 cache blocks

« First 4 rows * 16 cols fit in cache
without overlap

« Next 2 rows overlap with first 2

FOWS

13

Example: accessing elements in a row

int mat[6] [16]; for (int i = 0; 1 < 6; i = i+l1l) {
for (int j = 0; j < 16; j = j+4)
« First, think about how array mat[i] []] = 0;
maps to the cache mat[i] [j+1] = 1;
Element size: 4 bytes ; : - 2.
- Array size: 384 bytes (too big) 2:t{i} H:g} _ :23'
* 4 elements per cache block }
« Array row takes up 4 cache }
blocks
Cche without qvriap " - Calculate miss rate
« Next 2 cols overlap with
first 2 cols

Example: accessing elements in a row

int mat[6] [16]; for (int i = 0; 1 < 6; i = i+l1l) {
for (int j = 0; j < 16; j = j+4)
« First, think about how array mat[i] []] = 0;
maps to the cache mat[i] [j+1] = 1;
Element size: 4 bytes ; : - 2.
- Array size: 384 bytes (too big) 2:t{i} H:g} _ :23'
* 4 elements per cache block }
« Array row takes up 4 cache }
blocks
Cche without qvriap " - Calculate miss rate
« Next 2 cols overlap with
first 2 cols

Example: accessing elements in a row

int mat[6][16]; for (int i = 0; 1 < 6; i = i+l1l) {
for (int j = 0; jJ < 16; j = j+4) {
« First, think about how array mat[i] []] = 0;
maps to the cache mat[i] [j+1] = 1;
Element size: 4 bytes : : — .
- Array size: 384 bytes (too big) 2:t Ei} B:g} _ :23'
* 4 elements per cache block }
« Array row takes up 4 cache }
blocks
Cche without ovaras " - Calculate miss rate
. fl\llre;étZZC%?és overlap with « All four accesses within loop fit in a cache block!
« 1 miss, 3 hits
- « The next set of columns repeat pattern

* The next row repeats pattern
» Nothing already in cache from before
» Never reference old cells again

 Miss rate: 25%

16

Example: reordering element access

int mat[6][16]; for (int i = 0; 1 < 6; i = i+l1l) {
for (int j = 0; jJ < 16; j = j+4)
« First, think about how array mat[i] [J+2] = 2;
maps to the cache mat[i] [J] = 0;
Element size: 4 bytes : : — .
 Array size: 384 bytes (too big) 2:t Ei} H:i} - i'
* 4 elements per cache block }
« Array row takes up 4 cache }
blocks
o i * it i . .
Eche ot vartan " - Does this change anything?
» Next 2 cols overlap with No! First access brings in entire block

first 2 cols

« Later accesses within block are hits

17

Example: accessing elements by column

int mat[6][16]; for (int J = 0; J < 1
for (int 1 = 0; i1 <
« First, think about how array mat[i] [J] = 7;
maps to the cache }
Element size: 4 bytes }

 Array size: 384 bytes (too big)

* 4 elements per cache block

« Array row takes up 4 cache
blocks

e Calculate miss rate

« First 4 cols * 16 rows fit in
cache without overlap

« Next 2 cols overlap with
first 2 cols

18

Example: accessing elements by column (graphically)

19

Example: accessing elements by column

int mat[6][16]; for (int j = 0; j < 16; j = j+1) {
for (int 1 = 0; 1 < 6; i = 1+1) {
« First, think about how array mat[i] [J] = 7;
maps to the cache }
Element size: 4 bytes }

 Array size: 384 bytes (too big)

* 4 elements per cache block ° CaIcuIate miss rate

. élrgg Srow takes up 4 cache

6 misses for 1st load of each row

4 misses for 2nd column in the row (2 hits)
4 misses for 3rd column in the row (2 hits)
4 misses for 4th column in the row (2 hits)
Repeat

« First 4 cols * 16 rows fit in
cache without overlap

« Next 2 cols overlap with
first 2 cols

Miss rate = (6+4+4+4)/24 = 75%

20

Break + Question

int mat[4][16];

« Same cache from before:
« Direct-mapped data cache
« 256-byte total size
« 16-byte blocks

for (int j =
for (int 1
J

e Calculate miss rate

j+1) |
i+1) { // 4!

21

Break + Question

int mat[4][16];

« Same cache from before:
« Direct-mapped data cache
« 256-byte total size
« 16-byte blocks

for (int j =
for (int 1
J

e Calculate miss rate

« Entire array fits in cache!
* No conflits

« 1 miss per four accesses

 Miss rate = 25%

j+1) |
i+1) { // 4!

22

Outline

 Memory Mountain

« Cache Performance for Arrays

« Improving code
- Rearranging Matrix Math
 Matrix Math in Blocks

Our Benchmark: Matrix Multiplication

« Review from your linear algebra class

1 3 |5 6]_]26 30
2 4 7 8 38 44

1x5+3x7=26
1x6+3x8=30
2x5+4x7=38
2x6+4x8=44

[

B
00

6,
&
&

24

Miss Rate Analysis for Matrix Multiply

« Assume:
* Line size = 32B (big enough for four 64-bit longs)
« Matrix dimension (N) is very large
« Approximate 1/N as 0.0
« Cache is not even big enough to hold even one row

 Analysis Method:
» Look at access pattern of inner loop

— — —

k j]

|

C

A B
* Now we'll see why the standard matrix multiplication is bad!
* From a performance standpoint, that is

25

Matrix Multiplication Example
/* ik */ '
for (1=0; 1i<n,; 1i++) {
for (§=0; j<n; Jj++) {
sum = 0.0; @

for (k=0; k<n; k++)
sum += a[i] [k] * b[k][J];

cl[i][J] = sum;

Variable sum
held in registe

r

B

m Multiply N x N matrices

m O(N3) total operations A .

m Each source element 1
read N times '

m Nvaluessummedper | kK
destination

v

d
«

\ 4
A

A 4

26

Matrix Multiplication (ijk)

/* ijk */
for (1=0; i<n; 1i++)
for (3j=0; j<n; Jj++)

sum = 0.0;

sum += af[i] [k]

c[i][J] = sum;

{
{

for (k=0; k<n; k++)
* b

Misses per inner loop iteration:

A B

0.25 1

Total misses/iteration: 1.25

o 10

k10317

B
Inner loop: k
j
Column-
wise v
A C
1 1
K g J
Row-wise Fixed

Remember: Line size = 32B
(big enough for four 64-bit longs)

27

Matrix Multiplication (jik)

/* Jik */
for (j=0; j<n; Jj++)
for (i=0; 1i<n; 1i++)

sum = 0.0;

sum += af[i] [k]

c[i][J] = sum;

{
{

for (k=0; k<n; k++)

* D

Misses per inner loop iteration:

A B

0.25 1

Total misses/iteration: 1.25

o 10

k10317

B
Inner loop: k
j
Column-
wise v
A C
1 1
K g J
Row-wise Fixed

Remember: Line size = 32B
(big enough for four 64-bit longs)

28

Matrix Multiplication (kij)

B k
Inner loop: -
/*x kij */ j '
for (k=0; k<n; k++) { Row-wise
for (i=0; 1i<n; 1i++) {
T a||:l] [k].; | A C
for (3=0; j<n; Jj++) : ;
cli][J] += ¢ * b[k][J];
\ 4 v -
k .
J
Fixed Row-wise
Misses per inner loop iteration.
A B C Remember: Line size = 32B
0 0.25 0.25 (big enough for four 64-bit longs)

Total misses/iteration: 0.5

29

Matrix Multiplication (ikj)

B k
Inner loop: -
/*x 1k */ j '
for (1=0; 1<n; 1i++) { Row-wise
for (k=0; k<n; k++) {
T a||:l] [k].; | A C
for (3=0; j<n; Jj++) : ;
cli][J] += ¢ * b[k][J];
\ 4 v -
k .
J
Fixed Row-wise
Misses per inner loop iteration.
A B C Remember: Line size = 32B
0 0.25 0.25 (big enough for four 64-bit longs)

Total misses/iteration: 0.5

30

Matrix Multiplication (jki)

B k
Inner loop: h
/5 kil)]
for (j=0; j<n; j++) { |
for (k=0; k<n; k++) { Fixed
r = ka] []].; | A =
for (1=0; i<n; 1i++) ; :
cli1][J] += ali]l[k] * r;
. Column- Column-

Misses per inner loop iteration:
A B

1 0

Total misses/iteration: 2

Remember: Line size = 32B
(big enough for four 64-bit longs)

(@]

31

Matrix Multiplication (kji)

B k
Inner loop: M
/* kji */ j
for (k=0; k<n; k++) { ,
for (3=0; j<n; Jj++) { Fixed
r = b.[k] [j].; | A c
for (1=0; i<n; 1i++) ; :
cli][J] += ali][k] * r;
. ColumnA Column-
k wise]- wise

Misses per inner loop iteration:
A B

1 0

Total misses/iteration: 2

Remember: Line size = 32B
(big enough for four 64-bit longs)

(@]

32

Summary of Matrix Multip

for (3j=0; j<n;
sum = 0.0;
for (k=0; k<n

sum += a[i]

c[i][J] = sum;

for (i=0; i<n; i++) {

Jj++) |

;o kt+)
[k] * blk][3]7

4

Ication

ijk (& jik):
¢ 2 loads, O stores
e misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 loads, 1 store
e misses/iter =2

B
k
j
Colimn-
wisge
A C
i i
~ " —>
k ")
Row-wise Fixed

e
j
Row-wise
A C
i i
y w%;
LS j
Fixed Row-wise
B l k
—
j
Fixed
A C
1 1
»| | Column-
k wise j
A 4

33

Core i/ Matrix Multiply Performance

60

50

40

30

20

10

Cycles per inner loop iteration

Essentially the same algorithm, just different data access patterns!
The most natural way to write code may not be the best one!

jki / kji (2.0 misses/iter)

ijk / jik (1.25 misses/iter)

/ e

M kij / ikj (0.5 misses/it
B A A4

250 300 350 400 450 500 550 600 650 700 750

Array size (N)

ki
ki
<ijk
ik
—kij
ik]

er)

Core i/

Cycles per inner loop iteration

Matrix Multiply Performance

Essentially the same algorithm, just different data access patterns!

The most natural way to write code may not be the best one!
60

jki / kji (2.0 misses/iter)

—

40

30 /

ijk / jik (1.25 misses/iter)

For a sufficiently small N, any 56/3—@3

implementation is “"good enough” /

¢ A
@ % yARY yaRY yARY yARY 7 yany

kij / ikj (0.5 misses/it

JAAN

300 350 400 450 500 550 600 650 700
Array size (N)

750

ki
ki
<ijk
ik
—kij
ik]

er)

Break + Open Question

« What about those writes? Do they have additional costs?

36

Break + Open Question

« What about those writes? Do they have additional costs?

« Assumption: write-back cache such that they don’t cost more than reads
until evicted

* As long as evictions of modified (dirty) data happen once per array cell,
we're equivalent to the one write outside of the for loop

* This is not the case here since entire row doesn't fit in cache

« If evictions of modified (dirty) data happen multiple times per array cell,
question becomes complicated

« How much does that hurt compared to extra cache misses?
« Writes can happen in the background (while processor is running)
« Likely need to measure real-world performance to understand

37

Outline

 Memory Mountain

« Cache Performance for Arrays

« Improving code
« Rearranging Matrix Math
« Matrix Math in Blocks

Example: Matrix Multiplication

double *c = (double *) malloc(sizeof (double) *n*n) ;
/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
for (int 1 = 0; 1 < n; 1i++) {
for (int j = 0; j < n; Jj++) {
double sum = 0.0; B
for (int k = 0; k < n; k++) { Kk
sum += ali*n + k] * blk*n + J]; .
)]
cl[i*n+j] = sum; Column-
P wise v
| A C
J i 1
C a b
_ — i
— k k]
- ! Fixed
Row-wise Ixe

39

Cache Miss Analysis (approximate)

 Assume:

* Matrix elements are doubles
« Cache block = 8 doubles

« Cache size C <<< n (much smaller than n)

e 1st jteration (i,j,k=0,0,*):
n/8+n+1= kK g
9n/8+1 misses v

Afterwards in cache:

8-wide

|

—

k
A

40

Cache Miss Analysis (approximate)

e Assume: m Total misses:
- Matrix elements are doubles " bveryiteration: /8 +1
» Cache block = 8 doubles " #iterations: n

« Cache size C <<< n (much smaller than n) = (9n/8+1)*n2 = (9/8)*n3 +n?

e JNd iteration (i,j,k=0,1,>|<): Afterwards in cache:

» Again: kK B 8-wide kg
nf8+n+1= \ \
9n/8+1 misses \\«

T &

A C A C

41

Enter Blocking Algorithms

« Special class of algorithms designed specifically to have excellent temporal
and spatial locality

« Key idea: don't operate on individual elements; instead operate on blocks'!
 Treat the overall matrices as containing submatrices as elements
« See next slide

« General principle: use a piece of data as much as we can
« Then it's ok to kick it out of the cache
 As opposed to using, kicking out, using again later, and so on

« Same result, but much nicer locality!
« And thus can leverage the cache better (more hits, fewer misses)
« Still same computational complexity

« May get a bit mind bending
I want you to understand the general principle
« But you don't need to fully understand the details of the algorithm

42

Matrices as Matrices of Submatrices

 Elements of are not scalars anymore
 But rather smaller matrices

« To compute a result submatrix

» Just do a smaller matrix multiplication!

YODAWGI'HEARDYOU LIKE
MATRICES

?,
SOIPUT AMATRIKIN Yllll!i MATRIK SO

YOU CAN MULTIPLY WHILE YOU MULTIPLY

IT'S AN OLDER MEME, SIR

BUT IT CHECKS OUT

17 19 21 23

B=™ s 0 22 24
1 3 25 27

D=, 4 26 28

1 3 5 7 (A*B)

) 4 6 8 +(C*D)

9 11 13 15

10 12 14 16

43

Blocked Matrix Multiplication

double * ¢ = (double *) malloc(sizeof (double) *n*n);

/* Multiply n X n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
for (int 1 = 0; 1 < n; 1+=B) {
for (int j = 0; 7 < n; Jj+=B) {
for (int k = 0; k < n; k+=B) {
/* B x B mini matrix multiplications */
for (int 11 = 1i; 11 < 1+4B; 1il++) {
for (int jJ1 = j; 31 < j+B; Jl++) {
double sum = 0.0;
for (int k1 = k; k1 < k+B; kl++) {
sum += a[il*n + k1] * b[kl*n + jl11];
}

c[il*n + jl] = sum;

& a

]]]

1

Block size Bx B

*

HEEEEN =

44

Cache Miss Analysis (approximate)

e Assume:
« Cache block = 8 doubles
« Cache size <<< n (much smaller than n)
« Three blocks m fit into cache: 3B2 < Cache size

* First (block) iteration: C
« B2/8 misses for each block

- 2B2/8 misses for each
BxB-block multiplication
(only counting A, B misses)

 # BxB multiplications: n/B L]
misses for C[] block total
« 2B2/8*n/B+ = nB/4+B%/8

« Afterwards in cache
« No waste! We used all that we brought in!

n/B blocks

A
' N\

| (]
A

*

— NN

Block size B x B

*
| (]]

45

Cache Miss Analysis (approximate)

e Assume:
« Cache block = 8 doubles
« Cache size << n (much smaller than n)
« Three blocks m fit into cache: 3B2 < Cache size

» Second (block) iteration: /8 blocks
« Same as first iteration < 2
* misses = nB/4+B%/8 - EREER

= *

 Total misses:
 #block iterations: (n/B)?2
« (nB/4 +B%/8)* (n/B)2 = n3/(4B) + n?/8

Block size B x B

46

Performance Impact

 Misses without blocking: (9/8) * n3 + n?
 Misses with blocking: 1/(4B) * n3 + 1/8 * n?

- Largest possible block size B, but limit 3B2 < C — B = |,/C/3]

« e.g., Cache size = 32K = 32,768 Bytes, then pick B = 104 (note: 104=13*8)
« Blocking: 0.0024*n3 + 0.125*n?2

468X <) 88X
« No blocking: 1.125*n3 + n?

« Reason for dramatic difference:
« Matrix multiplication has inherent temporal locality:
 Data: 3n?, computation O(n3)
« Every array element used O(n) times! Make sure it is in cache!
« But program has to be written properly

47

Outline

 Memory Mountain

« Cache Performance for Arrays

» Improving code
« Rearranging Matrix Math
 Matrix Math in Blocks

