
Lecture 12
Memory Hierarchy

CS213 – Intro to Computer Systems

Branden Ghena – Spring 2021

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Reminder: office hours
• Course staff is amazing!!

• Can help with topics as
well as assignments

• Get started on Homework 3

• And on Attack Lab

2

Changing the focus of CS213

• So far in class we’ve focused on how computers do things
• Represent data
• Run instructions

• Now we’re focusing on how to improve those things
• Secure (last lecture plus some stuff in two weeks)
• Efficient (today and next week

• As we’ll show today, the most important thing to speed up is
memory
• It is possible and hardware does so already
• Software can be designed to take advantage of this

3

Today’s Goals

• Explore the memory systems available in modern computers
• Understand capabilities and limitations of each

• Discuss the memory hierarchy
• How it improves performance through caching

• Describe software patterns that caching is designed to support

4

5

• Technologies and Trends

• Memory Hierarchy

• Locality of Reference

Outline

Storage in a Computer System

• Data can be stored in different places
• Registers, caches, memory, disk, etc.
• Caches are temporary storage in processor used to speed up memory access

• Hugely different characteristics
• Storage size

• x86-64: 16 registers. 128 B total (not including FP registers, etc.)
• Memory is measured in GB, disks in TB

• Latency (i.e., time to access data)
• Registers are really fast, memory less so, disk is incredibly slow

• Cost per byte
• Registers are really expensive, disks are really cheap, memory somewhere in the

middle

• Each serves a different purpose in a system
• Can design systems to get the best of all worlds (in most cases)

6

Computing timescales

• Assuming 4 GHz processor, Instruction (with registers): 0.25 ns

7

Jeff Dean
(Google AI):
“Numbers Everyone
Should Know”

Jim Gray’s storage latency analogy

• How “far” is data for the CPU, converted to human scale

Storage Distance Time

Registers

On-chip cache

On-board cache

Main memory

Disk

Tape

In my apartment

Across the street

A few blocks away

In Milwaukee

On Mars

On Kepler-76b

1 minute

2-4 minutes

10 minutes

1.5 hours

2 years

2000 years
(at speed of light)

Jim Gray
Turing Award 1998

8

Tour of computer memory

9

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Tour of computer memory

10

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Registers and Caches

Register storage

• x86-64
• 16 registers (general-purpose) with 8 bytes each

• 32 registers (special-purpose) with up to 64 bytes each

• Plus some other odds and ends (%rip, flags, segments, etc.)

• 128 bytes for general purpose registers

• Order 1-2 kB for everything

• Accesses are very fast. Within a single cycle

11

Register technology: SRAM

• Static RAM (SRAM)
• Each cell stores a bit in a bi-stable circuit,

typically a six-transistor circuit

• Static – no need for periodic refreshing;
keeps data while powered

• Relatively insensitive to disturbances such as electrical noise

• Energetic particles (alpha particles, cosmic rays) can flip stored bits

• Fastest memory on computer
• Also most expensive and takes up most space per bit

• Typically used for registers and cache memories

12

Tour of computer memory

13

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

RAM

Main memory

• The “RAM” in your computer
• Random Access Memory

• Can access any byte you want in
“random” order

• Typically measured in GB
• 1-128 GB

• Some special purpose systems
may have MUCH less

• This is the “array of bytes” we’ve
been using in assembly

14

Main memory technology: DRAM

• Dynamic RAM (DRAM)
• Each cell stores a bit as a charge in a capacitor

• Capacitors lose charge; each cell must be refreshed every 10-100 ms

• More sensitive to disturbances (EMI, radiation, …) than SRAM

• Slower than SRAM, but cheaper and denser
• ~100x slower than registers

• Typically used for main memory

15

Accessing DRAM

• Read entire row of data at a time
• Large in practice, kilobytes

• Select actual bytes that are wanted
• Possibly modifying those bits

• Write row back to memory
• Must always happen!

• Reading is destructive

16

Connecting main memory and the processor

• Data flows between main memory and processor over buses
• A collection of parallel wires that carry address, data, and control signals

• Typically shared by multiple devices

main

memory
I/O

bridge
bus interface

ALU

register file

CPU chip

memory bus

Includes memory
controller

movl A, %eax (load)
Processor writes address A to the bus
Memory writes data to the bus
Processor reads data from the bus

movl %eax, A (store)
Processor writes address A to the bus
Processor writes data to the bus
Memory reads data from the bus

17

system bus

Sidebar: memory security is important

• Data in RAM disappears without power
• But the rate depends on temperature, minutes to decay if frozen

• Cold Boot Attack: freeze RAM to remove from computer and steal contents

18

Tour of computer memory

19

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Disk:
Hard drive or SSD

Disk storage

• Workhorse storage devices

• Terabytes in size in modern
computers

• Milliseconds to read

• 100,000x longer than reading from
DRAM

• 10,000,000x longer than reading
from SRAM

IBM 350 Disk Storage Unit
First disk drive, 1956

WD Red 6TB NAS, 2015

101.6mm

146.99mm

Storage?
5MB!

Basic mechanisms the same!

20

Disk types

21

Hard disk drive operation

22

The disk surface

spins at a fixed

rotational rate

(5400-15000 RPM)

spindle

By moving radially, the arm

can position the read/write

head over any track.

The read/write head

is attached to the end

of the arm and flies over

the disk surface on

a thin cushion of air.

s
p

in
d

le

spindle

s
p

in
d

le

spindle

arm

read/write heads

move in unison

from cylinder to cylinder

spindle

Accessing data on disk

• Three-step process
• Read head needs to move to the right cylinder: seek time

• Platter turns until start of sector under the read head: rotational latency

• Sector passes under read head and data is read: transfer time

• Time cost dominated by seek time and rotational latency
• Consequence: reading first bit of a sector is expensive

• But reading the rest of the sector is basically free!

• When using disks, best to favor large sequential reads/writes
• Terrible for random access! (reading a little bit here, a little bit there)

• But overall still really slow compared to main memory or registers

23

Solid State Drives (SSDs)

• Flash memory
• Just like Flash Drives

• Pages: 2KB to 512KB, Blocks: 32 to 128 pages

• Data read/written in units of pages

• Page can be written only after its block has been erased
• Need to copy rest of the data to not lose it. Expensive!

• A block wears out after repeated writes (10k – 100k writes) and can no longer be used

Flash

translation layer

I/O bus

Page 0 Page 1 Page P-1…

Block 0

… Page 0 Page 1 Page P-1…

Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

24

SSDs vs Rotating Disks

• Advantages
• No moving parts → faster, less power, more rugged

• Disadvantages
• Have the potential to wear out

• Mitigated by “wear leveling logic” in flash translation layer
• Order petabyte (1015 bytes) of random writes before they wear out

• More expensive per byte (but getting cheaper)
• 2021: HDD $0.02 per GB, SSD $0.09 per GB

• Applications
• Portable electronics (phones, tablets, etc.)
• Began to appear in desktops and servers circa 2007
• Now common on laptops as well

25

Biggest speed improvement
to your computer:
• Get an SSD

Reading memory from disk

• Data from disk is
always read into
Main Memory

• Direct Memory
Access (DMA)
• Processor starts a

read and then
returns to programs

• Disk performs the
read, transfers data,
then notifies
processor when
done

26

main

memory

ALU

register file

CPU chip

disk

controller

graphics

adapter

USB

controller

mouse keyboard monitor

disk

I/O bus

bus interface

Tour of computer memory

27

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Break + Question

• How do you make an SSD with a longer lifetime (more writes)?
• Without changing any of the physics of how it works

28

Break + Question

• How do you make an SSD with a longer lifetime (more writes)?
• Without changing any of the physics of how it works

• Secretly make it larger than it claims to be

• e.g. 200 GB when it claims to be 100 GB

• Behind the scenes move around memory as necessary so the device can
still hold 100 GB even if half of the flash is

• Maintain a mapping of which data is located where

29

30

• Technologies and Trends

• Memory Hierarchy

• Locality of Reference

Outline

The CPU-Memory gap

0.0	

0.1	

1.0	

10.0	

100.0	

1,000.0	

10,000.0	

100,000.0	

1,000,000.0	

10,000,000.0	

100,000,000.0	

1980	 1985	 1990	 1995	 2000	 2003	 2005	 2010	

La
te
nc
y	
(n
s)
	

Disk	seek	 me	 Flash	SSD	access	 me	 DRAM	access	 me	

SRAM	access	 me	 CPU	cycle	 me	 Effec ve	CPU	cycle	 me	

Increasing gap between DRAM, disk, and CPU
speeds.

SRAM roughly
keeping up

DRAM, disk and CPU
performance gap widening

Split reflects the
introduction of multicores

Disk

DRAM

CPU

SSD

SRAM

31

The CPU-Memory Gap

• CPUs outspeed memory
• But they can’t compute on data they don’t have!

• If the CPU has to wait for data to reach it, it just sits idle!

• All these GHz don’t look so useful anymore, do they?

• Challenge: get data to the CPU despite “slow” memory
• So the CPU can work at full speed, without waiting for data

• Two-pronged strategy
• Memory hierarchy: keep data we need closer to the CPU

• Locality of reference: predict which data we’re likely to need

32

Memory hierarchy

• Some fundamental and enduring properties of systems
• The faster the storage, the more expensive ($) it is
• The faster the storage, the smaller (capacity) it is
• The gap between processor and main memory speed is widening

• Key idea: keep the data you need the most in fast memory!
• Data you only need from time to time can be in slow memory, no big deal
• Most used data goes in registers
• Least used data goes to disk

• Analogy: kitchen ingredients I use
• Salt, all the time: it sits out on the counter
• Oregano, frequently: front of the cabinet
• Onion powder, occasionally: back of the cabinet
• Brown sugar, sometimes: somewhere in the pantry
• Saffron, never: I can go buy some if I do need it

33

Memory hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper

(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold
files retrieved from
disks on remote
network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words
retrieved from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

34

Caching, general principle

• Cache: A smaller, faster storage device that acts as a staging area for a
subset of the data in a larger, slower device
• Data lives in both places (typically)

• When the consumer (e.g., CPU) reads the data, it gets it from the smaller, faster storage

• If the data we want is not in the cache, we pay the full cost of bringing it over from the
larger, slower storage into the smaller, faster storage

• The hope: we don’t need to do it too often

• Fundamental idea in systems. Shows up all over!
• Memory hierarchies

• Content delivery networks (CDNs) on the Internet (Akamai, Cloudflare, etc.)

35

Caching in a memory hierarchy

• Fundamental idea of a memory hierarchy
• For each k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1

• L2 cache memory as a cache for main memory

• Main memory as a cache for disk, etc.

• Each level stores some of the most frequently accessed data

• The closer the cache is to the processor, the “hotter” the cached data

36

Memory hierarchies make memory fast and large

• Why do memory hierarchies work?
• Programs tend to access the data at level k more often than they access

the data at level k+1

• Thus, the storage at level k+1 can be slower, and thus larger and cheaper
per bit

• Net effect:
• A large pool of memory that costs as little as the cheap storage near the

bottom, but that serves data to programs at the rate of the fast storage
near the top

• Best of both worlds!

37

Caching in a memory hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Level k:

Level k+1:

Blocks cannot be stored in an arbitrary location!
They can only live at one of a fixed set of locations.
In this example: they must be in the same
“column” for both levels.

38

Request
14

General caching concepts

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level
k+1:

1414

14

4*

39

• Program needs object d, which is stored in some
block b

• Cache hit

• Program finds b in the cache at level k
e.g., block 14

12 Request
12

General caching concepts

• Program needs object d, which is stored in some
block b

• Cache hit

• Program finds b in the cache at level k
e.g., block 14

• Cache miss

• b is not at level k, so the level k cache must
fetch it from level k+1,
e.g., block 12

• If the level-k cache is full, then some current
block must be replaced (evicted). Which one is
the “victim”?

• Here, we pick 4; same column as 12

• 4 is “dirty”, need to write back to k+1

• More on this next lecture

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level
k+1:

14

12

4*

Request
12

4*4*12
12

“ * ” means the block is dirty
(i.e., it has been modified)

40

Cache Misses Taxonomy

• Cold (compulsory) miss
• Cold misses occur when a block is accessed for the first time

• No one ever accessed it, so there wasn’t any reason to bring it into cache

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger than the cache

• There’s no way the working set can all fit in the cache, so there will be misses

• Conflict miss
• In most caches, blocks cannot be stored in any available slot

• If two blocks need to go in the same slot, need to evict the old one to store the new!

• If after that, we need to access the old block, conflict miss!

• We had a conflict, evicted a block, and now we miss trying to access that block

• Note: can happen even when there is “room” elsewhere in the cache!

41

Break + Video

• How do you remember which cache miss is which?
• Mr. Bean can help you tell the difference! (video)

42

43

• Technologies and Trends

• Memory Hierarchy

• Locality of Reference

Outline

Locality

• Goal: predict which data the CPU will want to access
• So we can bring it to (and keep it in!) fast memory
• Problem: memory is huge! (billions of bytes) how do you decide which to save?

• Principle of Locality
• Programs tend to reuse/use data items recently used or nearby those recently

used

• Temporal locality
• Recently referenced items are likely to be referenced in the near future

• Spatial locality
• Items with nearby addresses tend to be referenced close together in time

44

Types of locality practice

• Temporal locality
• Recently referenced items are likely to be referenced in the near future

• Spatial locality
• Items with nearby addresses tend to be referenced close together in time

• Quiz: what kind of locality?
• Data

• Reference array elements in succession:

• Reference sum each iteration:

• Instructions

• Execute instructions in sequence:

• Cycle through loop repeatedly:

45

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial locality

Spatial locality

Temporal locality

Temporal locality

Locality example

• Can get a sense for whether a function has good locality just by looking at its
memory access patterns

• Does this function have good locality?

• Yes!
• Array is accessed in same row-major order in which it is stored in memory
• a through a+3 , a+4 through a+7, a+8 through a+11, etc.

int sumarrayrows(int a[M][N]){

int sum = 0;

for (int i = 0; i < M; i++) {

for (int j = 0; j < N; j++) {

sum += a[i][j];

}

}

return sum;

}

Temporal or spatial locality?

46

Spatial: accesses to array
Temporal: accesses to sum

Locality example

• Does this function have good locality?

• No!
• Scans array column-wise instead of row-wise
• a through a+3, then a+4*N through a+4*N+3, etc.
• Holy jumping around memory Batman!

• More on that in a couple of lectures

int sumarraycols(int a[M][N]){

int sum = 0;

for (int j = 0; j < N; j++) {

for (int i = 0; i < M; i++) {

sum += a[i][j];

}

}

return sum;

}

47

Locality to the Rescue!

• How can we exploit locality to bridge the CPU-memory gap?
• Use it to determine which data to put in a cache!

• Spatial locality
• When level k needs a byte from level k+1, don’t just bring one byte
• Bring neighboring bytes as well!
• Good chances we’ll need them too in the near future

• Temporal locality
• When you bring something into the cache, try to keep it there
• Good chances we’ll need it again in the near future

• Result: most accesses should be cache hits!
• Memory system: size of largest memory, with speed close to that of fastest memory

• We’ll see how that works in detail next time

48

49

• Technologies and Trends

• Memory Hierarchy

• Locality of Reference

Outline

