Lecture 05
Intro to x86-64 Assembly

CS213 — Intro to Computer Systems
Branden Ghena — Spring 2021

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Administrivia

 Data lab, get started!!!
 Especially make sure you don't have issues logging into Moore

« Homework 2 is out
 Focuses on Floating Point + Memory Addressing modes from today

Today’s Goals

» Introduce assembly and the x86-64 Instruction Set Architecture
« Discuss background of the factors that affected its evolution

« Understand registers: the analogy to variables in assembly

 Explore our first assembly instruction: mov

Outline

- Assembly Languages

 Registers

» X86-64 Assembly
» Introduction
* Move Instruction
« Memory Addressing Modes

Assembly (Also known as: Assembly Language, ASM)

 Purpose of a CPU: execute instructions

 High-level programs (like in C) are split into many small
iInstructions

« Assembly is a low-level programming language where the program
instructions match a particular architecture’s operations
« Assembly is a human-readable text representation of machine code
» Each assembly instruction is one machine instruction (usually)

Programs can be written in assembly or machine instructions

C Program
a = (b+c) - (d+e);

Assembly Program

addq %rdi, %rsi Machine Instructions
addqg %rdx, %rcx

Ox4889D3
subg %rcx, %rsi
movqg %rsi, %rax 0x488903
Ox53

Ox5B

There are many assembly languages

« Instruction Set Architecture: All programmer-visible components of
a processor needed to write software for it

* QOperations the processor can execute
* The system’s state (registers, memory, program counter)
* The effect operations have on system state

« Each assembly language has instructions that match a particular
processor’s Instruction Set Architecture

« Assembly is not portable to other architectures (like C is)

Which instructions should an assembly include?

Each assembly language has its own operations

There are some obviously useful instructions:
« Add, subtract, and bit shift
« Read and write memory

But what about:

* Only run the next instruction if these two values are equal
 Perform four pairwise multiplications simultaneously

« Add two ascii numbers together (‘2" + '3" = 5)

Instruction Set Philosophies

Early trend: add more and more instructions to do elaborate
operations

Complex Instruction Set Computing (CISC)
* Handle many different types of operations

o |
* More options for the compiler & m
* Complicated hardware runs more slowly . rornG R

Opposite philosophy later began to dominate: rs——%

Reduced Instruction Set Computing (RISC)
* Simpler (and smaller) instruction set makes it easier to build fast hardware
* Let software do the complicated operations by composing simpler ones

Modern reality is somewhere between these two

intel

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)
Design CIsC
Type Register-memory

Encoding Variable (1 to 15 bytes)

Endianness Little

Macbooks & PCs
(Core i3, i5, i7, M)
X86 Instruction Set

ARM

ARM architectures

Designer ARM Holdings

Bits 32-bit, 64-bit

Introduced 1985; 31 years ago

Design RISC

Type Register-Register

AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and

32-bit instructions. ARMv7 user-
space compatibility“]

Encoding

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, Android), Raspberry
Pi, Embedded systems

ARM Instruction Set

Mainstream Instruction Set Architectures

b RISC

RISC-V
Designer University of California,
Berkeley
Bits 32, 64, 128
Introduced 2010
Version 2.2
Design RISC
Type Load-store
Encoding Variable
Branching Compare-and-branch

Endianness Little

Open-source

Relatively new, designed for

cloud computing, embedded

systems, academic use

RISCV Instruction Set 10

https://en.wikipedia.org/wiki/X86_instruction_listings
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/su18/img/riscvcard.pdf

Instruction Set Architecture sits at software/hardware interface

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set Different
or algorithms generate instructions implementations

— o e e e e e M M M M M e e M e e e

Intel Pentium 4

C Language L e
I e Intel Core i7
Program | | | 7 /.
A ot AMD Ryzen
Program Cang K N\U! rorne E ARM Cortex-A53
i AAAT\I;/I4Vi64 <
| | | | | :(rc/) Apple M1

_________________________ / 11

Intel x86 Processors

« Dominate laptop/desktop/server market

« Complex instruction set computer (CISC)
« Many different instructions with many different formats
 But, only small subset encountered by normal programs

 Evolutionary design
« Backwards compatible up until 8086, introduced in 1978
« Added more features as time goes on
» Historical legacy has large impact on architecture

12

Moore’s Law — CPU transistors counts

Transistor count
50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

1,000,000
500,000

100,000
50,000

10,000 -,
5,000

1,000
/\\

Q Q (Q O

QQ

9, X
{\Q ’
v

¢ v
S P

v v v

~ R S >
O\L“ } L\O \W/ 09\ 09\\’) O‘Ow(
S L S o

o Year in which the microchip was first introduced

A

0
v

b
N 9
Ko, I,

e
22
s .
s
o 383,83,
$§o08,°
* X4 ‘ *,
o! %
°
°

“Number of transistors in a chip
doubles every 18 months”

Transistors are getting
exponentially smaller!

How small? Today: 7nm!
< 14 the size of most viruses!

O U X b & O
O O D D
¥ g v v v

v v v

' g
Agannan

13

Evolution
of x86 ISA

Name Date | Transistors | Comments

8086 1978 | 29k 16b processor, basis for IBM PC & DOS; 1MB address space
80286 1982 | 134K Elaborate ('useful) addressing; basis for IBM PC and Windows
386 1985 | 275K Extended to 32b, added “flat addressing” that Linux/gcc uses
486 1989 | 1.9M Improved performance; integrated FP unit into chip

Pentium 1993 | 3.1M Improved performance

PentiumPro 1995 | 6.5M Conditional move instructions; big change in microarch. (P6)
Pentium I 1997 | 7TM Merged Pentium/MMZ + PentiumPro, MMX instructions within P6
Pentium Il 1999 | 8.2M Integer and floating point vector instructions (SSE); Level2 cache
Pentium 4 2001 | 42M 8B ints and floating point formats to vector instructions

Pentium 4E 2004 | 125M Hyperthreading (able to run 2 programs simultaneously), 64b
Core 2 2006 | 291M P6-like, multicore, no hyperthreading

Core i7 (Nehalem) | 2008 | 781M Hyperthreading + multicore, TurboBoost (run fewer cores faster)
Core i3 (Nehalem) | 2010 | 383M+177M | GPU on second silicon die within package (at 2010 version)
Core i3, i5,i7 2011 | 997M Cores and GPU within the same processor die

(Sandy Bridge) (i7 — 4 cores)

Core i3, i5,i7 2012 | 1400M Tri-gate transistors, much lower power consumption

(Ivy Bridge) (i7 — 4 cores)

Xeon E7 8800 V4 | 2016 | >5690M 14nm technology

(Broadwell-EX) (22 cores)

BaCkwa I‘C|S Com pat|b|l|ty The cause of, and solution to, all of life’s problems.

» Programs that worked on one x86 processor should keep working on
the nhext one
 Old programs work on new processors, which makes upgrading possible
« Even today’s x86-64 processors boot thinking they are 8086s!

. Addinc% powerful new features while keeping backwards compatibility is
a careful balancing act
« Backwards compatibility introduces a lot of constraints
« May rule out “cleaner” designs that would break existing programs
« The cause of some “surprising” aspects of the design of x86-64

* "The x86 really isn't all that complex—it just doesn't make a lot of sense.”
— Mike Johnson (AMD's x86 architect), 1994

 Not just a hardware thing!

15

In this class

* X86-64/EMT64: The current standard
« Some asides on IA32: The traditional x86

* Presentation

« Book covers x86-64; web aside on IA32

ased on x86-64

T Processor _
s Graphics =

Shared L3 Cache**

-

Memory Controller I/0

“‘1__;“':

System
Agent & | |

including | %
DM, Display | =
and Misc. VO] =

16

Outline

« Assembly Languages

* Registers

» X86-64 Assembly
» Introduction
* Move Instruction
« Memory Addressing Modes

Hardware uses registers for variables

» Unlike C, assembly doesn’t have variables as you know them

» Instead, assembly uses registers to store values

» Registers are:
* Small memories of a fixed size
Can be read or written
Limited in number
Very fast and low power to access

Basic SR Flip-flop

not typed like C Seto—— | as T }
* the operation performed " |
determines how contents are treated Enatle ©— |

Heset @——
AMND Gates

-

How many registers?

* Tradeoff between speed and availability
* More registers can hold more variables
* Simultaneously; all registers are slower
* Also registers take physical space within the chip

* Xx86-64 has 16 registers

* Historically only 8 registers
* Added 8 more with 64-bit extensions

19

How big should each register be?

 Registers are usually the size of a word
« The natural unit of data for a processor
« Width of the data type that a CPU can process in one instruction
« Imprecise term that will inevitably slip in to explanations

» X86 processors started with 16-bit words
« JA32 upgraded to 32-bit “"double word” registers
« X86-64 upgraded again 64-bit “quad word"” registers

20

Xx86-64 Registers

N

64-bit names
Trax /{eélx
Srbx sebx
Zrcx Secx
srdx $edx
srsi Sesi
Srdi sedi
SrsSp sesp
srbp sebp

5r8 sr8d
$1r9 sr9d
sr10 $r10d
srll srlld
srl?2 sr12d
srl3 $r13d
srl14d Sr14d
srlb $r15d

\ 32-bit names /

21

Historical Register Purposes

Trax zeax
Trbx sebx
Zrcx Secx
Trdx Tedx
$rsil zesi
srdi Sedl
SIrSp sesp
srbp sebp

Name Origin (mostly obsolete)
Accumulate

Base

Counter

Data

Source Index

Destination Index

Stack Pointer (still important)
Base Pointer

22

Xx86-64 Register Access Options

63 31 15
hrax heax hax hal
hrbx %hebx %bx %bl
hrcx hecx hcx hecl
hrdx hedx hdx hdl

Registers can be accessed by any of these names to work with

8-byte, 4-byte, 2-byte, or 1-byte data

23

16-bit rf:gisters

Xx86-64 Integer Registers 8D T
(\/ \
$rax $eax Fax $ah $al
$rbox $ebx Thx Sbh $bl
$rcx $ecx $CX Sch scl
$rdx $edx $dx Sdh sdl
$rsi $esi $si $sil
Srdi Sedi Sdi $dil
srbp sebp Sbp sbpl
$r8 $r8d Sr8w $r8b
$rl5 $rl5d %rlSwI | srl5b |
)
. Y.
32-bit registers
\)

64—bitYregisters

Registers versus Memory

 What if more variables than registers?

* Keep most frequently used in registers and move the rest to memory
(called spilling to memory)

 Why not all variables in memory?

* Smaller is faster: registers 100-500 times faster
* Memory Hierarchy
« Registers: 16 registers * 64 bits = 128 Bytes
« RAM: 4-32 GB
« SSD: 100-1000 GB

25

Memory Hierarchy

Processor SUPER FAST
SUPER EXFENSIVE
TINY CAPACITY
.-"I 1"'-
. _f'lr """
Registers ——— OOTRRSERt
.-"':Ir 1.1
m\ EXPENSIVE
Y LEVEL 1{L1) CAGHE \ SMALL CAPACITY
. LeveLauzicacke Y, Memory
EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY
SSD, Flash Drive SOLID STATE MEMORY AVERAGE SPEED
e
F
y NON-VOLATILE FLASH-BASED MEMORY X
r b
VIRTUAL MEMORY -
Mechanical Hard Drives y CHEAP

‘(./ FILE-BASED MEMORY \x LARGE CAPACTITY

F
r

26

Break + Question

Which of these is FALSE?

[A] Registers are faster to access than memory
[B] Registers do not have a type
[C] Registers can have special purposes

[D] Registers are dynamically created as needed

27

Break + Question

Which of these is FALSE?

[A] Registers are faster to access than memory

[B] Registers do not have a type

[C] Registers can have special purposes

[D] Registers are dynamically created as needed

*

There are a fixed number of registers for a given architecture

28

Outline

« Assembly Languages

 Registers

» X86-64 Assembly
 Introduction
* Move Instruction
« Memory Addressing Modes

Writing Assembly Code? In 2021777

- Chances are, you'll never write a program in assembly, but
undderlstandlng assembly is the key to the machine-level execution
model:

« Behavior of programs in the presence of bugs
« When high-level language model breaks down
 Tuning program performance

« Understanding compiler optimizations and sources of program
inefficiency

« Implementing systems software

« What are the “states” of processes that the OS must manage

» Using special units (timers, I/O co-processors, etc.) inside processor!
 Fighting malicious software

« Distributed software is in binary form

30

Three Basic Kinds of Instructions

1. Transfer data between memory and register

- [oad data from memory into register
* Sreg = Mem[address]

« Store register data into memory Remember: Memory
5 is indexed just like an
« Mem[address] = $reg

array of bytes!
2. Perform arithmetic operation on register or memory data
e c = a + b; z = x << y; 1 =h & g;

3. Control flow: what instruction to execute next
« Unconditional jumps to/from procedures
« Conditional branches

31

Assembly Programmer’s View of System State

CPU

PC

Registers

Condition
Codes

Programmer-visible state
« Named registers
« Together in “register file”
« Heavily used program data
* PC: the Program Counter (3rip in x86-64)
« Address of next instruction

« Condition codes

« Store status information about most recent
arithmetic operation

 Used for conditional branching

Memory
Addresses
e Code
D
ata e Data
~Instructions * Stack
— Memory

« Byte-addressable array
» Code and user data

 Includes the Stack (for supporting
procedures)

32

X86-64 Instructions

* General Instruction Syntax:
op src, dst

* 1 operator, 2 operands
* Op = operation name (“operator”)
 srcl =source location (“source”
e dst = destination location (“destination”)

* Keep hardware simple via regularity

33

$rax

Operand Types

$rcx

 Immediate: Constant integer data

Srdx

Srbx

« Examples: $0x400, $-533

« Like C literal, but prefixed with *$~’

$rsi

« Encoded with 1, 2, 4, or 8 bytes depending on the instruction
* Register: 1 of 16 integer registers

 Examples: %$rax, %rl3

Srdi

=

(@)

rsp

Srbp

« But $rsp reserved for special use

—

rN

(0]

(r8-rlb)

« Others have special uses for particular instructions

« Memory: Consecutive bytes of memory at a computed address

« Simplest example:
 Various other “address modes” we'll talk about later

$rax) treats value of %rax as an address — access memory

34

Example x86-64 Assembly

. text
.globl multstore
.type multstore, @function

multiply and store to memory
multstore:
pushg %rbx # save to stack
movq %rdx, S%rbx

call mult2
movqg %rax, (%rbx)

popq # restore from stack
ret

35

Example x86-64 Assembly

. text
.globl multstore

.type multstore, @function

multiply and store to memory
multstore:

pushg %rbx # save to stack
movq %rdx, S%rbx

call mult2
movqg %rax, (%rbx)

popq # restore from stack
ret

Various assembly
instructions

36

Example x86-64 Assembly

. text
.globl multstore
.type multstore, @function

multiply and store to memory
multstore:
pushg %rbx # save to stack
movq %rdx, S%rbx

call mult2
movqg %rax, (%rbx)

popq # restore from stack
ret

o

Comments use the
symbol

37

Example x86-64 Assembly

. text
.globl multstore
.type multstore, @function

multiply and store to memory

multstore: <
pushg %rbx # save to stack

movq %rdx, S%rbx

call mult2
movqg %rax, (%rbx)

popq # restore from stack
ret

Labels are arbitrary
names that mark a
section of code

We'll get back to these
later

38

Example x86-64 Assembly

. text
.globl multstore
.type multstore, @function

multiply and store to memory
multstore:
pushg %rbx # save to stack
movq %rdx, S%rbx

call mult2
movqg %rax, (%rbx)

popq # restore from stack
ret

Assembler directives
(mostly ignore these)

Can be used to
specify data versus
code regions, make
functions linkable
with other code,
and many other
tasks.

39

Careful! Two Syntaxes for Assembly

Intel/Microsoft Format ATT Format

leal (%ecx, %ecx,2),%eax
subl $8,%esp

cmpl $0,-8 (%ebp)

movl $0x100 (,%eax,4),%ea;

lea eax,[ecxtecx*2]

sub esp,8

cmp dword ptr [ebp-8],0
mov eax,dword ptr [eax*4+100h]

 Intel/Microsoft mnemonics vs. ATT
« Operands listed in opposite order: mov Dest, Src VS. movl Src, Dest
« Constants not preceded by '$’, Denote hex with *h” at end: 100h vs. $0x100
» Operand size indicated by operands rather than operator suffix: sub vs. subg
« Addressing format shows effective address computation: [eax*4+100h] vs. $0x100(,3%rax,4)

* gcc (gas), gdb, objdump work on the ATT format
* Therefore so do we

40

Example x86-64 Assembly

. text
.globl multstore
.type multstore, @function

multstore:
pushg %rbx

movq %rdx, %rbx < What might this instruction do?
call mult2
movq %Srax, (3rbx)

(op src, dst)
popd

ret

41

Outline

« Assembly Languages

 Registers

» X86-64 Assembly
» Introduction
« Move Instruction
« Memory Addressing Modes

Moving Data

 General form: mov_ source, destination
« Missing letter specifies size of operands
» Reminder: backwards compatibility means “word” = 16 bits
« Lots of these in typical code

* movb src, dst * movl src, dst

« Move 1-byte “byte” — Move 4-byte “long word”
* MOVW src, dst * movq src, dst

» Move 2-byte “word” — Move 8-byte “quad word”

— Native size for x86-64

Note: Instructions must be used with properly-sized register names

43

Operand Combinations

Source Dest Src, Dest C Analog
4 Reg movg $0x4, %rax var a = 0x4;
Imm
Mem movg $-147, (%rax) *p a = -147;
movq< " Reg movg Srax, Srdx var d = var a;
e
8 Mem movg %rax, (5rdx) *p d = var a;
\I\/Iem Reg movqg (%rax), %srdx var d = *p a;

Cannot do memory-memory transfer with a single instruction
« How would you do it?

44

Operand Combinations

Source

movq <

-
Imm

Reg

\Mem

1
1

Dest

Reg
Mem

Reg
Mem

Reg

movqg

movqg

movqg

movqg

movqg

Src, Dest

S0x4, %rax

$-147,

($rax)

$rax, srdx

srax, (srdx)

(3rax),

Srdx

C Analog

var a = 0x4;
*p a = -147;
var d = var a;

*p. d = var_ a;

var d = *p a;

Cannot do memory-memory transfer with a single instruction
« How would you do it? 1) Mem->Reg, 2) Reg->Mem

45

Example of Move Instructions: swap()

void swap (long* xp, long* yp)
{
long t0 = *xp;
long tl = *yp;
*xp = tl;
*yvp = t0;
}
swap :
movg (%rdi), %rax
movg (%rsi), %Srdx
movqg $rdx, (%rdi)
movg S$rax, (%rsi)
ret

(Register Variable |
srdi < xp
$rsi <& yp
$rax <& t0
srdx © tl

. J

Registers Memory
srdi | o e
srsi l\
Trax
Trdx

46

Example of Move Instructions: swap()

Registers Memory Word
Address
Srdi 0x120 > 123 0x120
5rsi| 0x100 Ox118
° 0x110
Srax
0x108
srdx
456 0x100
swap :
movqg (%rdi), %rax # t0 = *xp
movqg (%rsi), %Srdx # tl1 = *yp
movqg %rdx, (%rdi) # *xp tl
movqg %rax, (%rsi) # *yp t0
ret

47

Example of Move Instructions: swap()

Registers Memory Word

Address
Srdi 0x120 123 0x120
5rsi| 0x100 Ox118

0x110
Srax 123

0x108
Trdx

456 | 0x100

swap:

movqg $rdx, rdi) # *xp

movqg %$rax, rsi) # *yp

ret

movq $rdi), %$rax # tO0 =
movqg (%rsi), Srdx # tl1 =

48

Example of Move Instructions: swap()

Registers Memory Word
Address
Srdi 0x120 123 0x120
5rsi| 0x100 Ox118
0x110
srax 123
0x108
srd 456
rox 456 | 0x100
swap :
movqg (%rdi), %rax # t0 = *xp
movqg (%$rsi), %rdx # tl1 = *yp
movqg %rdx, (%rdi) # *xp tl
movqg %rax, (%rsi) # *yp t0

ret

49

Example of Move Instructions: swap()

Registers Memory Word
Address
Srdi 0x120 456 | 0x120
5rsi| 0x100 Ox118
0x110
srax 123
0x108
rdx 200 456 | 0x100
swap:
movqg (%rdi), %rax # t0 = *xp
movqg (%rsi), %rdx # tl1 = *yp
movqg %rdx, (%rdi) # *xp tl
movqg %rax, (%rsi) # *yp t0
ret

50

Example of Move Instructions: swap()

Note: these did
not change

{

ret

Registers Memory Word
Address
Srdi 0x120 456 | 0x120
5rsi| 0x100 Ox118
0x110
srax 123
0x108
srd 456
rox 123 | 0x100
swap:
movqg (%rdi), %rax # t0 = *xp
movqg (%rsi), %Srdx # tl1 = *yp
movqg $rdx, (%rdi) # *xp tl
movq %rax, (%rsi) # *yp t0

51

Break + Open Question
« How does the number of available registers affect a system?

« What if x86-64 only had two registers?

« What if x86-64 instead had 512 registers?

52

Break + Open Question
« How does the number of available registers affect a system?

« What if x86-64 only had two registers?
» “"Register Pressure” becomes a problem
 Accessing 3+ things at once becomes a problem
« Way more memory reads/writes

« What if x86-64 instead had 512 registers?
« Most of the registers would never be used
 Could have spent that silicon on something more important

53

Outline

« Assembly Languages

 Registers

» X86-64 Assembly
» Introduction
* Move Instruction
- Memory Addressing Modes

Memory Addressing Modes: Basic

« Common need: interact with memory
« Exact address might be made of multiple parts

 Indirect: (R) Mem[Reg[R]]
 Data in register r specifies the memory address
* Like pointer dereference in C
« Example: movqg (%rcx), %rax

 Displacement: D (R) Mem[Reg[R]+D]
« Data in register r specifies the start of some memory region
 Constant displacement D specifies the offset from that address
« Example: movqg 8 (%rbp), %$rdx

55

Complete Memory Addressing Modes

- General:
D(Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S+D]
* Rb: Base register (any register)
« Ri: Index register (any register except >rsp)

Sizes of
¢ S: Scale factor (1, 2, 4, 8) — why these numbers? common C
* D. Constant displacement value (a.k.a. immediate) %P’

. SpeC|aI cases (see textbook Figure 3.3)

D (Rb, R1) Mem[Reg[Rb]+Reg[R1i]+D] (S=1)
* (Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S] (D=0)
* (Rb,R1) Mem[Reg[Rb]+Reg[Ri]] (S=1,D=0)
* (,Ri,S) Mem[Reg[Ri]*S] (Rb=0, D=0)

Address Computation Examples

Srdx 0x£000 D(Rb,Ri,S) —
Srex 0x0100 Mem([Reg[Rb]+Reg[R1]*S+D]
Expression Address Computation Address

O0x8 ($rdx)

($rdx, srcx)

(3rdx, srcx, 4)

0x80 (, $rdx, 2)

57

Address Computation Examples

Srdx 0x£000 D(Rb,Ri,S) —

Srex 0x0100 Mem[Reg[Rb]+Reg[R1]*S+D]
Expression Address Computation Address

O0x8 ($rdx) Srdx + 0x8 Oxf008

($rdx, srcx)

(3rdx, srcx, 4)

0x80 (, $rdx, 2)

58

Address Computation Examples

Srdx 0x£000 D(Rb,Ri,S) —

Srex 0x0100 Mem[Reg[Rb]+Reg[R1]*S+D]
Expression Address Computation Address

O0x8 ($rdx) Srdx + 0x8 Oxf008

($rdx, srcx) srdx + Srcx*l Oxf100

(3rdx, srcx, 4)

0x80 (, $rdx, 2)

59

Address Computation Examples

Srdx 0x£000 D(Rb,Ri,S) —

Srex 0x0100 Mem[Reg[Rb]+Reg[R1]*S+D]
Expression Address Computation Address

O0x8 ($rdx) Srdx + 0x8 Oxf008

(3rdx, $rcx) srdx + Srcx*l Ox£100

(srdx, srcx, 4) Srdx + %rcx*4 O0x£400

0x80 (, $rdx, 2)

60

Address Computation Examples

Srdx 0x£000 D(Rb,Ri,S) —

Srex 0x0100 Mem[Reg[Rb]+Reg[R1]*S+D]
Expression Address Computation Address

O0x8 ($rdx) Srdx + 0x8 Oxf008

($rdx, srcx) srdx + Srcx*l Oxf100

(3rdx, srcx, 4) Srdx + %$rcx*4 Ox£f400

O0x80 (, 3rdx, 2) Srdx*2 + 0x80 O0x1e080

61

Outline

« Assembly Languages

 Registers

» X86-64 Assembly
» Introduction
* Move Instruction
« Memory Addressing Modes

