
Lecture 05
Intro to x86-64 Assembly

CS213 – Intro to Computer Systems

Branden Ghena – Spring 2021

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Data lab, get started!!!
• Especially make sure you don’t have issues logging into Moore

• Homework 2 is out
• Focuses on Floating Point + Memory Addressing modes from today

2

Today’s Goals

• Introduce assembly and the x86-64 Instruction Set Architecture
• Discuss background of the factors that affected its evolution

• Understand registers: the analogy to variables in assembly

• Explore our first assembly instruction: mov

3

4

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Assembly (Also known as: Assembly Language, ASM)

• Purpose of a CPU: execute instructions

• High-level programs (like in C) are split into many small
instructions

• Assembly is a low-level programming language where the program
instructions match a particular architecture’s operations

• Assembly is a human-readable text representation of machine code

• Each assembly instruction is one machine instruction (usually)

5

Programs can be written in assembly or machine instructions

C Program

a = (b+c) – (d+e);

Assembly Program
addq %rdi, %rsi

addq %rdx, %rcx

subq %rcx, %rsi

movq %rsi, %rax

6

Machine Instructions

0x4889D3

0x488903

0x53

0x5B

There are many assembly languages

• Instruction Set Architecture: All programmer-visible components of
a processor needed to write software for it
• Operations the processor can execute

• The system’s state (registers, memory, program counter)

• The effect operations have on system state

• Each assembly language has instructions that match a particular
processor’s Instruction Set Architecture

• Assembly is not portable to other architectures (like C is)

7

Which instructions should an assembly include?

Each assembly language has its own operations

There are some obviously useful instructions:

• Add, subtract, and bit shift

• Read and write memory

But what about:

• Only run the next instruction if these two values are equal

• Perform four pairwise multiplications simultaneously

• Add two ascii numbers together (‘2’ + ‘3’ = 5)

8

Instruction Set Philosophies

Early trend: add more and more instructions to do elaborate
operations
Complex Instruction Set Computing (CISC)

• Handle many different types of operations
• More options for the compiler
• Complicated hardware runs more slowly

Opposite philosophy later began to dominate:
Reduced Instruction Set Computing (RISC)

• Simpler (and smaller) instruction set makes it easier to build fast hardware

• Let software do the complicated operations by composing simpler ones

Modern reality is somewhere between these two

9

Mainstream Instruction Set Architectures

10

Macbooks & PCs
(Core i3, i5, i7, M)
x86 Instruction Set

Smartphone-like devices
(iPhone, Android), Raspberry
Pi, Embedded systems
ARM Instruction Set

Open-source
Relatively new, designed for
cloud computing, embedded
systems, academic use
RISCV Instruction Set

https://en.wikipedia.org/wiki/X86_instruction_listings
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/su18/img/riscvcard.pdf

Instruction Set Architecture sits at software/hardware interface

11

C Language

x86-64

Intel Pentium 4

Intel Core i7

AMD RyzenGCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple M1

ClangProgram
B

Program
A

CompilerSource code Architecture

Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware

Instruction set

Intel x86 Processors

• Dominate laptop/desktop/server market

• Complex instruction set computer (CISC)
• Many different instructions with many different formats

• But, only small subset encountered by normal programs

• Evolutionary design
• Backwards compatible up until 8086, introduced in 1978

• Added more features as time goes on

• Historical legacy has large impact on architecture

12

Moore’s Law – CPU transistors counts

“Number of transistors in a chip
doubles every 18 months”

Transistors are getting
exponentially smaller!

How small? Today: 7nm!
< ½ the size of most viruses!

13

Evolution
of x86 ISA

Name Date Transistors Comments

8086 1978 29k 16b processor, basis for IBM PC & DOS; 1MB address space

80286 1982 134K Elaborate (!useful) addressing; basis for IBM PC and Windows

386 1985 275K Extended to 32b, added “flat addressing” that Linux/gcc uses

486 1989 1.9M Improved performance; integrated FP unit into chip

Pentium 1993 3.1M Improved performance

PentiumPro 1995 6.5M Conditional move instructions; big change in microarch. (P6)

Pentium II 1997 7M Merged Pentium/MMZ + PentiumPro, MMX instructions within P6

Pentium III 1999 8.2M Integer and floating point vector instructions (SSE); Level2 cache

Pentium 4 2001 42M 8B ints and floating point formats to vector instructions

Pentium 4E 2004 125M Hyperthreading (able to run 2 programs simultaneously), 64b

Core 2 2006 291M P6-like, multicore, no hyperthreading

Core i7 (Nehalem) 2008 781M Hyperthreading + multicore, TurboBoost (run fewer cores faster)

Core i3 (Nehalem) 2010 383M+177M GPU on second silicon die within package (at 2010 version)

Core i3, i5, i7

(Sandy Bridge)

2011 997M

(i7 – 4 cores)

Cores and GPU within the same processor die

Core i3, i5, i7

(Ivy Bridge)

2012 1400M

(i7 – 4 cores)

Tri-gate transistors, much lower power consumption

Xeon E7 8800 V4

(Broadwell-EX)

2016 >5690M

(22 cores)

14nm technology

14

Backwards Compatibility The cause of, and solution to, all of life’s problems.

• Programs that worked on one x86 processor should keep working on
the next one

• Old programs work on new processors, which makes upgrading possible
• Even today’s x86-64 processors boot thinking they are 8086s!

• Adding powerful new features while keeping backwards compatibility is
a careful balancing act

• Backwards compatibility introduces a lot of constraints
• May rule out “cleaner” designs that would break existing programs
• The cause of some “surprising” aspects of the design of x86-64

• “The x86 really isn't all that complex—it just doesn't make a lot of sense.”
— Mike Johnson (AMD's x86 architect), 1994

• Not just a hardware thing!

15

In this class

• x86-64/EMT64: The current standard
• Some asides on IA32: The traditional x86

• Presentation
• Book covers x86-64; web aside on IA32

• Labs will be based on x86-64

16

17

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Hardware uses registers for variables

• Unlike C, assembly doesn’t have variables as you know them

• Instead, assembly uses registers to store values

• Registers are:
• Small memories of a fixed size
• Can be read or written
• Limited in number
• Very fast and low power to access
• not typed like C

• the operation performed
determines how contents are treated

18

How many registers?

• Tradeoff between speed and availability
• More registers can hold more variables

• Simultaneously; all registers are slower

• Also registers take physical space within the chip

• x86-64 has 16 registers
• Historically only 8 registers
• Added 8 more with 64-bit extensions

19

How big should each register be?

• Registers are usually the size of a word
• The natural unit of data for a processor

• Width of the data type that a CPU can process in one instruction

• Imprecise term that will inevitably slip in to explanations

• x86 processors started with 16-bit words

• IA32 upgraded to 32-bit “double word” registers

• x86-64 upgraded again 64-bit “quad word” registers

20

x86-64 Registers

21

%r8d%r8

%r9d%r9

%r10d%r10

%r11d%r11

%r12d%r12

%r13d%r13

%r14d%r14

%r15d%r15

%rsp %esp

%eax%rax

%ebx%rbx

%ecx%rcx

%edx%rdx

%esi%rsi

%edi%rdi

%ebp%rbp

64-bit names

32-bit names

Historical Register Purposes

Accumulate

Base

Counter

Data

Source Index

Destination Index

Stack Pointer (still important)

Base Pointer

22

%rsp %esp

%eax%rax

%ebx%rbx

%ecx%rcx

%edx%rdx

%esi%rsi

%edi%rdi

%ebp%rbp

Name Origin (mostly obsolete)

x86-64 Register Access Options

23

Registers can be accessed by any of these names to work with
8-byte, 4-byte, 2-byte, or 1-byte data

x86-64 Integer Registers

%rax %eax %ax %ah %al

%rbx %ebx %bx %bh %bl

%rcx %ecx %cx %ch %cl

%rdx %edx %dx %dh %dl

%rsi %esi %si

%rdi %edi %di

%rbp %ebp %bp

%rsp %esp %sp

%r8 %r8d %r8w

32-bit registers

16-bit registers

8-bit

…

%r15 %r15d %r15w

… …
%sil

%dil

%bpl

%spl

%r8b

%r15b

64-bit registers

8-bit

Registers versus Memory

• What if more variables than registers?
• Keep most frequently used in registers and move the rest to memory

(called spilling to memory)

• Why not all variables in memory?
• Smaller is faster: registers 100-500 times faster
• Memory Hierarchy

• Registers: 16 registers * 64 bits = 128 Bytes

• RAM: 4-32 GB

• SSD: 100-1000 GB

25

Memory Hierarchy

26

Memory

Registers

Break + Question

Which of these is FALSE?

[A] Registers are faster to access than memory

[B] Registers do not have a type

[C] Registers can have special purposes

[D] Registers are dynamically created as needed

27

Break + Question

Which of these is FALSE?

[A] Registers are faster to access than memory

[B] Registers do not have a type

[C] Registers can have special purposes

[D] Registers are dynamically created as needed

There are a fixed number of registers for a given architecture
28

29

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Writing Assembly Code? In 2021???

• Chances are, you’ll never write a program in assembly, but
understanding assembly is the key to the machine-level execution
model:

• Behavior of programs in the presence of bugs
• When high-level language model breaks down

• Tuning program performance
• Understanding compiler optimizations and sources of program

inefficiency
• Implementing systems software

• What are the “states” of processes that the OS must manage
• Using special units (timers, I/O co-processors, etc.) inside processor!

• Fighting malicious software
• Distributed software is in binary form

30

Three Basic Kinds of Instructions

1. Transfer data between memory and register
• Load data from memory into register

• %reg = Mem[address]

• Store register data into memory

• Mem[address] = %reg

2. Perform arithmetic operation on register or memory data
• c = a + b; z = x << y; i = h & g;

3. Control flow: what instruction to execute next
• Unconditional jumps to/from procedures

• Conditional branches

31

Remember: Memory
is indexed just like an
array of bytes!

CPU

Assembly Programmer’s View of System State

Programmer-visible state
• Named registers

• Together in “register file”

• Heavily used program data

• PC: the Program Counter (%rip in x86-64)

• Address of next instruction

• Condition codes

• Store status information about most recent
arithmetic operation

• Used for conditional branching

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

32

– Memory

• Byte-addressable array

• Code and user data

• Includes the Stack (for supporting
procedures)

x86-64 Instructions

• General Instruction Syntax:

op src, dst

• 1 operator, 2 operands
• op = operation name (“operator”)

• src1 = source location (“source”)

• dst = destination location (“destination”)

• Keep hardware simple via regularity

33

Operand Types

• Immediate: Constant integer data
• Examples: $0x400, $-533

• Like C literal, but prefixed with ‘$’

• Encoded with 1, 2, 4, or 8 bytes depending on the instruction

• Register: 1 of 16 integer registers
• Examples: %rax, %r13

• But %rsp reserved for special use

• Others have special uses for particular instructions

• Memory: Consecutive bytes of memory at a computed address

• Simplest example: (%rax) treats value of %rax as an address → access memory

• Various other “address modes” we’ll talk about later

34

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN (r8-r15)

Example x86-64 Assembly

35

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Example x86-64 Assembly

36

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Various assembly
instructions

Example x86-64 Assembly

37

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Comments use the
symbol

Example x86-64 Assembly

38

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Labels are arbitrary
names that mark a
section of code

We’ll get back to these
later

Example x86-64 Assembly

39

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

Assembler directives
(mostly ignore these)

Can be used to
specify data versus
code regions, make
functions linkable
with other code,
and many other
tasks.

Careful! Two Syntaxes for Assembly

• Intel/Microsoft mnemonics vs. ATT
• Operands listed in opposite order: mov Dest, Src vs. movl Src, Dest

• Constants not preceded by ‘$’, Denote hex with ‘h’ at end: 100h vs. $0x100

• Operand size indicated by operands rather than operator suffix: sub vs. subq

• Addressing format shows effective address computation: [eax*4+100h] vs. $0x100(,%rax,4)

• gcc (gas), gdb, objdump work on the ATT format
• Therefore so do we

lea eax,[ecx+ecx*2]

sub esp,8

cmp dword ptr [ebp-8],0

mov eax,dword ptr [eax*4+100h]

leal (%ecx,%ecx,2),%eax

subl $8,%esp

cmpl $0,-8(%ebp)

movl $0x100(,%eax,4),%eax

Intel/Microsoft Format ATT Format

40

Example x86-64 Assembly

41

.text

.globl multstore

.type multstore, @function

multiply and store to memory

multstore:

pushq %rbx # save to stack

movq %rdx, %rbx

call mult2

movq %rax, (%rbx)

popq # restore from stack

ret

What might this instruction do?

(op src, dst)

42

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Moving Data

• General form: mov_ source, destination

• Missing letter _ specifies size of operands

• Reminder: backwards compatibility means “word” = 16 bits

• Lots of these in typical code

• movb src, dst

• Move 1-byte “byte”

• movw src, dst

• Move 2-byte “word”

• movl src, dst

– Move 4-byte “long word”

• movq src, dst

– Move 8-byte “quad word”

– Native size for x86-64

43

Note: Instructions must be used with properly-sized register names

Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

44

Cannot do memory-memory transfer with a single instruction
• How would you do it?

Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

45

Cannot do memory-memory transfer with a single instruction
• How would you do it? 1) Mem->Reg, 2) Reg->Mem

%rdi

%rsi

%rax

%rdx

Registers Memory

Register Variable

%rdi ⇔ xp

%rsi ⇔ yp

%rax ⇔ t0

%rdx ⇔ t1

void swap(long* xp, long* yp)

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

movq (%rdi), %rax

movq (%rsi), %rdx

movq %rdx, (%rdi)

movq %rax, (%rsi)

ret

46

Example of Move Instructions: swap()

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

47

Example of Move Instructions: swap()

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers Memory

123

456

123

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

48

Example of Move Instructions: swap()

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

123

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

49

Example of Move Instructions: swap()

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

456

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

50

Example of Move Instructions: swap()

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

123

456

swap:

movq (%rdi), %rax # t0 = *xp

movq (%rsi), %rdx # t1 = *yp

movq %rdx, (%rdi) # *xp = t1

movq %rax, (%rsi) # *yp = t0

ret

51

Example of Move Instructions: swap()

Note: these did
not change

Break + Open Question

• How does the number of available registers affect a system?

• What if x86-64 only had two registers?

• What if x86-64 instead had 512 registers?

52

Break + Open Question

• How does the number of available registers affect a system?

• What if x86-64 only had two registers?

• “Register Pressure” becomes a problem

• Accessing 3+ things at once becomes a problem

• Way more memory reads/writes

• What if x86-64 instead had 512 registers?

• Most of the registers would never be used

• Could have spent that silicon on something more important

53

54

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

Memory Addressing Modes: Basic

• Common need: interact with memory
• Exact address might be made of multiple parts

• Indirect: (R) Mem[Reg[R]]
• Data in register R specifies the memory address
• Like pointer dereference in C
• Example: movq (%rcx), %rax

• Displacement: D(R) Mem[Reg[R]+D]
• Data in register R specifies the start of some memory region
• Constant displacement D specifies the offset from that address
• Example: movq 8(%rbp), %rdx

55

Complete Memory Addressing Modes

• General:
• D(Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S+D]

• Rb: Base register (any register)

• Ri: Index register (any register except %rsp)

• S: Scale factor (1, 2, 4, 8) – why these numbers?

• D: Constant displacement value (a.k.a. immediate)

• Special cases (see textbook Figure 3.3)
• D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (S=1)

• (Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S] (D=0)

• (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]] (S=1,D=0)

• (,Ri,S) Mem[Reg[Ri]*S] (Rb=0,D=0)

56

Sizes of
common C
types!

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

57

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx) %rdx + 0x8 0xf008

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

58

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx) %rdx + 0x8 0xf008

(%rdx,%rcx) %rdx + %rcx*1 0xf100

(%rdx,%rcx,4)

0x80(,%rdx,2)

59

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx) %rdx + 0x8 0xf008

(%rdx,%rcx) %rdx + %rcx*1 0xf100

(%rdx,%rcx,4) %rdx + %rcx*4 0xf400

0x80(,%rdx,2)

60

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

Address Computation Examples

%rdx

%rcx

0xf000

0x0100

Expression Address Computation Address

0x8(%rdx) %rdx + 0x8 0xf008

(%rdx,%rcx) %rdx + %rcx*1 0xf100

(%rdx,%rcx,4) %rdx + %rcx*4 0xf400

0x80(,%rdx,2) %rdx*2 + 0x80 0x1e080

61

D(Rb,Ri,S) →
Mem[Reg[Rb]+Reg[Ri]*S+D]

62

• Assembly Languages

• Registers

• x86-64 Assembly
• Introduction

• Move Instruction

• Memory Addressing Modes

Outline

