Lecture 03 Integer Operations

CS213 - Intro to Computer Systems Branden Ghena - Spring 2021

St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Today's Goals

- Explore operations we can perform on binary numbers
- Understand the edge cases of those operations
- Discuss performance of various operations

C versus the hardware

- Operations you can perform on binary numbers have edge conditions
- Usually going above or below the bit width
- If we say what happens in that scenario, it'll be what "the hardware" (i.e., a computer) does
- In today's examples, pretty much every computer does the same thing
- That is not the same as what C does
- Unclear choices are left as: UNDEFINED BEHAVIOR (10)

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Unsigned Addition

- Like grade-school addition, but in base 2, and ignores final carry - If you want, can do addition in base 10 and convert to base 2. Same result!
- Example: Adding two 4-bit numbers

$$
\begin{array}{r}
1111 \\
+\quad 001 \\
+\quad 0011 \\
\hline 1000
\end{array}
$$

$-5_{10}+3_{10}=8_{10} \downarrow$

Unsigned Addition and Overflow

-What happens if the numbers get too big?

- Example: Adding two 4-bit numbers

$$
\begin{array}{r}
1111 \\
+1101 \\
+\quad 0011 \\
\hline 10000
\end{array}
$$

- $13_{10}+3_{10}=16_{10}$
- Too large for 4 bits! Overflow
- Result is the 4 least significant bits (all we can fit): so 0_{10}
- Gives us modular (= modulo) behavior: 16 modulo $2^{4}=0$

Modulo behavior in binary numbers

Basis for unsigned addition

$\operatorname{UAdd}_{w}(u, v)=\left\{\begin{array}{cc}u+v & u+v<2^{w} \\ u+v-2^{w} & u+v \geq 2^{w}\end{array}\right.$

- Implements modular arithmetic
- $s=\operatorname{UAdd}_{w}(u, v)=(u+v) \bmod 2^{w}$
- Need to drop carry bit, otherwise results will keep getting bigger
- Example in base 10: $80_{10}+40_{10}=120_{10}$ (2-digit inputs become a 3-digit output!)

- Warning: C does not tell you that the result had an overflow!
- Unsigned addition in C behaves like modular arithmetic

Signed (2's Complement) Addition

- TAdd and UAdd have Identical Bit-Level Behavior
- Signed vs. unsigned addition in C:
int s, t, u, v;
$\mathrm{s}=$ (int) ((unsigned) $u+(u n s i g n e d) \mathrm{v})$;
$\mathrm{t}=\mathrm{u}+\mathrm{v}$
- Will give $s==t$
- Signed and unsigned sum have the exact same bit-level representation
- Most computers use the same machine instruction, same hardware!
- That's a big reason 2's complement is so nice! Shares operations with unsigned

Signed addition example

- Same addition method as unsigned
- Example: Adding two 4-bit signed numbers

$$
\left.\begin{array}{rl}
10 \begin{array}{l}
101 \\
+ \\
\frac{0011}{1110}
\end{array} & (-8+3=-5) \\
(-8+6=-2)
\end{array}\right)
$$

Combining negative and positive numbers

- Overflow sometimes makes signed addition work!
- Example: Adding two 4-bit signed numbers

$$
\begin{array}{r}
1111 \\
1101 \\
+\begin{array}{r}
0011 \\
\hline 10000
\end{array}(-8+5=-3) \\
+3)
\end{array}
$$

$-\mathbf{3}_{10}+\mathbf{3}_{10}=\mathbf{0}_{10}$

- Too large for 4 bits! Drop the carry bit
- Number is what we expect

Signed addition and overflow

- Overflow can still happen in signed addition though
- Example: Adding two 4-bit signed numbers

$$
\begin{array}{r}
111 \\
0101 \\
+\quad 0011 \\
\hline 1000
\end{array}
$$

- $\mathbf{5}_{\mathbf{1 0}} \mathbf{+} \mathbf{3}_{\mathbf{1 0}}=\mathbf{- 8} \mathbf{8}_{\mathbf{1 0}} \quad$ (+8 is too big to fit)
- Remember, this was also unsigned $\mathbf{5}_{\mathbf{1 0}} \boldsymbol{+} \mathbf{3}_{\mathbf{1 0}}=\mathbf{8}_{\mathbf{1 0}}$

Signed addition and underflow

- Underflow happens in the negative direction
- Example: Adding two 4-bit signed numbers

$$
\begin{array}{r}
1111 \\
+1011 \\
+1011 \\
\hline 10110
\end{array}
$$

- $-\mathbf{5}_{\mathbf{1 0}}+-\mathbf{5}_{\mathbf{1 0}}=+\mathbf{6}_{\mathbf{1 0}}$ (-10 was too small to fit)

TAdd Overflow

- Can overflow two ways!
- By going too far into the positives
- $O R$ too far into the negatives!
- Modular behavior either way
- BUT, beware signed overflow in C
- UNDEFINED BEHAVIOR
- Compiler probably does modular result

Positive Overflow

Special boss in Chrono Trigger

- Dream Devourer
- Special boss in the Nintendo DS edition
- Wanted to make it even more challenging

- 32000 hit points
- Takes forever to defeat
- Hit points stored as a 16-bit signed integer
- Range: -32768 to +32767

Chrono Trigger signed overflow bug

- Solution: heal it
- Hit points go negative and it dies

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Negating with Complement \& Increment

- Claim: Following holds for 2's complement

$$
\text { - } \sim x+1==-x
$$

$\mathbf{x} 10 \mid 011111011$

- Complement
- Observation: $\sim x+x==1111 . . .11_{2}==-1$

$$
\begin{aligned}
& +\sim x 011100_{0} 0110 \\
& \text {-1 } 1|1| 1|1| 1 \mid 11
\end{aligned}
$$

- Increment
$\cdot \sim x+1==\sim x+x-x+1==-2-x+1==-x$
$\cdot \sim x+1=-x$
- Example, 4 bits: $6_{10}=0110_{2}$
- Complement: $1001_{2} \rightarrow$ Increment $=1010_{2}=-8+2=-6_{10}$

Subtraction in two's complement

- Subtraction becomes addition of the negative number
- $5-3=5+-3=2$
- Unsigned subtraction
- Treat subtractor as two's complement number and make it negative
- Do addition
- Treat result as an unsigned number

$$
\begin{array}{r}
111{ }^{1} 0101 \\
+\frac{1101}{10010}
\end{array}
$$

Question + Break

- In 8-bit two's complement:
- What is $\mathbf{1 2 0}_{\mathbf{1 0}} \mathbf{- 2 0} \mathbf{~} \mathbf{1 0}^{\text {? }}$
- What is $0 \times 84-0 \times 20 ?$

Question + Break

- In 8-bit two's complement:
- What is $\mathbf{1 2 0}_{\mathbf{1 0}} \mathbf{- 2 0} \mathbf{1 0}_{10}$?
- Solve as decimal. Then translate
- $100_{10}=01100100_{2}$
- What is $0 \times 84-0 \times 20$?
- Solve as hexadecimal. Then translate
- 0×64 = 0b01100100

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Left Shift: x << y

- Shift bit-vector x left y positions
- Throw away extra bits on left
- Same behavior for signed and unsigned: fill open bits with 0
- Equivalent to multiplying by 2^{y}
- And then taking modulo (i.e. truncating overflow bits)

Argument \mathbf{x}	00000010
$\ll 3$	00000010000

Argument \mathbf{x}	10100010
$\ll 3$	10100010000

- Undefined behavior in C when:
- $\mathbf{x} \ll \mathrm{y}$, where $\mathrm{y}<0$, or $\mathrm{y} \geq$ bit_width (x)
- $\mathbf{x} \ll \mathbf{y}$, where some non-0 bits get $\overline{\text { shifted off (probably they get truncated) }}$

Right Shift: x >> y

- Shift bit-vector x right y positions
- Throw away extra bits on right
- But how to fill the new bits that open up?

Argument x	$\underline{01100010}$
Log. >> 2	$\underline{00011000}$
Arith. >> 2	$\underline{00011000}$

- Will depend on signed vs unsigned
- Unsigned: Logical shift
- Always fill with 0's on left

Argument \times	10100010
Log. >> 2	$\underline{00101000}$
Arith. >> 2	11101000

- Signed: Arithmetic shift
- Replicate most significant bit on left
- Necessary for two's complement integer representation (sign extension!)
- Undefined behavior in C when:
- x >> y, where $y<0$, or $y \geq$ bit_width (x)

Practice shifting in C

```
unsigned char x = 0b10100010;
    x << 3 = ? 0b00010000
unsigned char x = Ob10100010; // same
    x >> 2 = ? 0b00101000
signed char x = 0b10100010; // same
    x >> 2 = ? 0b11101000
```

Note:
GCC supports the prefix 0b for binary literals (like 0x... for hex) directly in C. This is not part of the C standard! It may not work on other compilers.

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Multiplication

- Goal: Compute the Product of \boldsymbol{w}-bit numbers x, y
- Either signed or unsigned
- But, exact results can be bigger than \boldsymbol{w} bits
- Around double the size ($2 w$), in fact!
- Example in base 10: $50_{10} * 20_{10}=1000_{10}$
- (2-digit inputs become a 4-digit output!)
- As with addition, result is truncated to fit in \boldsymbol{w} bits
- Because computers are finite, results can't grow indefinitely

Unsigned Multiplication

- Standard Multiplication Function
- Equivalent to grade-school multiplication
- But ignores most significant w bits of the result
- Again, can do base 10 multiplication, convert to base 2, then truncate
- Implements Modular Arithmetic

UMult $_{w}(u, v)=\left(u^{\cdot} v\right) \bmod 2^{w}$

Unsigned multiplication

- Example: Multiplying two 4-bit numbers

0010
$\times \quad \underline{0101}$
0010
00000
001000
+0000000
0001010

$$
2_{10} * 5_{10}=10_{10}
$$

Signed (2's Complement) Multiplication

- Standard Multiplication Function

- Ignores most significant w bits
- Some of which are different for signed vs. unsigned multiplication
- Need to do sign extension to ensure correct result in upper bits
- Lower bits are the same, so can use same machine instruction for both!
- Again, that's one reason why 2's complement is so nice
- In C, signed overflow is undefined
- ...but probably you'll see the two's complement behavior

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

What about division?

- Similar to long division process
- Tedious and complicated to get right
- Even more complicated than multiply to make work in hardware
- I've worked on a computer that didn't even have divide

Concept: Not all operations are equally expensive!

- Some operations are pretty simple to perform in hardware
- E.g., addition, shifting, bitwise operations
- Also true of doing the same by hand on paper
- Others are much more involved
- E.g., multiplication, or even more so division
- Consider long multiplication / long division; quite tedious!
- Hardware is not doing the exact same thing, but similar principle
- Trick: try to replace expensive operations with simple ones!
- Doesn't work in all cases, but often does when mult/div by constants

Multiplication as shift operations

- Multiply 2×5 :

0010
x 0101
0010
00000
001000
$+0000000$
0001010

- This is actually just bit shifts and additions

$$
\begin{aligned}
\cdot 2 \times 5 & =(2 \ll 0)+(2 \ll 2) \\
& =2+8 \\
& =10
\end{aligned}
$$

Power-of-2 Multiply with Left Shift

- Operation

- $u \ll k$ gives $u * 2^{k}$
- Both signed and unsigned

Operands: w bits

- Examples

$$
\text { - }(u \ll 5)-(u \ll 3 * 3)==\quad u * 8
$$

- Can combine multiple shifts with addition to get multiplications by non-powers-of-2

Shift to divide

- Division works too
- unsigned int $x=y / 2 ; \quad$ unsigned int $x=y \gg 1$;
- Even more important because division is a complicated operation
- Multiply is implemented in simple hardware on most systems
- Compiler might actually translate your divide by powers of two into shift operations though!
- Warning: rounding needs to be handled correctly for signed numbers and division
- See bonus slides

Compilers automatically chose the best operations

- Should you use shifts instead of multiply in your C code?
- NO
- Just write out the multiplication
- Multiplication is more readable if that's what you meant
- Compiler automatically converts code for you for best performance
- These two mean the same thing, but one is way more understandable
- int $x=y * 32 ;$
- int $x=(y \ll 5)$;

C code translation

- Steps for C

Compiler

Assembly program: foo.s
CALL

1. Compiler
2. Assembler
3. Linker
4. Loader

Compiler

- Input: higher-level language code (C, C++, Java, etc.)
- Output: assembly language code (for a particular computer)
- Process
- Handle pre-processor (defines and includes)
- Preform optimizations on code
- Make it faster (such as divide-into-shift)
- Make it use less memory (eliminate unused variables)
- Entire course worth of material here: CS322

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Outline

- Dividing with bit shift

Unsigned Power-of-2 Divide with Right Shift

- Quotient of unsigned by power of 2

$$
\begin{aligned}
& \lfloor x\rfloor \text { : round } x \text { down } \\
& \lceil x\rceil \text { round } x \text { up }
\end{aligned}
$$

- Uses logical shift
- Pink part would be remainder / fractional part (right of the point)
- Shift just drops it: equivalent to rounding down

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	0011101101101101
$x \gg 1$	7606.5	7606	1D B6	0001110110110110
$x \gg 4$	950.8125	950	03 B6	0000001110110110
$x \gg 8$	59.4257813	59	00 3B	0000000000111011

Signed Power-of-2 Divide with Shift (Almost)

- Quotient of signed by power of 2
- x >> k gives $\left\lfloor\mathrm{x} / 2^{k}\right.$ 」
- Uses arithmetic shift
- Also rounds down, again by dropping bits
- But signed division should round towards 0! (that's its math definition)
- That means rounding up for negative numbers!

- Example, 4 bits: -6 / 4 = -1.5 (should round towards 0, to -1)
- $1010_{2} \gg 2=1110_{2}=-2_{10}$
- Rounds the wrong way!

Correct Signed Power-of-2 Divide

- Want $\left\lceil\mathbf{x} / \mathbf{2}^{\boldsymbol{k}\rceil \text { (round towards } 0 \text {) }) ~(x) ~}\right.$
- Math identity: $\lceil\mathbf{x} / \mathbf{y}\rceil=\lfloor(\mathbf{x}+\mathbf{y - 1}) / \mathbf{y}\rfloor$
- Compute negative case as $\left\lfloor\left(\mathbf{x}+\mathbf{2}^{k}-1\right) / \mathbf{2}^{k}\right\rfloor \rightarrow$ gets us correct rounding!
- Computing both cases in $\mathrm{C}:(\mathrm{x}<0$? $(\mathrm{x}+(1 \ll \mathrm{k})-1): \mathrm{x}) \gg \mathrm{k}$
- Biases dividend toward 0

$$
\text { all bits at positions } 0 \ldots(\mathrm{k}-1) \text { are } 0
$$

- Case 1: No rounding

Dividend:

Biasing has no effect; all affected bits are dropped

- Example, 4 bits: -8/2 $\mathbf{2}^{\mathbf{2}} \mathbf{= - 2 \quad \text { bias } = (1 \ll 2) - 1 = 3}$
- $(1000+0011) \gg 2=1011 \gg 2=1110=-2_{10} \quad$ (correct, no rounding)

Correct Signed Power-of-2 Divide (Cont.)

Biasing adds 1 to final result; just what we wanted

- Example, 4 bits: $\mathbf{- 6} / \mathbf{2}^{\mathbf{2}}=\mathbf{- 1} \quad$ bias $=(\mathbf{1} \ll \mathbf{2}) \mathbf{- 1}=3$
- $(1010+0011) \gg 2=1101 \gg 2=1111=-1_{10} \quad$ (correct, rounds towards 0$)$
- Compiler does that for you (but you need to be able to read it!)

