Lecture 03
Integer Operations

CS213 — Intro to Computer Systems
Branden Ghena — Spring 2021

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Today’s Goals

 Explore operations we can perform on binary numbers
» Understand the edge cases of those operations

» Discuss performance of various operations

C versus the hardware

 Operations you can perform on binary numbers have edge
conditions

 Usually going above or below the bit width

« If we say what happens in that scenario, it'll be what
“the hardware” (i.e., a computer) does

 In today’s examples, pretty much every computer does the same thing

 That is not the same as what C does
» Unclear choices are left as: UNDEFINED BEHAVIOR (@)

Outline
 Addition

« Negation and Subtraction

» Shifting
 Multiplication

» Optimizations

Unsigned Addition

» Like grade-school addition, but in base 2, and ignores final carry
« If you want, can do addition in base 10 and convert to base 2. Same
result!

- Example: Adding two 4-bit numbers

111

0101
+ 0011

1000

*5,0+310=8p vV

Unsigned Addition and Overflow
« What happens if the numbers get too big?

- Example: Adding two 4-bit humbers

1111

1101
+ 0011

10000

« 13,, + 3,0 = 164
 Too large for 4 bits! Overflow
« Result is the 4 least significant bits (all we can fit): so 04,
« Gives us modular (= modulo) behavior: 16 modulo 24 = 0

Modulo behavior in binary humbers

o~
1111 0001
1110 0010
1101 0011
1100 0100
1011 0101
1010 0110
1001 0111

u+v u+v<2V?

Basis for unsigned addition UAdd, () = {

u+v=-2" u+v>2"

« Implements modular arithmetic
s = UAdd,(u,v) = (u+v) mod2v

« Need to drop carry bit, otherwise results will keep getting bigger
- Example in base 10: 80,, + 40,, = 120,, (2-digit inputs become a 3-digit output!)

U
+ v

Operands: w bits

True Sum: w+1 bits utv [

UAdd Result: w bits UAdd, (u, v)

« Warning: C does not tell you that the result had an overflow!
« Unsigned addition in C behaves like modular arithmetic

Signed (2's Complement) Addition

Operands: w bits u 22

+ v o0 0
True Sum: w+1 bits u-+v oo o
TAdd Result: w bits TAdd, (u , v) ©o o

» TAdd and UAdd have Identical Bit-Level Behavior
* Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
. VV”|§ﬂV€ s ==

 Signed and unsigned sum have the exact same bit-level representation
« Most computers use the same machine instruction, same hardware!
« That's a big reason 2's complement is so nice! Shares operations with unsigned

Signed addition example

« Same addition method as unsigned
- Example: Adding two 4-bit signed nhumbers

1011 (-8 + 3 = -5)
+ 0011 (+3)
1110 (-8 + 6 =-2)

* 5,0+ 310=-2yp ¥V

10

Combining negative and positive humbers

 Overflow sometimes makes signed addition work!
- Example: Adding two 4-bit signed nhumbers

1111

1101 (-8 +5 =-3)
+ 0011 (+3)
10000

* =310+ 310 = 0y
« Too large for 4 bits! Drop the carry bit
« Number is what we expect

11

Signed addition and overflow

 Overflow can still happen in signed addition though
- Example: Adding two 4-bit signed nhumbers

111

0101
+ 0011

1000

* 550 + 310 = -8, (+8is too big to fit)

« Remember, this was also unsigned 5;¢ + 310 = 849

12

Signed addition and underflow

« Underflow happens in the negative direction
- Example: Adding two 4-bit signed nhumbers

1 11

1011
+ 1011
10110

¢ =50 + 519 = +6,, (-10 was too small to fit)

13

TAdd Overflow

 Can overflow two ways!
» By going too far into the positives
« ORtoo far into the negatives!

* Modular behavior either way

« BUT, beware signed overflow in C
« UNDEFINED BEHAVIOR
« Compiler probably does modular result

TAdd (u,v)=

) -

u+tv+2¥ ut+tv< TMinW (NegOver)

u+tv TMin, Eu+vE TMax,

u+tv-2" TMax, <u+v (PosOver)

Positive Overflow

TAdd(u , v) |
>0 \\i.

V

<°X

/<Ou>0

Negative Overflow 14

Special boss in Chrono Trigger

* Dream Devourer
 Special boss in the Nintendo DS edition

NINTENDBDS“

« Wanted to make it even more challenging
« 32000 hit points
 Takes forever to defeat

» Hit points stored as a 16-bit signed integer
« Range: -32768 to +32767

15

Chrono Trigger signed overflow bug

e Solution: heal it

« Hit points go negative
and it dies

Outline
« Addition

* Negation and Subtraction

» Shifting
 Multiplication

» Optimizations

Negating with Complement & Increment

» Claim: Following holds for 2's complement
* X+ 1==X x [1]o[o[z[z]z]o]2

« Complement
« Observation: ~x + x == 1111...11, == -1 -1 [Tl

 Increment

. ~x+1==@-x+1==@-x-l/1/==-x

e vX + 1 == -X

- Example, 4 bits: 6,5, = 0110,
« Complement: 1001, — Increment = 1010, = -8 + 2 = -64,

18

Subtraction in two’s complement

 Subtraction becomes addition of the negative number
+5-3 =5+-3 =2

 Unsigned subtraction
 Treat subtractor as two’s complement number and make it negative
Do addition
« Treat result as an unsigned number

11 1

0101 (+5)
+ 1101 (-3)
10010

19

Question + Break
* In 8-bit two’s complement:

¢ What iS 12010 - 2010?

- What is 0x84 - 0x20?

20

Question + Break
* In 8-bit two’s complement:

d What iS 12010 - 2010?
* Solve as decimal. Then translate
o 10010 — 011001002

- What is 0x84 - 0x20?
» Solve as hexadecimal. Then translate
* Ox64 = 0b01100100

21

Outline
« Addition

« Negation and Subtraction

- Shifting
 Multiplication

» Optimizations

Left Shift: x << y

« Shift bit-vector x left y positions
« Throw away extra bits on left

« Same behavior for signed and unsigned: fill open bits with 0

 Equivalent to multiplying by 2Y
« And then taking modulo (i.e. truncating overflow bits)

Argument x 00000010
<< 3 £0000010000

Argument x 10100010
<< 3 10100010000

« Undefined behavior in C when:
*x << y,Wherey < 0,0ry 2 bit width (x)
* x << y, where some non-0 bits get shifted off (probably they get truncated)

Right Shift: x >> y

« Shift bit-vector x right y positions
« Throw away extra bits on right

 But how to fill the new bits that open up?
« Will depend on signed vs unsigned

« Unsigned: Logical shift
« Always fill with O’s on left

 Signed: Arithmetic shift
 Replicate most significant bit on left

« Necessary for two’s complement integer representation (sign extension!)

« Undefined behavior in C when:
*x >> y,Wherey < 0,0ry 2 bit width (x)

Argument x | 01100010
Log.>> 2 | 00011000
Arith. >> 2 | 00011000
Argument x | 10100010
Log.>> 2 | 00101000
Arith. >> 2 | 11101000

24

Practice shifting in C

unsigned char x = 0b10100010;
x << 3 =7 0b00010000

unsigned char x = 0b10100010; // same
X >> 2 =7 0b00101000

signed char x = 0b10100010; // same
X >> 2 =72 0b11101000

Note:
GCC supports the prefix 0b for binary literals (like 0x... for hex) directly in C.

This is not part of the C standard! It may not work on other compilers.

Outline
« Addition

« Negation and Subtraction

» Shifting
« Multiplication

» Optimizations

Multiplication

« Goal: Compute the Product of webit numbers x, y
« Either signed or unsigned

 But, exact results can be bigger than w bits
« Around double the size (2w), in fact!

« Example in base 10: 50,4, * 20,, = 1000,
* (2-digit inputs become a 4-digit output!)

« As with addition, result is truncated to fit in w bits
« Because computers are finite, results can’t grow indefinitely

27

Unsigned Multiplication

u o 00

Operands: w bits
X Vv o 00
True Product: 2*w bits u© Vv o0 0 o0 0
Discard w bits: w bits UMultW(u ’ V) 200

- Standard Multiplication Function
 Equivalent to grade-school multiplication
 But ignores most significant w bits of the result
« Again, can do base 10 multiplication, convert to base 2, then truncate

- Implements Modular Arithmetic
UMult (v, V= (u* v) mod 2%

Unsigned multiplication
- Example: Multiplying two 4-bit humbers

0010
x 102011

0010
00000
001000

+ 0000000

0001010

2:0%5,0=10, ¢V

29

Signed (2's Complement) Multiplication

u (K)

Operands: w bits
X v XX
True Product: 2*w bits ¢ - v o o o o
Discard w bits: w bits TMultW(u) V) ©oe0 o

- Standard Multiplication Function
 Ignores most significant w bits
« Some of which are different for signed vs. unsigned multiplication
» Need to do sign extension to ensure correct result in upper bits
« Lower bits are the same, so can use same machine instruction for both!
« Again, that’s one reason why 2's complement is so nice

* In C, signed overflow is undefined
» ...but probably you’ll see the two’s complement behavior

30

Outline
« Addition

« Negation and Subtraction
» Shifting

 Multiplication

« Optimizations

What about division?

» Similar to long division process
 Tedious and complicated to get right

« Even more complicated than multiply to make work in hardware
 ['ve worked on a computer that didn't even have divide

32

Concept: Not all operations are equally expensive!

« Some operations are pretty simple to perform in hardware
 E.g., addition, shifting, bitwise operations
* Also true of doing the same by hand on paper

 Others are much more involved
 E.g., multiplication, or even more so division
 Consider long multiplication / long division; quite tedious!
« Hardware is not doing the exact same thing, but similar principle

« Trick: try to replace expensive operations with simple ones!
« Doesn’t work in all cases, but often does when mult/div by constants

33

Multiplication as shift operations

« Multiply 2 x 5:

0010
x 0101

0010
00000
001000

+ 0000000

0001010

« This is actually just bit shifts and
additions

«2x5=(2<<0)+(2<<?2)
=2+38
= 10

34

Power-of-2 Multiply with Left Shift

- Operation
e u << k gives u * 2
 Both signed and unsigned

Operands: w bits

True Product: w+k bits

Discard k bits: w bits

« Examples
. u<< 3 ==
e (u << 5) - (u << 3) ==

« Can combine muItiEIe shifts with addition to get multiplications

by non-powers-of-

k
u (I K
*2% [0 _eee TOITOI eee 10I0
u - 2k 00 eee |0]0]
UMult, (u ,2k) YY) o000 OJD_
TMult, (u , 2¥)
u * 8

u* 32 —u * 8 =u * 24

Shift to divide

» Division works too
e unsighed intx =y / 2; unsigned intx =y >> 1;

« Even more important because division is a complicated operation
« Multiply is implemented in simple hardware on most systems

« Compiler might actually translate your divide by powers of two into shift
operations though!

« Warning: rounding needs to be handled correctly for signed
numbers and division

 See bonus slides

36

Compilers automatically chose the best operations

 Should you use shifts instead of multiply in your C code?
* NO

» Just write out the multiplication
 Multiplication is more readable if that’s what you meant
« Compiler automatically converts code for you for best performance

» These two mean the same thing, but one is way more
understandable
e intx =y * 32;
e intx = (y << 5);

37

C code translation

» Steps for C

CALL

1. Compiler
2. Assembler
3. Linker

4. Loader

C program: foo.c

Assembly program: £foo.s

L e

Object (mach lang module): foo .o

Executable (mach lang pgm):
a.out

Memory

lib.o

38

Compiler

 Input: higher-level language code (C, C++, Java, etc.)
« Qutput: assembly language code (for a particular computer)

* Process
« Handle pre-processor (defines and includes)
 Preform optimizations on code
« Make it faster (such as divide-into-shift)
« Make it use less memory (eliminate unused variables)

 Entire course worth of material here: CS322

39

Outline
« Addition

« Negation and Subtraction

» Shifting
 Multiplication

» Optimizations

Outline

» Dividing with bit shift

Unsigned Power-of-2 Divide with Right Shift

« Quotient of unsigned by power of 2

e u>k gves Lu/ 2¢]
 Uses logical shift

| x |: round x down
|_x—|:roundxup

 Pink part would be remainder / fractional part (right of the point)
- Shift just drops it: equivalent to roupding down

Operands: Binary Point
/ 2k Ol eee [OITIO] e [0]0
Division: w2 O O T e
Result: Lu/2¢] [O] -~ JOJO
Division Computed Hex Binary

X 15213 15213 3B oD| 00111011 01101101
X >> 1 7606.5 7606 1D B6| 00011101 10110110
X >> 4 050.8125 950 03 B6| 00000011 10110110
x >> 8 | 594257813 59 00 3B| 00000000 0OO0111011

42

Signed Power-of-2 Divide with Shift (Almost)

« Quotient of signed by power of 2
- x > k gives |x / 2]
 Uses arithmetic shift
 Also rounds down, again by dropping bits
 But signed division should round towards 0! (that's its math definition)

« That means rounding up for negative numbers!
k

/ 2k O oo o O 1 O oo o O O

Division: x/ 2k XX XX _

Result: RoundDown(x / 2F)

 Example, 4 bits: -6 / 4 = -1.5 (should round towards O, to -1)

« Rounds the wrong way!

43

Correct Signed Power-of-2 Divide

« Want [x / 2%¥] (round towards 0)
. Math identity: [x /yl =L (x+y-1) /vy
« Compute negative case as | (x+2%-1)/ 2%k] — gets us correct rounding!
« Computing both cases in C: (x<0 ? (x + (1<<k)-1) : x) >> k

 Biases dividend toward 0
all bits at positions 0...(k-1) are O

- Case 1: No rounding) /

Dividend: X 1 O] e« |0O]O
+2k 1 O e |O]O]2] e [1]|1

il T -+ [1]1] Binary Point

Divisor: / 2k [0O] e« |O]L1]O] ¢+ |O]O /

/
I—X/Zk—| 1 eeo e 11111 eo e :1 eo e 111

Biasing has no effect; all affected bits are dropped

« Example, 4 bits: -8 / 22 = -2 bias = (1<<2)-1 =3
« (1000 + 0011) >>2=1011 >> 2 = 1110 = -2,, (correct, no rounding)

Correct Signed Power-of-2 Divide (Cont.)

Case 2: Roundmg some bits at positions 0...(k-1) are 1

4
Dividend: A AEEEE
+2k 1 O] o« JOJOJ1| 2 J1]1
1
LN v J
Incremented by 1 Binary Point
Divisor: / 2k |0] e+ JOJZ]O] -<- fO]O /
/
[x/2¢] [A] -~ JI[1[T f
LN J
Y

Incremented by 1

Biasing adds 1 to final result; just what we wanted

« Example, 4 bits: -6 / 22 = -1 bias = (1<<2)-1 =3
(1010 + 0011) >> 2 =1101 >> 2 = 1111 =-1,, (correct, rounds towards 0)

- Compiler does that for you (but you need to be able to read it!)

45

