Lecture 03 Integer Operations

CS213 – Intro to Computer Systems Branden Ghena – Spring 2021

Slides adapted from:

St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Today's Goals

Explore operations we can perform on binary numbers

Understand the edge cases of those operations

Discuss performance of various operations

C versus the hardware

- Operations you can perform on binary numbers have edge conditions
 - Usually going above or below the bit width
- If we say what happens in that scenario, it'll be what "the hardware" (i.e., a computer) does
 - In today's examples, pretty much every computer does the same thing
- That is not the same as what C does
 - Unclear choices are left as: UNDEFINED BEHAVIOR

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Unsigned Addition

- Like grade-school addition, but in base 2, and ignores final carry
 - If you want, can do addition in base 10 and convert to base 2. Same result!
- Example: Adding two 4-bit numbers

$$\begin{array}{r} 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ + & 0 & 0 & 1 \\ \hline 1000 & & & & \end{array}$$

$$\cdot 5_{10} + 3_{10} = 8_{10}$$

Unsigned Addition and Overflow

- What happens if the numbers get too big?
- Example: Adding two 4-bit numbers

$$\begin{array}{r} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ + & 0 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \end{array}$$

- $13_{10} + 3_{10} = 16_{10}$
 - Too large for 4 bits! Overflow
 - Result is the 4 least significant bits (all we can fit): so 0_{10}
 - Gives us modular (= modulo) behavior: 16 modulo $2^4 = 0$

Modulo behavior in binary numbers

Basis for unsigned addition

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

- Implements modular arithmetic
 - s = $UAdd_w(u, v)$ = $(u + v) \mod 2^w$
- Need to drop carry bit, otherwise results will keep getting bigger
 - Example in base 10: $80_{10} + 40_{10} = 120_{10}$ (2-digit inputs become a 3-digit output!)

- · Warning: C does not tell you that the result had an overflow!
 - Unsigned addition in C behaves like modular arithmetic

Signed (2's Complement) Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

- Will give s == t
- Signed and unsigned sum have the exact same bit-level representation
 - Most computers use the same machine instruction, same hardware!
 - That's a big reason 2's complement is so nice! Shares operations with unsigned

Signed addition example

- Same addition method as unsigned
- Example: Adding two 4-bit signed numbers

$$\begin{array}{r}
 1011 \\
 + 0011 \\
 \hline
 1110 \\
 \end{array}
 \begin{array}{r}
 (-8 + 3 = -5) \\
 + 3) \\
 \hline
 -8 + 6 = -2)
 \end{array}$$

$$\cdot -5_{10} + 3_{10} = -2_{10}$$

Combining negative and positive numbers

- Overflow sometimes makes signed addition work!
- Example: Adding two 4-bit signed numbers

$$\cdot -3_{10} + 3_{10} = 0_{10}$$

- Too large for 4 bits! Drop the carry bit
- Number is what we expect

Signed addition and overflow

- Overflow can still happen in signed addition though
- Example: Adding two 4-bit signed numbers

$$\begin{array}{r} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 1 & 0 & 0 \\ \end{array}$$

- $5_{10} + 3_{10} = -8_{10}$ (+8 is too big to fit)
- Remember, this was also unsigned $5_{10} + 3_{10} = 8_{10}$

Signed addition and underflow

- Underflow happens in the negative direction
- Example: Adding two 4-bit signed numbers

•
$$-5_{10} + -5_{10} = +6_{10}$$
 (-10 was too small to fit)

TAdd Overflow

- Can overflow two ways!
 - By going too far into the positives
 - OR too far into the negatives!
- Modular behavior either way
 - BUT, beware signed overflow in C
 - UNDEFINED BEHAVIOR
 - Compiler probably does modular result

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \in u+v \in TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Special boss in Chrono Trigger

- Dream Devourer
 - Special boss in the Nintendo DS edition
- Wanted to make it even more challenging
 - 32000 hit points
 - Takes *forever* to defeat

• Range: -32768 to +32767

Chrono Trigger signed overflow bug

Solution: heal it

 Hit points go negative and it dies

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Negating with Complement & Increment

• Claim: Following holds for 2's complement

•
$$\sim x + 1 == -x$$

Complement

• Observation:
$$\sim x + x == 1111...11_2 == -1$$

• Increment

•
$$\sim x + 1 = = \sim x + x - x + 1 = = -1 - x + 1 = = -x$$

• $\sim x + 1 = = -x$

- Example, 4 bits: $6_{10} = 0110_2$
 - Complement: $1001_2 \rightarrow Increment = 1010_2 = -8 + 2 = -6_{10}$

Subtraction in two's complement

Subtraction becomes addition of the negative number

$$\bullet 5 - 3 = 5 + -3 = 2$$

- Unsigned subtraction
 - Treat subtractor as two's complement number and make it negative
 - Do addition
 - Treat result as an unsigned number

1
 1

Question + Break

• In 8-bit two's complement:

• What is $120_{10} - 20_{10}$?

What is 0x84 - 0x20?

Question + Break

• In 8-bit two's complement:

- What is $120_{10} 20_{10}$?
 - Solve as decimal. Then translate
 - $100_{10} = 01100100_2$

- What is 0x84 0x20?
 - Solve as hexadecimal. Then translate
 - 0x64 = 0b01100100

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Left Shift: x << y

- Shift bit-vector x left y positions
 - Throw away extra bits on left
- Same behavior for signed and unsigned: fill open bits with 0
- Equivalent to multiplying by 2^y
 - And then taking modulo (i.e. truncating overflow bits)

Argument x	0000010
<< 3	000 00010 <u>000</u>

Argument x	10100010
<< 3	101 00010 <u>000</u>

- Undefined behavior in C when:
 - $x \ll y$, where $y \ll 0$, or $y \ge bit width(x)$
 - $\mathbf{x} << \mathbf{y}$, where some non-0 bits get shifted off (*probably* they get truncated)

Right Shift: x >> y

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- But how to fill the new bits that open up?
 - Will depend on signed vs unsigned

• Unsigned: Lo	gical s	shift
----------------	---------	-------

Always fill with 0's on left

Argument x	<u>0</u> 1100010
Log. >> 2	<u>00</u> 011000
Arith. >> 2	<u>00</u> 011000

Argument x	<u>1</u> 0100010	
Log. >> 2	<u>00</u> 101000	
Arith. >> 2	<u>11</u> 101000	

- Signed: Arithmetic shift
 - Replicate most significant bit on left
 - Necessary for two's complement integer representation (sign extension!)
- Undefined behavior in C when:
 - $x \gg y$, where y < 0, or $y \ge bit_width(x)$

Practice shifting in C

```
unsigned char x = 0b10100010;
  x << 3 = ? 0b00010000
unsigned char x = 0b10100010; // same
 x >> 2 = ? 0b00101000
signed char x = 0b10100010; // same
 x >> 2 = ? 0b11101000
```

Note:

GCC supports the prefix 0b for binary literals (like 0x... for hex) directly in C. This is not part of the C standard! It may not work on other compilers.

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Multiplication

- Goal: Compute the Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Around double the size (2 w), in fact!
 - Example in base 10: $50_{10} * 20_{10} = 1000_{10}$
 - (2-digit inputs become a 4-digit output!)
- As with addition, result is truncated to fit in w bits
 - Because computers are finite, results can't grow indefinitely

Unsigned Multiplication

Standard Multiplication Function

- Equivalent to grade-school multiplication
- But ignores most significant w bits of the result
- Again, can do base 10 multiplication, convert to base 2, then truncate

Implements Modular Arithmetic

$$UMult_{w}(u, v) = (u \cdot v) \mod 2^{w}$$

Unsigned multiplication

Example: Multiplying two 4-bit numbers

$$2_{10} * 5_{10} = 10_{10}$$

Signed (2's Complement) Multiplication

Standard Multiplication Function

- Ignores most significant w bits
- Some of which are different for signed vs. unsigned multiplication
 - Need to do sign extension to ensure correct result in upper bits
- Lower bits are the same, so can use same machine instruction for both!
 - Again, that's one reason why 2's complement is so nice

In C, signed overflow is undefined

...but probably you'll see the two's complement behavior

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

What about division?

- Similar to long division process
 - Tedious and complicated to get right
- Even more complicated than multiply to make work in hardware
 - I've worked on a computer that didn't even have divide

Concept: Not all operations are equally expensive!

- Some operations are pretty simple to perform in hardware
 - E.g., addition, shifting, bitwise operations
 - Also true of doing the same by hand on paper
- Others are much more involved
 - E.g., multiplication, or even more so division
 - Consider long multiplication / long division; quite tedious!
 - Hardware is not doing the exact same thing, but similar principle
- Trick: try to replace expensive operations with simple ones!
 - Doesn't work in all cases, but often does when mult/div by constants

Multiplication as shift operations

Multiply 2 x 5:

This is actually just bit shifts and additions

•
$$2 \times 5 = (2 << 0) + (2 << 2)$$

= $2 + 8$
= 10

Power-of-2 Multiply with Left Shift

Operation

- u << k gives u * 2^k
- Both signed and unsigned

Examples

 Can combine multiple shifts with addition to get multiplications by non-powers-of-2

Shift to divide

- Division works too
 - unsigned int x = y / 2; unsigned int x = y >> 1;
- Even more important because division is a complicated operation
 - Multiply is implemented in simple hardware on most systems
 - Compiler might actually translate your divide by powers of two into shift operations though!
- Warning: rounding needs to be handled correctly for signed numbers and division
 - See bonus slides

Compilers automatically chose the best operations

- Should you use shifts instead of multiply in your C code?
 - · NO
- Just write out the multiplication
 - Multiplication is more readable if that's what you meant
 - Compiler automatically converts code for you for best performance
- These two mean the same thing, but one is way more understandable
 - int x = y * 32;
 - int x = (y << 5);

C code translation

Steps for C

CALL

- 1. **C**ompiler
- 2. Assembler
- 3. **L**inker
- 4. **L**oader

Compiler

- Input: higher-level language code (C, C++, Java, etc.)
- Output: assembly language code (for a particular computer)

- Process
 - Handle pre-processor (defines and includes)
 - Preform optimizations on code
 - Make it faster (such as divide-into-shift)
 - Make it use less memory (eliminate unused variables)
- Entire course worth of material here: CS322

Outline

- Addition
- Negation and Subtraction
- Shifting
- Multiplication
- Optimizations

Outline

• Dividing with bit shift

Unsigned Power-of-2 Divide with Right Shift

- Quotient of unsigned by power of 2
 - $u \gg k$ gives $\lfloor u / 2^k \rfloor$
 - Uses logical shift
 - Pink part would be remainder / fractional part (right of the point)
 - Shift just drops it: equivalent to rounding down

	Division	Computed	Hex	Binary
X	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 В6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

 $\lfloor x \rfloor$: round x down

x : round x up

Signed Power-of-2 Divide with Shift (Almost)

- Quotient of signed by power of 2
 - $x \gg k$ gives $\left[x / 2^{k} \right]$
 - Uses arithmetic shift
 - Also rounds down, again by dropping bits
 - But signed division should round **towards 0!** (that's its math definition)
 - That means rounding *up* for negative numbers!

- Example, 4 bits: -6 / 4 = -1.5 (should round towards 0, to -1)
 - $1010_2 >> 2 = 1110_2 = -2_{10}$
 - Rounds the wrong way!

Correct Signed Power-of-2 Divide

• Want $\lceil x / 2^k \rceil$ (round towards 0) • Math identity: [x / y] = [(x + y - 1) / y]• Compute negative case as $\lfloor (x+2^k-1) / 2^k \rfloor \rightarrow \text{gets us correct rounding!}$ • Computing both cases in C: (x<0 ? (x + (1<< k)-1) : x) >> k Biases dividend toward 0 all bits at positions 0...(k-1) are 0 **Case 1: No rounding** Dividend: $\boldsymbol{\mathcal{X}}$ $+2^{k}-1$ **Binary Point** Divisor: $\int 2^k$ $\left[x/2^{k} \right]$

Biasing has no effect; all affected bits are dropped

• Example, 4 bits: -8 /
$$2^2 = -2$$
 bias = (1<<2)-1 = 3
• (1000 + 0011) >> 2 = 1011 >> 2 = $1110 = -210$ (correct, no rounding)

Correct Signed Power-of-2 Divide (Cont.)

Case 2: Rounding some bits at positions 0...(k-1) are 1

Biasing adds 1 to final result; just what we wanted

- Example, 4 bits: -6 / $2^2 = -1$ bias = (1<<2)-1 = 3 • $(1010 + 0011) >> 2 = 1101 >> 2 = 1111 = -1_{10}$ (correct, rounds towards 0)
- Compiler does that for you (but you need to be able to read it!)