
Lecture 01
Introduction

CS213 – Intro to Computer Systems

Branden Ghena – Spring 2021

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Welcome to CS213!

• In brief: How does a computer work anyway?

• We will explore that question across four major sections:
• Representations of information on a computer

• How the machine executes software

• How memory is organized

• How the operating system manages this all for efficiency and security

2

Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech

• Master’s: University of Michigan

• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems

• Low-energy wireless networks

• Embedded operating systems

• Teaching
• Computer Systems

• Fundamentals of Computer Programming II

• Operating Systems

• Microprocessor System Design

• Wireless Protocols for the IoT

3

Things I love

Today’s Goals

• Introduce the theme and goals of the course

• Describe how this class is going to function

• Discuss how a computer system works at a high level

• Begin exploring how computers represent information with bits
and bytes

4

5

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

Convenient computing

• Computers operate on integers, reals, structs, arrays, etc.

• Computers operate on variables and functions

• Computers execute conditionals, loops, etc.

• Memory is an infinite bag of objects my program can allocate

• Memory doesn’t have to be shared with any other program

• Memory is always equivalently fast to access

• Etc.

6

Convenient illusions in computing

• Computers operate on integers, reals, structs, arrays, etc.

• Computers operate on variables and functions

• Computers execute conditionals, loops, etc.

• Memory is an infinite bag of objects my program can allocate

• Memory doesn’t have to be shared with any other program

• Memory is always equivalently fast to access

• Etc.

• None of these are actually true!
• But we usually program as if they were, and we get away with it!

• What’s going on?

7

The power of abstraction

• These illusions are really abstractions

• They approximate reality, but leave out details
• Instead, they provide an interface that we can work and think with

• We can forget about those details, and be more productive

• Abstractions we love
• Abstract data types
• Asymptotic analysis
• High-level programming languages
• Operating systems
• Etc.

8

The Limits of Abstraction

• Sometimes, abstractions break down
• Their implementation is buggy
• Mismatch between expected interface and implementation
• Their performance is inadequate
• We need control over the details they hide
• Security concerns make these details important

• At that point, details come rushing back
• Can’t pretend they don’t exist anymore
• We must know how to deal with them

• This class is about being ready when that happens

9

Expectation/Implementation Mismatch

• Ariane 5 explosion (1996)
• Inertial reference system converted a 64-bit float to a 16-bit integer

• Had worked in the past in Ariane 4, but Ariane 5 was faster

• Speed too large to fit in a 16-bit integer -> software fault

• Expectation: inertial reference system could handle any rocket

• Reality: guidance system faults when traveling at supersonic speeds

10

Inadequate performance

• Abstracted lower-level details can affect performance a lot!

• Web accelerators: Squid vs Varnish
• Varnish is designed to take advantage of virtual memory, Squid is not

• Squid needed 12 servers running at 100% CPU usage

• Varnish needed 3 servers running at 10% CPU usage for the same load

• http://queue.acm.org/detail.cfm?id=1814327

• Cache friendliness: latter is 10-32 times slower on Intel systems

11

void copyji(int src[4096][4096],
int dst[4096][4096])

{
int i,j;
for (j = 0; j < 4096; j++)
for (i = 0; i < 4096; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[4096][4096],
int dst[4096][4096])

{
int i,j;
for (i = 0; i < 4096; i++)
for (j = 0; j < 4096; j++)
dst[i][j] = src[i][j];

}

http://queue.acm.org/detail.cfm?id=1814327

Security concerns

• Recent example: Meltdown and Spectre (2018)
• https://meltdownattack.com/

• Speculative execution on processors allows code to run before checking if
it should run

• Cache timing attacks can tell if some value was recently loaded from
memory

• Combination: attacker can read memory that should be protected

• Huge vulnerability that was actually easy to understand

• But no one had realized it existed!

12

https://meltdownattack.com/

CS213 goals

1. Break through abstractions to understand how computer
processors and memories affect software design and
performance.

2. Introduce concepts of “computer systems” areas:
• Architecture, Compilers, Security, Embedded, Operating Systems, etc.

13

Course design goal

• Most systems courses are builder-centric
• Computer Architecture: design a pipelined processor in Verilog
• Operating Systems: implement portions of an operating system
• Compilers: write a compiler for a simple language
• Networking: Implement and simulate network protocols
• Fun, for sure

• But ultimately, many more of you will build on systems
• Rather than build systems directly

• This course is programmer-centric
• Purpose is to show that by knowing more about the underlying system, one can

be more effective as a programmer
• Not just a course for dedicated hackers

• We bring out the hacker in everyone!

14

15

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

Course Staff

• TA: Drake Han
• PhD student in Computer Engineering

• PMs:
• Huaxuan Chen, Seth May,

Neil Vakharia, Spencer Colton,
Jacob Tucker, Anthony Roytman,
Atishay Saraogi, Peter Ha

16

Course details

• Lectures: synchronous, recorded via Zoom
• Please attend and ask questions!
• Panopto tab on Canvas will have recordings (a few hours later)

• Office hours: (start next week)
• Via gather.town
• More info will be posted to Campuswire when schedule is ready
• Scheduling a wide range of hours to work for everyone

• Can reach out on Campuswire to schedule a meeting too

• Textbook:
• Computer Systems: A Programmer’s Perspective 3rd Edition
• A very useful reference

17

https://gather.town/

Asking questions

• Class and office hours are always an option!

• Campuswire: (similar to piazza)
• Post questions

• Answer each other’s questions

• Find lab partners

• Find posts from the course staff

• Post private info just to course staff

• Please do not email me! Post to Campuswire instead!
• I’ll be updating roster again a few times

18

Programming Labs

• Four labs
• Data Lab – manipulate bits and bytes
• Bomb Lab – deconstruct software to understand it
• Attack Lab – exploit security vulnerabilities in software
• SETI Lab – make software faster with concurrency

• Work on these preferably as a group of two
• Work together and don’t split up assignments (otherwise you won’t learn)
• Individual is acceptable but less good

• Very different from CS211 style projects
• Emphasis on the thinking rather than the programming

19

Grades

• Grade breakdown
• 50% Programming Labs (4 labs at 12.5% each)

• 20% Homeworks (4 homeworks at 5% each)

• 15% Midterm Exam 1

• 15% Midterm Exam 2

• Exact number to letter mapping is flexible
• But this course is not curved

• Exams will be synchronous during class time
• With an alternate time for students in opposite timezones

20

Academic Integrity

• This is something I take very seriously

• Collaboration good; plagiarism bad
• You should know where that line is, and be nowhere near it
• When in doubt, ask the instructor before you do something you’re not sure

about

• At no point should you see someone else’s solutions
• Not your colleagues’, not your friends’, not your cousin’s, not something

you found online

• I report everything suspicious to the dean

21

Expectations

• This class is hard
• And it’s hard in a different way. So much new material that interacts

• Opportunity to learn a lot from it

• I’m confident that you can all succeed
• Every CS student has to pass through this course

• Labs, Homeworks, Lecture, Office Hours all designed to support you

• You’ll gain a much deeper understanding of how computers operate
• Maybe it’s not for you, maybe you’ll love it

22

How to succeed in this class

• Do the readings

• Come to lecture

• Ask questions

• Solve practice problems in the textbook

• Start assignments early

• Stay on top of the material

23

Architecture of a lecture

24

A
tt

en
ti

o
n

Time (minutes)

0 20 25 50 53 78 80

Administrivia
+ stretch break

Summary
+ Bonus

Open
Question

Full

25

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

Hello World

• What happens when you run “hello” on your system?
• And why does it happen?

• Goal: introduce key concepts, terminology, and components

/*

* hello world

*/

#include <stdio.h>

int main()

{

printf(“hello, world\n”);

}

26

Compiling hello

• Compiling hello

• GCC is our compiler

• It takes our source code (hello.c)
• A text file containing characters
• Text file = readable by humans

• And translates (compiles) it into assembly code
• A text representation of x86 instructions
• Here, not explicitly stored in a file
• We’ll be working with assembly a lot this quarter

• Then translates (assembles) that into an executable (hello)
• A binary file containing x86 machine code
• Binary file = not meant to be read by humans (but sometimes we have to)

unix> gcc –o hello hello.c

27

Running hello

• Running hello

• What does the shell do?
• Prints a prompt

• Waits for you to type a command

• Then loads and runs the hello program

• What happens at the hardware level?

unix> ./hello

hello, world

unix>

28

Hardware organization

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

Buses: transfer data

Input/Output (I/O) Devices:

System connections to outside world.

Main mem.: Temporary storage

device. Holds both a program

and the data it manipulates.

Processor: Executes

instructions stored in

main memory

Disk: Persistent

storage device
29

Running hello

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

./hello

User types ./hello

Reading the ./hello command

from the keyboard

Mouse Keyboard

30

Running hello

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

Shell program loads the hello

executable into main memory

hello code

./hello

hello executable

stored on disk

Mouse Keyboard

31

Running hello

Main

memory
I/O

bridge
Processor

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Display

Disk

I/O bus

Expansion slots for

other devices such

as network adapters

hello executable

stored on disk
"hello,world\n"

The processor reads the hello code,

executes instructions, and displays “hello…”

hello code

./hello

Mouse Keyboard

32

Operating system

• Neither hello nor our shell interfaced with the hardware directly
• All interactions were mediated by the operating system

• Operating system: a layer of software interposed between the
application program and the hardware

• Primary goals
• Protect resources from misuse by applications
• Provide simple and uniform mechanisms for manipulating hardware devices
• Manage sharing of resources between applications

Application programs

Processor Main memory I/O devices

Operating system

Software

Hardware

33

A computer system is more than just HW

• A collection of intertwined hardware and software that must
cooperate to achieve the end goal – running applications
• Hardware: expensive, fast, immutable

• Software: cheap (comparatively), flexible, easily changed

• Different tradeoffs

• So we’ll use them for different roles!

• The rest of the course will expand on this

34

Open Question + Break

• What part of the hello example takes the longest to run
on a computer?

35

Open Question + Break

• What part of the hello example takes the longest to run
on a computer?

• The user typing (seconds)

• Maybe that’s cheating and we should start after they hit enter

36

Open Question + Break

• What part of the hello example takes the longest to run
on a computer?

• The user typing (seconds)

• Maybe that’s cheating and we should start after they hit enter

• Almost certainly loading the program from disk (milliseconds)

• Possibly sending text to graphics (microseconds – milliseconds)

• Definitely not executing the code (nanoseconds – microseconds)

37

38

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

Positional Numbering Systems

• The position of a numeral (e.g., digit) determines its contribution to the
overall number
• Makes arithmetic simple (compared to, say, roman numerals)
• Any number has one canonical representation

• Example: base 10
• 1045610 = 1*104 + 0*103 + 4*102 + 5*101 + 6*100

• Other bases are also possible
• Base 2: 100100102 = 1*27 + 1*24 + 1*21 = 14610

• Base 60, used by the Babylonians
• The source of 60 seconds in a minute, 60 minutes in an hour
• And 360 degrees in a circle

• Base 20, used by the Maya and Gauls (bits remain in French today)

39

Base 2 Example

• We’ll use base 2 a LOT

• Let’s convert 13410 to base 2

• We need to decompose 13410 into a sum of powers of 2
• Start with the largest power of 2 that is smaller or equal to 13410

• Subtract it, then repeat the process

13410 – 12810 = 610

610 – 410 = 210

210 – 210 = 010

13410 = 1×128 + 0×64 + 0×32 + 0×16 + 0×8 + 1×4 + 1×2 + 0×1

13410 = 100001102

13410 = 1×27 + 0×26 + 0×25 + 0×24 + 0×23 + 1×22 + 1×21 + 0×20

40

Why computers use Base 2

• Simple electronic implementation
• Easy to store with bi-stable elements
• Reliably transmitted on noisy and inaccurate wires

• Straightforward implementation of arithmetic functions

• (Pretty much) all computers use base 2

0.0V

0.5V

2.8V

3.3V

0 1 0

41

Why don’t computers use Base 10?

• Because implementing it electronically is a pain
• Hard to store

• ENIAC (first general-purpose electronic computer)
used 10 vacuum tubes / digit

• Hard to transmit
• Need high precision to encode

10 signal levels on single wire

• Messy to implement digital logic functions
• Addition, multiplication, etc.

42

Base 16: Hexadecimal

• Writing long sequences of 0s and 1s is tedious and
error-prone
• And takes up a lot of space on a page!

• So we’ll often use base 16 (also called hexadecimal)

• 16 = 24, so every group of 4 bits becomes a
hexadecimal digit (or hexit)
• If we have a number of bits not divisible by 4, add 0s on

the left (always ok, just like base 10)

• Base 2 = 2 symbols (0, 1)
Base 10 = 10 symbols (0-9)
Base 16, need 16 symbols
• Use letters A-F once we run out of decimal digits

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

1 0 1 0 0 1 0 1 1 1 1 0 1 1 0x297B0 0 “0x” prefix = it’s in hex
43

Bytes

• A single bit doesn’t hold much information
• Only two possible values: 0 and 1

• So we’ll typically work with larger groups of bits

• For convenience, we’ll refer to groups of 8 bits as bytes
• And usually work with multiples of 8 bits at a time

• Conveniently, 8 bits = 2 hexits

• Some examples
• 1 byte: 0b01100111 = 0x67

• 2 bytes: 11000100 001011112 = 0xC42F

44

“0b” prefix = it’s in binary

Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• Convert binary to decimal:

45

Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• 0x4 -> 0b0100 0x2 -> 0b0010 0x42 -> 0b 0100 0010

• Convert binary to decimal:

• 1*26 + 1*21 = 64 + 2 = 66

46

Practice problem

• Convert 0x42 to decimal

• Critical thinking:
• What are the maximum and minimum values?

• Minimum 0

• Maximum 255

• How big is 0x42 out of 0xFF?

• ~25% (0x40, 0x80, 0xC0, 0x100)

• So 255/4 ≈ 240/4 ≈ 60

47

Big idea: bits can be used to represent anything

• Depending on the context, the bits 11000011 could mean
• The number 195

• The number -61

• The number -1.1875

• The value True

• The character ‘├’

• The ret x86 instruction

• You have to know the context to make sense of any bits you have!
• People and software they write determine what the bits actually mean

48

49

• Course Themes

• Logistics

• Running a program

• Representing numbers with binary

Outline

50

• Backup: Boolean Algebra

Outline

Boolean Algebra

• You’ve programmed with and and or in earlier classes
• Written && and || in C and C++

• Boolean algebra is a generalization of that
• A mathematical system to represent (propositional) logic

• 2 truth values: true = 1, false = 0

• 3 operations: and = &, or = |, not (or complement) = ~

• Follow the rules for each operation to compute results
• Rules are the like those you know from programming

(1 | 0) & 0 1 & 0 0

(1 & 1) & ~(0 | 0) 1 & ~(0) 1 & 1 1

Truth Tables for Boolean Algebra

• For each possible value of each input, what is the output
• Axes are the inputs

• Inside of the table are the outputs

~

0 1

1 0

not: ~A

& 0 1

0 0 0

1 0 1

and: A & B

| 0 1

0 0 1

1 1 1

or: A | B

De Morgan’s Laws, Exclusive Or

• Can express boolean operators in terms of the others

• De Morgan’s laws: & using | and ~, | using & and ~
• A & B = ~(~A | ~B)

• A and B are true if and only if neither A nor B is false
• A | B = ~(~A & ~B)

• A or B are true if and only if A and B are not both false

• Can define new operators in terms of existing ones:
• Exclusive or (xor, ^) in terms of inclusive or (|)

• A ^ B = (~A & B) | (A & ~B)
• Exactly one of A and B is true

• A ^ B = (A | B) & ~(A & B)
• Either A is true, or B is true, but not both

• The two definitions are equivalent

^ 0 1

0 0 1

1 1 0

xor: A ^ B

Generalized Boolean Algebra

• Binary bits can represent truth values: 0 = false, 1 = true

• Boolean operations can be extended to work on vectors of bits
• Operations applied one bit at a time: bitwise

• All of the properties of Boolean algebra apply
• Relationships between operations, etc.

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

Bit-level operations in C

• Operations &, |, ~, ^ available in C
• Apply to any “integral” data type

• long, int, short, char, unsigned

• View arguments as bit vectors

• Arguments applied bit-wise

• Examples (char data type, single byte)
• ~0x00 → 0xFF

~000000002 → 111111112

• ~0x41 → 0xBE
~010000012 → 101111102

• 0x69 | 0x55 → 0x7D

011010012 | 010101012 → 011111012

Logic operations in C – not the same!

• Logical operations ||, && and ! (Logic OR, AND & Not)

• Contrast to bit-wise operators

• View 0 as “False”

• View anything nonzero as “True”

• Always return 0 or 1 (i.e., false or true) rather than a sequence of bits

• Early termination (if you can answer by just looking at the first argument, you are done)

• Examples (char data type)
• !0x41 → 0x00

• !0x00 → 0x01

• !!0x41 → 0x01

• 0x59 && 0x35 → 0x01

• 0x59 || 0x35 → 0x01

• p && *p (avoids null pointer access)

Watch out for && vs. &
(and || vs. |) …
one of the more
common slip-ups in
C programming

