
COMP SCI-213, Spring 2021

Data Lab: Manipulating Bits

Assigned: Apr. 6, Due: Apr. 20, 11:59PM

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of integers and

floating point numbers. You’ll do this by solving a series of programming “puzzles.” Many of these puzzles

are quite artificial, but you’ll find yourself thinking much more about bits in working your way through

them.

2 IMPORTANT: Notes on Academic Integrity

It is very important to come up with your own solutions. You may discuss among yourselves but copying

code from others or any online source is strictly forbidden. Before we do any grading, we will run your

submissions through MOSS, an automatic tool for source code plagiarism detection. This means that if you

cheat, we WILL catch you and report you to the dean.

3 Logistics

This is a group project. All handins are electronic through Canvas. Clarifications and corrections will be

posted on Campuswire.

Please make sure your code compiles on the Wilkinson Lab machines and

Moore (moore.wot.eecs.northwestern.edu). If your code does not compile, you will receive

0 points on this lab. Note that you will need to be connected to the Northwestern VPN to directly access

the Wilkinson Lab machines. You do not need to be connected to the VPN to access Moore.

4 Handout Instructions

For this assignment you will need to download datalab-handout-s21.tar from Canvas. Start by

copying datalab-handout-s21.tar to a Linux directory in which you plan to do your work. Then

give the command

1

http://www.mccormick.northwestern.edu/eecs/documents/current-students/student-lab-hostnames.pdf

unix> tar xvf datalab-handout-s21.tar

Note that “ unix> ” is only indicating you should be working on a UNIX based machine. It is not part

of the command you need to type. This applies to all commands in this lab and in future labs.

This will cause a number of files to be unpacked in the directory. The only file you will be modifying and

turning in is bits.c.

The bits.c file contains a skeleton for each of the 14 programming puzzles. Your assignment is to

complete each function skeleton using only straightline code for the integer puzzles (i.e., no loops or con-

ditionals) and a limited number of C arithmetic and logical operators. Specifically, you are only allowed to

use the following eight operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8

bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.

5 The Puzzles

This section describes the puzzles that you will be solving in bits.c.

5.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the

difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number

of operators you are allowed to use to implement each function. See the comments in bits.c for more

details on the desired behavior of the functions. You may also refer to the test functions in tests.c. These

are used as reference functions to express the correct behavior of your functions, although they don’t satisfy

the coding rules for your functions.

Name Description Rating Max Ops

bitAnd(x,y) x & y using only ˜ and | 1 8

thirdBits() Return word with every third bit set to 1 1 8

allEvenBits(x) Return 1 if all even-numbered bits are 1 2 12

byteSwap(x,n,m) Swaps the nth and mth byte 2 25

conditional(x,y,z) Same as x ? y : z 3 16

bitParity(x) Return 1 if x contains an odd number of 0’s 4 20

Table 1: Bit-Level Manipulation Functions.

2

5.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers. Again,

refer to the comments in bits.c and the reference versions in tests.c for more information.

Name Description Rating Max Ops

tmax() Return maximum two’s complement integer 1 4

sign(x) Return 1 if positive, 0 if zero, -1 if negative 2 10

isLessOrEqual(x,y) If x <= y then return 1, else return 0 3 24

isPositive(x) Return 1 if x > 0 and 0 otherwise 3 8

absVal(x) Absolute value of x 4 10

Table 2: Arithmetic Functions

5.3 Floating-Point Operations

For this part of the assignment, you will implement some common single-precision floating-point opera-

tions. In this section, you are allowed to use standard control structures (conditionals, loops), and you may

use both int and unsigned data types, including arbitrary unsigned and integer constants. You may

not use any unions, structs, or arrays. Most significantly, you may not use any floating point data types,

operations, or constants. Instead, any floating-point operand will be passed to the function as having type

unsigned, and any returned floating-point value will be of type unsigned. Your code should perform

the bit manipulations that implement the specified floating point operations.

Table 3 describes a set of functions that operate on the bit-level representations of floating-point numbers.

Refer to the comments in bits.c and the reference versions in tests.c for more information.

Name Description Rating Max Ops

float_neg(uf) Compute -f 2 10

float_abs(uf) Compute |f| 2 10

float_f2i(uf) Compute (int) f 4 30

Table 3: Floating-Point Functions. Value f is the floating-point number having the same bit representation

as the unsigned integer uf.

Functions float_neg, float_twice, and float_f2i must handle the full range of possible argu-

ment values, including not-a-number (NaN) and infinity. The IEEE standard does not specify precisely how

to handle NaN’s, and the IA32 behavior is a bit obscure. We will follow a convention that for any function

returning a NaN value, it will return the input argument that was provided to this function.

The included program fshow helps you understand the structure of floating point numbers. To compile

fshow, switch to the handout directory and type:

unix> make

3

You can use fshow to see what an arbitrary pattern represents as a floating-point number:

unix> ./fshow 2080374784

Floating point value 2.658455992e+36

Bit Representation 0x7c000000, sign = 0, exponent = f8, fraction = 000000

Normalized. 1.0000000000 X 2ˆ(121)

You can also give fshow hexadecimal and floating point values, and it will decipher their bit structure.

6 Evaluation

Your score will be computed out of a maximum of 62 points based on the following distribution:

34 Correctness points.

28 Performance points.

Correctness points. The 14 puzzles you must solve have been given a difficulty rating between 1 and 4, such

that their weighted sum totals to 34. We will evaluate your functions using the driver.pl program, which

is described in the next section. You will get full credit for a puzzle if it passes all of the tests performed by

driver.pl, and no credit otherwise.

Performance points. Our main concern at this point in the course is that you can get the right answer.

However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,

some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function

we’ve established a maximum number of operators that you are allowed to use for each function. This limit

is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points

for each correct function that satisfies the operator limit.

Autograding your work

We have included some autograding tools in the handout directory — btest, dlc, and driver.pl —

to help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions in bits.c. To build and

use it, type the following two commands:

unix> make

unix> ./btest

Notice that you must rebuild btest each time you modify your bits.c file.

You’ll find it helpful to work through the functions one at a time, testing each one as you go. You can

use the -f flag to instruct btest to test only a single function:

4

unix> ./btest -f bitAnd

You can feed it specific function arguments using the option flags -1, -2, and -3:

unix> ./btest -f bitAnd -1 7 -2 0xf

Check the file README for documentation on running the btest program. You can ignore any warn-

ings about btest.c:528:9: warning: variable errors set but not used.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use

to check for compliance with the coding rules for each puzzle. The typical usage is:

unix> ./dlc bits.c

The program runs silently unless it detects a problem, such as an illegal operator, too many operators,

or non-straightline code in the integer puzzles. Running with the -e switch:

unix> ./dlc -e bits.c

causes dlc to print counts of the number of operators used by each function. Type ./dlc -help

for a list of command line options.

• driver.pl: This is a driver program that uses btest and dlc to compute the correctness and

performance points for your solution. It takes no arguments:

unix> ./driver.pl

Lastly, please note that you need to declare all the variables at the beginning of each function, other-

wise driver.pl may not be able to give you points for that function.

Your instructors will use driver.pl to evaluate your solution. Make sure to test both the

correctness and performance of your solution before handing it in!

7 Handin Instructions

One person in your group needs to submit your bits.c file to Canvas. Please write the names and netids

of both group members in line 4 of bits.c. Multiple submissions are allowed, but only the last one will

be graded. Also please make sure all submissions are under the same Canvas account. If you update your

solutions after the deadline, the most recent one will be graded but penalties will apply.

5

8 Important Advice

• Don’t include the <stdio.h> header file in your bits.c file, as it confuses dlc and results in

some non-intuitive error messages. You will still be able to use printf in your bits.c file for

debugging without including the <stdio.h> header, although gcc will print a warning that you

can ignore.

• The dlc program enforces a stricter form of C declarations than is the case for C++ or that is enforced

by gcc. In particular, any declaration must appear in a block (what you enclose in curly braces) before

any statement that is not a declaration. For example, it will complain about the following code:

int foo(int x)

{

int a = x;

a *= 3; /* Statement that is not a declaration */

int b = a; /* ERROR: Declaration not allowed here */

}

So it’s a good idea to put all your declarations at the very beginning of a function. Else your code

might not pass the driver.pl program.

• Avoid long, complex expressions, as they can sometimes trigger unexpected compiler optimizations,

even though we have disabled most of them. Specifically, the C compiler may still take advantage

of undefined behaviors to simplify such expressions. We do not want you to worry about undefined

behaviors in this lab, so we recommend that you break up long expressions into multiple shorter ones.

For example:

int good_style(int x)

{

int a = !!x;

int b = x + x;

int c = !b;

return a & c;

}

int bad_style(int x)

{

return (!!x) & (!(x+x)); /* We do not recommend this style */

}

6

	Introduction
	IMPORTANT: Notes on Academic Integrity
	Logistics
	Handout Instructions
	The Puzzles
	Bit Manipulations
	Two's Complement Arithmetic
	Floating-Point Operations

	Evaluation
	Handin Instructions
	Important Advice

