
Lecture 18
Input/Output Devices

CS213 – Intro to Computer Systems

Branden Ghena – Fall 2023

Slides adapted from:
Hester, Tarzia (Northwestern), Bryant, O’Hallaron (CMU), Dutta, Garcia, Weaver (UC Berkeley),
Venkataraman (Wisconsin), Singh (Princeton)



Administrivia

• Homework 4 due today!
• Don’t forget about it

• Good practice for midterm 2

• SETI Lab due on Thursday!
• Beware, it’ll take quite a while to get feedback close to the deadline

• Run seti-eval as sparingly as possible

• It will give you very similar results to seti-perf

2



Common SETI Lab Errors

• Straight line performance
• Often better than 1.02x right away and graph does not have a curve shape
• Doesn’t vary thread count per the program argument

• Stuck at 0.3x
• Usually didn’t optimize
• Or maybe just optimized p_band_scan.c but not anything it relies on

• No Carrier Match
• Your code output didn’t match the original band_scan

• No Alien Match
• You didn’t correctly determine which of your generated signals is alien

3



Administrivia

• Midterm 2 next week Wednesday
• 12:00-1:20 pm in this classroom (Tech Auditorium)

• Allowed two sheets of standard paper, front and back, for notes

• You may reuse your notes from last time as the first sheet if you want
or you can make entirely new notes sheets

• Material from weeks 5 and onwards

• x86-64 Assembly Procedures through I/O & Networks (Thursday)

• Homeworks 3 and 4

• Bomb Lab, Attack Lab, and SETI Lab

4



Today’s Goals

• Introduce Input and Output (I/O) in computer systems

• Consider application-level I/O details

• Explore OS / microcontroller approaches to I/O
• How to talk to devices

• Interaction patterns with devices

• Device drivers

5



6

• Input/Output Motivation

• Application-Level Input/Output

• Talking to Devices
• MMIO Example

• Device Interaction Patterns

• Device Drivers

Outline



Devices are the point of computers

• Traditional systems need to 
receive input from users and
output responses
• Keyboard/mouse

• Disk

• Network

• Graphics

• Audio

• Various USB devices

• Embedded systems have the same 
requirement, just more types of IO

7

Processor
 

Computer

Control

Datapath

Memory Devices

Input

Output



Devices are core to useful general-purpose computing

8

Computer

Mouse

Keyboard

Ethernet

Bluetooth

Monitor

Headphones

Ethernet

Bluetooth

Input Output



Devices are essential to cyber-physical systems too

9

Computer

Lidar

Inertial 
Measurement Unit

Camera

CAN

Throttle Control

Brake Control

Wheel Rotation

CAN

Input Output



Device access rates vary by many orders of magnitude

• Rates in bit/sec

• System must be 
able to handle 
each of these
• Sometimes 

needs low 
overhead

• Sometimes 
needs to not 
wait around

10

Device Behavior Partner Data Rate (Kb/s)

Keyboard Input Human 0.2

Mouse Input Human 0.4

Microphone Output Human 700.0

Bluetooth Input or Output Machine 20,000.0

Hard disk drive Storage Machine 100,000.0

Wireless network Input or Output Machine 300,000.0

Solid state drive Storage Machine 500,000.0

Wired LAN network Input or Output Machine 1,000,000.0

Graphics display Output Human 3,000,000.0



11

• Input/Output Motivation

• Application-Level Input/Output

• Talking to Devices
• MMIO Example

• Device Interaction Patterns

• Device Drivers

Outline



Linux abstraction: everything is a file!

• Application-level: treat devices like files
• They can be read and written

• They may be created or destroyed (plugged/unplugged)

• They can be created in hierarchies. Example:

• SATA devices
• SSD

• USB devices
• Webcam

• Microphone

12



Linux device classes

• Character devices
• Accessed as a stream of bytes (like a file)
• Example: Webcam, Keyboard, Headphones

• Block devices
• Accessed in blocks of data (like a disk)
• Can hold entire filesystems
• Example: Disks, Flash drives

• Network interfaces
• See CS340 (Computer Networking)
• Accessed through transfer of data packets

13

dev

char

Serial

Parallel

block

SATA

SCSI

net

Ethernet

WiFi

video

2D

3D



Communication with devices

• Must ask the OS to communicate with the device for us
• This is a job for system calls!

• Which system calls? File I/O ones!
• Open/Close

• Read/Write

• Seek, Flush

• Ioctl

• And various others

14



Accessing devices

• Open/Close
• Inform device that something is using it (or not)

• Argument is path to device (like path to file)

• Get a file descriptor that the other operations act on

• “/dev” directory is populated with devices

15



Interacting with devices

• Same read/write system calls you’ve seen before

• Read
• ssize_t read(int fd, void *buf, size_t count); 

• Write
• ssize_t write(int fd, const void *buf, size_t count);

• Seek doesn’t really make sense for most devices…

16



Arbitrary device interactions

• ioctl – I/O Control
• int ioctl(int fd, unsigned long request, ...); 

• Request number followed by an arbitrary list of arguments
• “request” may be broken in fields: command, size, direction, etc.

• Catch-all for device operations that don’t fit into file I/O model
• Combine with “magic numbers” to form some special action

• Reset device, Start action, Change setting, etc.

• Read the device documentation to find these

17



ioctl example - sounds through console

18Simplified from: http://www.johnath.com/beep/beep.c

void play_beep(unsigned int repeats, float frequency) {
 /* try to snag the console */
 int console_fd = open("/dev/console", O_WRONLY);
 
 for (unsigned int i=0; i<repeats; i++) {
   /* start beep */
  if(ioctl(console_fd, KIOCSOUND, (int)(CLOCK_TICK_RATE/frequency)) < 0) {
   perror("ioctl");
  }

  usleep(1000); /* wait... */
  
 ioctl(console_fd, KIOCSOUND, 0); /* stop beep */
  usleep(1000); /* wait... */
 }

 close(console_fd);
}

http://www.johnath.com/beep/beep.c


Break + Open Question

• What are some downsides of “everything is a file”?

19



Break + Open Question

• What are some downsides of “everything is a file”?

• Doesn’t allow devices to send data to us. Data needs to be requested

• Slow turnaround time for detecting some action by a device

• Like a mouse click

• Not all devices map to files well

• Microphone/Webcam work okay, just chunks of data to be read

• Input devices not so much: keyboard, mouse, touchscreen
• These are often handled directly by the OS instead

20



21

• Input/Output Motivation

• Application-Level Input/Output

• Talking to Devices
• MMIO Example

• Device Interaction Patterns

• Device Drivers

Outline



Going deeper: how to talk to devices

• What if you are writing the OS? How does it talk to devices?

• Or what if you don’t have an OS at all and want to control devices 
directly?
• Example: embedded systems

22



How to interact with I/O devices

• A device is really a miniature computer-within-the-computer
• Has its own processing, memory, software

• We can mostly ignore that and deal with its interface
• Called registers (actually are from EE perspective, but you can’t use them)

• Read/Write like they’re data

23



Example powered device: Real Time Clock

• Battery-backed up 
clock on computer 
motherboard

• Keeps sense of time 
when computer is 
off

• Resynchronized 
when the computer 
is awake

24

Index Contents Range

0x00 Seconds 0-59

0x02 Minutes 0-59

0x04 Hours 0-23 in 24-hour mode,
1-12 in 12-hour mode, highest bit set if PM

0x06 Weekday 1-7, Sunday =1

0x07 Day of Month 1-31

0x08 Month 1-12

0x09 Year 0-99

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Registers:

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf


Two options for reading/writing device registers

1. Special assembly instructions

2. Treat like normal memory

25



Two options for reading/writing device registers

1. Special assembly instructions

2. Treat like normal memory

26



Port-Mapped I/O (PMIO): special assembly instructions

• x86 IN and OUT instructions
• Privileged instructions (kernel mode only)

• Two arguments: destination and data register

• Each device is mapped to some port address
• IN and OUT instructions interact with interface

• IN <PORT NUMBER>, <REGISTER>

• OUT <REGISTER>, <PORT NUMBER>

27



Example powered device: Real Time Clock

• Example: read 
current value from 
real-time clock

// read seconds

mov $0, %al
out %al, $0x70
in $0x71, %al

28

Index Contents Range

0x00 Seconds 0-59

0x02 Minutes 0-59

0x04 Hours 0-23 in 24-hour mode,
1-12 in 12-hour mode, highest bit set if PM

0x06 Weekday 1-7, Sunday =1

0x07 Day of Month 1-31

0x08 Month 1-12

0x09 Year 0-99

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Port Address

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf


Example I/O
port map

This isn’t
standardized,
but these are
some typical
values.

https://wiki.osdev.org/Can_I
_have_a_list_of_IO_Ports 

29

https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports
https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports


Check your understanding – PMIO in C

• How would you access PMIO from a C program?

30



Check your understanding – PMIO in C

• How would you access PMIO from a C program?

• Need to use assembly!

• Hopefully with C function wrapper, like System Calls

31



Annoying parts of Port-Mapped I/O

• Special assembly instructions are hard to write in C
• Need some wrapper function that actually calls them

• Not really that big of an issue, but a little weird

• Feels sort of like memory read/write, but isn’t
• Why not?

• Can we just put the “port address space” somewhere in memory?

• Could be a problem if we don’t have enough memory

• But today we have tons of extra physical address space laying around

32



Two options for reading/writing device registers

1. Special assembly instructions

2. Treat like normal memory

33



Memory-mapped I/O (MMIO): treat devices like normal memory

• Certain physical addresses do not actually go to RAM

• Instead, they correspond to I/O devices
• And any instruction that accesses memory can access them too!

• x86-64 being the historical
amalgamation that it is,
uses both PMIO or MMIO
depending on the device

34

control reg.
data reg.

0x00000000

0xFFFFFFFF

0xFFFF0000

Address



Other details about MMIO

• Devices are mapped into physical memory
• Usually only accessible by the operating system
• But could be directly placed in virtual memory for a process in very special cases

• Devices are NOT memory though
• Need to be careful not to cache them

• Values being read could change, or reading could have an effect

• Cannot let compiler mess with our reads/writes either
• volatile keyword in C

• Conceptually not really very different from PMIO
• Both just read/write to specific addresses the device is mapped to

35



36

• Input/Output Motivation

• Application-Level Input/Output

• Talking to Devices
• MMIO Example

• Device Interaction Patterns

• Device Drivers

Outline



Simpler Memory-Mapped IO example: a microcontroller

• A microcontroller is a single chip with a processor and memory
• Used for simple devices such as embedded systems

• Example use case: a Fitbit

37

• Fitbit flex (circa 2013)

• Features
• Counts your steps

• Reports via Bluetooth Low Energy

• Lights up some LEDs based on your goals

• Vibrates when its battery is low



Fitbit teardown

38
https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050

https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050


Fitbit circuit board front

• Red (top)
• STMicro 32L151C6 Microcontroller

• Blue (left)
• TI BQ24040 Battery Charger

• Yellow (right)
• STMicro LIS2DH Accelerometer

• Orange (bottom)
• Nordic nRF8001 Bluetooth Low Energy Radio

39

The back is 
uninteresting



Fitbit as a computer

• Computers usually need
• Processor

• Memory (RAM)

• Storage (Flash/SSD)

• External communication

• USB, Thunderbolt, SATA, HDMI, WiFi

• Power management

• Maybe batteries and charging

• Something to connect it all: motherboard

40

• Microcontroller

• Bluetooth radio

• Vibratory motor

• Battery and power 
management

• Circuit board



Example microcontroller memory map

• 0x1000 bytes is plenty of space for each device (a.k.a. peripheral)
• 1024 registers, each 32 bits

• No reason to pack them tighter than that

41

nRF52833 microcontroller



Example: TEMP device on nRF52833 microcontroller

• Internal temperature sensor
• 0.25° C resolution

• Range equivalent to microcontroller chip (-40° to 105° C)

• Various configurations for the temperature conversion (ignoring)

42



MMIO addresses for TEMP

• What addresses do we need? (ignore interrupts for now)
• 0x4000C000 – TASKS_START

• 0x4000C100 – EVENTS_DATARDY

• 0x4000C508 - TEMP

43



Accessing addresses in C

• What does this C code do?

 *(uint32_t*)(0x4000C000) = 1;

44



Accessing addresses in C

• What does this C code do?

 *(uint32_t*)(0x4000C000) = 1;

• 0x4000C000 is cast to an uint32_t*  (a 32-bit unsigned integer pointer)

• Then dereferenced

• And we write 1 to it

• “There are 32-bits of memory at 0x4000C000. Write a 1 there.”

45



Example code

• To the terminal!

• Let’s write it from scratch

46



Example code (temp_mmio app)

47



Break + relevant xkcd

48https://xkcd.com/138/



49

• Input/Output Motivation

• Application-Level Input/Output

• Talking to Devices
• MMIO Example

• Device Interaction Patterns

• Device Drivers

Outline



What do interactions with devices look like?

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

50

This is the “polling” 
model of I/O.

“Poll” the peripheral 
in software repeatedly 
to see if it’s ready yet.



Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

• Imagine a keyboard device
• CPU could be waiting for minutes before data arrives

• Need a way to notify CPU when an event occurs

• Interrupts!

51



Interrupts

• What is an interrupt?
• Some event which causes the processor to stop normal execution

• The processor instead jumps to a software “handler” for that event

• Then returns back to what it was doing afterwards

• What causes interrupts?
• Hardware exceptions

• Divide by zero, Undefined Instruction, Memory bus error

• Software

• Syscall, Software Interrupt (SWI)

• External hardware

• Input pin, Timer, various “Data Ready”

52



Interrupts, visually

53

Some code
that’s executing



Interrupts, visually

54

Some code
that’s executing

Interrupt 
triggers!

Interrupt handler
code



Interrupts, visually

55

Some code
that’s executing

Interrupt 
triggers!

Interrupt handler
code

Continue
original code

Interrupts are a form of 
exceptional control flow



Hardware devices can generate interrupts

• Each device maps to 
some number of 
hardware interrupts

• Done at system boot 
time for x86-64
• Discover devices
• Map devices into 

address space
• Map interrupts for 

devices

• Hardcoded into 
hardware for 
microcontrollers

56



Interrupts allow waiting to happen asynchronously

• Prior code example was synchronous
• Nothing else continued on the processor until access was complete

• Good for very fast devices (like the real-time clock, that just returns data)

• We call this “Polling”

• With interrupts, device handling is now asynchronous
• Access occurs in the background and processor can do something else

• Good for very slow devices (Disk)

• Comes with all the downsides of concurrency though…

57



Microcontroller TEMP device supports interrupts!

• Can either loop while checking the EVENTS_DATARDY register

• Or could enable an interrupt from the device
• And only bother reading data when it is ready

58



When should a system use polling versus interrupts?

• Polling
• Great if the device is going to respond immediately (like 1 cycle)

• Important if we need to respond very quick (less than a microsecond)

• Interrupts
• Great if we’ll need to wait a long time for status to change

• Still responds pretty quickly, but not immediately

• Needs to context switch from running code to interrupt handler

59



Check your understanding – writing to GPU

• Let’s say that a GPU has MMIO registers for an entire 4 KB page
• Takes 100 ns to write each word (8 bytes) of memory

• Assuming that we’re just writing all zeros (ignore reading from 
memory), how long does it take to write a page to MMIO?

60



Check your understanding – writing to GPU

• Let’s say that a GPU has MMIO registers for an entire 4 KB page
• Takes 100 ns to write each word (8 bytes) of memory

• Assuming that we’re just writing all zeros (ignore reading from 
memory), how long does it take to write a page to MMIO?

• 4 KB / 8 B = 512 writes * 100 ns / write = 51 µs

• (For a 3 GHz processor, that’s ~150,000 cycles)

61



Direct Memory Access (DMA)

• Even with interrupts, providing data to the peripheral is time 
consuming for transferring lots of data
• Need to be interrupted every byte, to copy the next byte over

• DMA is an alternative method that uses hardware to do the 
memory transfers for the processor
• Software writes address of the data and the size to the peripheral

• Peripheral reads data directly from memory

• Processor can go do other things while read/write is occurring

62



Programmed I/O versus Direct Memory Access

63

SATA 
Controller

SATA 
Controller

Disk

Disk



General-purpose DMA

64



Full peripheral interaction pattern

1. Configure the peripheral

2. Enable peripheral interrupts

3. Set up peripheral DMA transfer

4. Start peripheral

Continue on to other code

5. Interrupt occurs, signaling DMA transfer complete

6. Set up next DMA transfer

Continue on to other code, and repeat

65



Break + Open Question

• What kinds of peripherals/devices should you use the DMA for?

66



Break + Open Question

• What kinds of peripherals/devices should you use the DMA for?

• Anything where there is a lot of data coming in over a period of time

• Either a big buffer of lots of data, like a radio message

• Or a bunch of individual samples, coming in quickly

• Devices

• Canonical example from general computing: disks (HDD/SSD)

• Messages to/from other devices (radios, wired busses)

• Sensor readings (if read quickly)

67



68

• Input/Output Motivation

• Application-Level Input/Output

• Talking to Devices
• MMIO Example

• Device Interaction Patterns

• Device Drivers

Outline



What is a device driver?

• A device driver is the software in the Operating System that 
manages a specific device
• Modern computers come with MANY of these pre-installed

• And have the ability to automatically find many others if needed

• Can be generic “keyboard driver”
or very specific “Ricoh IM C3000 printer driver”

• Source of many bugs in the in Operating System
• Due to amount and variety of them

69



How should we write driver software?

• There are various knobs available to us from hardware
• Polling, Interrupts, DMA

• There are also various software interface design
• Synchronous

• Asynchronous Callbacks

70



Synchronous device drivers

• Synchronous functions
• Function call issues a command

• Does not return until action is complete and result is ready

• Example: most functions we’re used to
• sqrt() for example

• printf() also usually works this way (with some exceptions)

• For microcontrollers: Arduino interfaces are usually like this!
• Easy to get started with and understand

71



Downside of synchronous code: the waiting

• How long will it take until the function returns?
• Immediately, seconds, minutes?

• What if there’s an error and the device never responds?
• More advanced interface could include a timeout option

• Synchronous designs require other synchronous designs
• We can build synchronous interfaces from asynchronous ones

• But we can’t go the other way

72



Asynchronous drivers

• Goal: let the hardware run on its own and have the code get back 
to it later

• Challenge: programmers don’t think that way

• Other challenge: how do we “get back to it later”?
• One solution: Callbacks

73



Callbacks

• Callbacks reuse a similar idea to interrupts
• When the event occurs, call this function

• General pattern
• Call driver function with one argument being a function pointer

• Driver sets up interaction and returns immediately

• Later the event happens and the driver calls the function pointer

74



Callback functions

• uint32_t timer_start(
            uint32_t microseconds,
            void (*callback_fn)(void*),

void* context
            );

• timer_start(duration, my_timer_handler, context);

• “Context” is often provided as well (void*)
• Ability for caller to pass an argument for the callback function
• Often a pointer to a position in a structure or a shared variable to modify
• Similar to idea of closures in other languages

75



Example with callbacks (could be temp driver)

76

…



CE346 – Microprocessor System Design

• Embedded Systems
• How does hardware work?

• How do we write drivers to interact with hardware from software?

• Sensing and sensors

• Big open-ended project: anything with inputs and outputs

• Project demos: Tuesday of exam week (12/5) from 11-5 in Mudd 3514
• Public! Anyone is welcome to stop in

• Not formal presentations, just demos you can play with

77



78

• Input/Output Motivation

• Application-Level Input/Output

• Talking to Devices
• MMIO Example

• Device Interaction Patterns

• Device Drivers

Outline


	Default Section
	Slide 1: Lecture 18 Input/Output Devices

	Goals
	Slide 2: Administrivia
	Slide 3: Common SETI Lab Errors
	Slide 4: Administrivia
	Slide 5: Today’s Goals

	IO Motivation
	Slide 6: Outline
	Slide 7: Devices are the point of computers
	Slide 8: Devices are core to useful general-purpose computing
	Slide 9: Devices are essential to cyber-physical systems too
	Slide 10: Device access rates vary by many orders of magnitude

	Application-Level I/O
	Slide 11: Outline
	Slide 12: Linux abstraction: everything is a file!
	Slide 13: Linux device classes
	Slide 14: Communication with devices
	Slide 15: Accessing devices
	Slide 16: Interacting with devices
	Slide 17: Arbitrary device interactions
	Slide 18: ioctl example - sounds through console
	Slide 19: Break + Open Question
	Slide 20: Break + Open Question

	Talking to Devices
	Slide 21: Outline
	Slide 22: Going deeper: how to talk to devices
	Slide 23: How to interact with I/O devices
	Slide 24: Example powered device: Real Time Clock
	Slide 25: Two options for reading/writing device registers
	Slide 26: Two options for reading/writing device registers
	Slide 27: Port-Mapped I/O (PMIO): special assembly instructions
	Slide 28: Example powered device: Real Time Clock
	Slide 29
	Slide 30: Check your understanding – PMIO in C
	Slide 31: Check your understanding – PMIO in C
	Slide 32: Annoying parts of Port-Mapped I/O
	Slide 33: Two options for reading/writing device registers
	Slide 34: Memory-mapped I/O (MMIO): treat devices like normal memory
	Slide 35: Other details about MMIO

	MMIO Example
	Slide 36: Outline
	Slide 37: Simpler Memory-Mapped IO example: a microcontroller
	Slide 38: Fitbit teardown
	Slide 39: Fitbit circuit board front
	Slide 40: Fitbit as a computer
	Slide 41: Example microcontroller memory map
	Slide 42: Example: TEMP device on nRF52833 microcontroller
	Slide 43: MMIO addresses for TEMP
	Slide 44: Accessing addresses in C
	Slide 45: Accessing addresses in C
	Slide 46: Example code
	Slide 47: Example code (temp_mmio app)
	Slide 48: Break + relevant xkcd

	Device Interactions
	Slide 49: Outline
	Slide 50: What do interactions with devices look like?
	Slide 51: Waiting can be a waste of CPU time
	Slide 52: Interrupts
	Slide 53: Interrupts, visually
	Slide 54: Interrupts, visually
	Slide 55: Interrupts, visually
	Slide 56: Hardware devices can generate interrupts
	Slide 57: Interrupts allow waiting to happen asynchronously
	Slide 58: Microcontroller TEMP device supports interrupts!
	Slide 59: When should a system use polling versus interrupts?
	Slide 60: Check your understanding – writing to GPU
	Slide 61: Check your understanding – writing to GPU
	Slide 62: Direct Memory Access (DMA)
	Slide 63: Programmed I/O versus Direct Memory Access
	Slide 64: General-purpose DMA
	Slide 65: Full peripheral interaction pattern
	Slide 66: Break + Open Question
	Slide 67: Break + Open Question

	Device Drivers
	Slide 68: Outline
	Slide 69: What is a device driver?
	Slide 70: How should we write driver software?
	Slide 71: Synchronous device drivers
	Slide 72: Downside of synchronous code: the waiting
	Slide 73: Asynchronous drivers
	Slide 74: Callbacks
	Slide 75: Callback functions
	Slide 76: Example with callbacks (could be temp driver)

	Wrapup
	Slide 77: CE346 – Microprocessor System Design
	Slide 78: Outline


