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Administrivia

• Homework 4 due today!
• Don’t forget about it

• Good practice for midterm 2

• SETI Lab due on Thursday!
• Beware, it’ll take quite a while to get feedback close to the deadline

• Run seti-eval as sparingly as possible

• It will give you very similar results to seti-perf
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Common SETI Lab Errors

• Straight line performance
• Often better than 1.02x right away and graph does not have a curve shape
• Doesn’t vary thread count per the program argument

• Stuck at 0.3x
• Usually didn’t optimize
• Or maybe just optimized p_band_scan.c but not anything it relies on

• No Carrier Match
• Your code output didn’t match the original band_scan

• No Alien Match
• You didn’t correctly determine which of your generated signals is alien
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Administrivia

• Midterm 2 next week Wednesday
• 12:00-1:20 pm in this classroom (Tech Auditorium)

• Allowed two sheets of standard paper, front and back, for notes

• You may reuse your notes from last time as the first sheet if you want
or you can make entirely new notes sheets

• Material from weeks 5 and onwards

• x86-64 Assembly Procedures through I/O & Networks (Thursday)

• Homeworks 3 and 4

• Bomb Lab, Attack Lab, and SETI Lab
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Today’s Goals

• Introduce Input and Output (I/O) in computer systems

• Consider application-level I/O details

• Explore OS / microcontroller approaches to I/O
• How to talk to devices

• Interaction patterns with devices

• Device drivers

5



6

• Input/Output Motivation

• Application-Level Input/Output

• Talking to Devices
• MMIO Example

• Device Interaction Patterns

• Device Drivers

Outline



Devices are the point of computers

• Traditional systems need to 
receive input from users and
output responses
• Keyboard/mouse

• Disk

• Network

• Graphics

• Audio

• Various USB devices

• Embedded systems have the same 
requirement, just more types of IO
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Devices are core to useful general-purpose computing

8

Computer

Mouse

Keyboard

Ethernet

Bluetooth

Monitor

Headphones

Ethernet

Bluetooth

Input Output



Devices are essential to cyber-physical systems too
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Device access rates vary by many orders of magnitude

• Rates in bit/sec

• System must be 
able to handle 
each of these
• Sometimes 

needs low 
overhead

• Sometimes 
needs to not 
wait around
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Device Behavior Partner Data Rate (Kb/s)

Keyboard Input Human 0.2

Mouse Input Human 0.4

Microphone Output Human 700.0

Bluetooth Input or Output Machine 20,000.0

Hard disk drive Storage Machine 100,000.0

Wireless network Input or Output Machine 300,000.0

Solid state drive Storage Machine 500,000.0

Wired LAN network Input or Output Machine 1,000,000.0

Graphics display Output Human 3,000,000.0
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Linux abstraction: everything is a file!

• Application-level: treat devices like files
• They can be read and written

• They may be created or destroyed (plugged/unplugged)

• They can be created in hierarchies. Example:

• SATA devices
• SSD

• USB devices
• Webcam

• Microphone
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Linux device classes

• Character devices
• Accessed as a stream of bytes (like a file)
• Example: Webcam, Keyboard, Headphones

• Block devices
• Accessed in blocks of data (like a disk)
• Can hold entire filesystems
• Example: Disks, Flash drives

• Network interfaces
• See CS340 (Computer Networking)
• Accessed through transfer of data packets
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Communication with devices

• Must ask the OS to communicate with the device for us
• This is a job for system calls!

• Which system calls? File I/O ones!
• Open/Close

• Read/Write

• Seek, Flush

• Ioctl

• And various others
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Accessing devices

• Open/Close
• Inform device that something is using it (or not)

• Argument is path to device (like path to file)

• Get a file descriptor that the other operations act on

• “/dev” directory is populated with devices
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Interacting with devices

• Same read/write system calls you’ve seen before

• Read
• ssize_t read(int fd, void *buf, size_t count); 

• Write
• ssize_t write(int fd, const void *buf, size_t count);

• Seek doesn’t really make sense for most devices…
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Arbitrary device interactions

• ioctl – I/O Control
• int ioctl(int fd, unsigned long request, ...); 

• Request number followed by an arbitrary list of arguments
• “request” may be broken in fields: command, size, direction, etc.

• Catch-all for device operations that don’t fit into file I/O model
• Combine with “magic numbers” to form some special action

• Reset device, Start action, Change setting, etc.

• Read the device documentation to find these
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ioctl example - sounds through console

18Simplified from: http://www.johnath.com/beep/beep.c

void play_beep(unsigned int repeats, float frequency) {
 /* try to snag the console */
 int console_fd = open("/dev/console", O_WRONLY);
 
 for (unsigned int i=0; i<repeats; i++) {
   /* start beep */
  if(ioctl(console_fd, KIOCSOUND, (int)(CLOCK_TICK_RATE/frequency)) < 0) {
   perror("ioctl");
  }

  usleep(1000); /* wait... */
  
 ioctl(console_fd, KIOCSOUND, 0); /* stop beep */
  usleep(1000); /* wait... */
 }

 close(console_fd);
}

http://www.johnath.com/beep/beep.c


Break + Open Question

• What are some downsides of “everything is a file”?
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Break + Open Question

• What are some downsides of “everything is a file”?

• Doesn’t allow devices to send data to us. Data needs to be requested

• Slow turnaround time for detecting some action by a device

• Like a mouse click

• Not all devices map to files well

• Microphone/Webcam work okay, just chunks of data to be read

• Input devices not so much: keyboard, mouse, touchscreen
• These are often handled directly by the OS instead
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Going deeper: how to talk to devices

• What if you are writing the OS? How does it talk to devices?

• Or what if you don’t have an OS at all and want to control devices 
directly?
• Example: embedded systems
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How to interact with I/O devices

• A device is really a miniature computer-within-the-computer
• Has its own processing, memory, software

• We can mostly ignore that and deal with its interface
• Called registers (actually are from EE perspective, but you can’t use them)

• Read/Write like they’re data
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Example powered device: Real Time Clock

• Battery-backed up 
clock on computer 
motherboard

• Keeps sense of time 
when computer is 
off

• Resynchronized 
when the computer 
is awake
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Index Contents Range

0x00 Seconds 0-59

0x02 Minutes 0-59

0x04 Hours 0-23 in 24-hour mode,
1-12 in 12-hour mode, highest bit set if PM

0x06 Weekday 1-7, Sunday =1

0x07 Day of Month 1-31

0x08 Month 1-12

0x09 Year 0-99

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Registers:

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf


Two options for reading/writing device registers

1. Special assembly instructions

2. Treat like normal memory
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Two options for reading/writing device registers

1. Special assembly instructions

2. Treat like normal memory
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Port-Mapped I/O (PMIO): special assembly instructions

• x86 IN and OUT instructions
• Privileged instructions (kernel mode only)

• Two arguments: destination and data register

• Each device is mapped to some port address
• IN and OUT instructions interact with interface

• IN <PORT NUMBER>, <REGISTER>

• OUT <REGISTER>, <PORT NUMBER>
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Example powered device: Real Time Clock

• Example: read 
current value from 
real-time clock

// read seconds

mov $0, %al
out %al, $0x70
in $0x71, %al
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Index Contents Range

0x00 Seconds 0-59

0x02 Minutes 0-59

0x04 Hours 0-23 in 24-hour mode,
1-12 in 12-hour mode, highest bit set if PM

0x06 Weekday 1-7, Sunday =1

0x07 Day of Month 1-31

0x08 Month 1-12

0x09 Year 0-99

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf

Port Address

https://www.singlix.com/trdos/archive/pdf_archive/real-time-clock-nmi-enable-paper.pdf


Example I/O
port map

This isn’t
standardized,
but these are
some typical
values.

https://wiki.osdev.org/Can_I
_have_a_list_of_IO_Ports 
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https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports
https://wiki.osdev.org/Can_I_have_a_list_of_IO_Ports


Check your understanding – PMIO in C

• How would you access PMIO from a C program?
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Check your understanding – PMIO in C

• How would you access PMIO from a C program?

• Need to use assembly!

• Hopefully with C function wrapper, like System Calls
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Annoying parts of Port-Mapped I/O

• Special assembly instructions are hard to write in C
• Need some wrapper function that actually calls them

• Not really that big of an issue, but a little weird

• Feels sort of like memory read/write, but isn’t
• Why not?

• Can we just put the “port address space” somewhere in memory?

• Could be a problem if we don’t have enough memory

• But today we have tons of extra physical address space laying around
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Two options for reading/writing device registers

1. Special assembly instructions

2. Treat like normal memory
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Memory-mapped I/O (MMIO): treat devices like normal memory

• Certain physical addresses do not actually go to RAM

• Instead, they correspond to I/O devices
• And any instruction that accesses memory can access them too!

• x86-64 being the historical
amalgamation that it is,
uses both PMIO or MMIO
depending on the device
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control reg.
data reg.

0x00000000

0xFFFFFFFF

0xFFFF0000

Address



Other details about MMIO

• Devices are mapped into physical memory
• Usually only accessible by the operating system
• But could be directly placed in virtual memory for a process in very special cases

• Devices are NOT memory though
• Need to be careful not to cache them

• Values being read could change, or reading could have an effect

• Cannot let compiler mess with our reads/writes either
• volatile keyword in C

• Conceptually not really very different from PMIO
• Both just read/write to specific addresses the device is mapped to
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Simpler Memory-Mapped IO example: a microcontroller

• A microcontroller is a single chip with a processor and memory
• Used for simple devices such as embedded systems

• Example use case: a Fitbit

37

• Fitbit flex (circa 2013)

• Features
• Counts your steps

• Reports via Bluetooth Low Energy

• Lights up some LEDs based on your goals

• Vibrates when its battery is low



Fitbit teardown

38
https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050

https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050


Fitbit circuit board front

• Red (top)
• STMicro 32L151C6 Microcontroller

• Blue (left)
• TI BQ24040 Battery Charger

• Yellow (right)
• STMicro LIS2DH Accelerometer

• Orange (bottom)
• Nordic nRF8001 Bluetooth Low Energy Radio
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The back is 
uninteresting



Fitbit as a computer

• Computers usually need
• Processor

• Memory (RAM)

• Storage (Flash/SSD)

• External communication

• USB, Thunderbolt, SATA, HDMI, WiFi

• Power management

• Maybe batteries and charging

• Something to connect it all: motherboard
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• Microcontroller

• Bluetooth radio

• Vibratory motor

• Battery and power 
management

• Circuit board



Example microcontroller memory map

• 0x1000 bytes is plenty of space for each device (a.k.a. peripheral)
• 1024 registers, each 32 bits

• No reason to pack them tighter than that
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nRF52833 microcontroller



Example: TEMP device on nRF52833 microcontroller

• Internal temperature sensor
• 0.25° C resolution

• Range equivalent to microcontroller chip (-40° to 105° C)

• Various configurations for the temperature conversion (ignoring)
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MMIO addresses for TEMP

• What addresses do we need? (ignore interrupts for now)
• 0x4000C000 – TASKS_START

• 0x4000C100 – EVENTS_DATARDY

• 0x4000C508 - TEMP
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Accessing addresses in C

• What does this C code do?

 *(uint32_t*)(0x4000C000) = 1;
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Accessing addresses in C

• What does this C code do?

 *(uint32_t*)(0x4000C000) = 1;

• 0x4000C000 is cast to an uint32_t*  (a 32-bit unsigned integer pointer)

• Then dereferenced

• And we write 1 to it

• “There are 32-bits of memory at 0x4000C000. Write a 1 there.”
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Example code

• To the terminal!

• Let’s write it from scratch
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Example code (temp_mmio app)
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Break + relevant xkcd

48https://xkcd.com/138/
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What do interactions with devices look like?

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data
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This is the “polling” 
model of I/O.

“Poll” the peripheral 
in software repeatedly 
to see if it’s ready yet.



Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

• Imagine a keyboard device
• CPU could be waiting for minutes before data arrives

• Need a way to notify CPU when an event occurs

• Interrupts!
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Interrupts

• What is an interrupt?
• Some event which causes the processor to stop normal execution

• The processor instead jumps to a software “handler” for that event

• Then returns back to what it was doing afterwards

• What causes interrupts?
• Hardware exceptions

• Divide by zero, Undefined Instruction, Memory bus error

• Software

• Syscall, Software Interrupt (SWI)

• External hardware

• Input pin, Timer, various “Data Ready”
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Interrupts, visually
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Some code
that’s executing



Interrupts, visually
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Interrupts, visually
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Interrupt 
triggers!

Interrupt handler
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Interrupts are a form of 
exceptional control flow



Hardware devices can generate interrupts

• Each device maps to 
some number of 
hardware interrupts

• Done at system boot 
time for x86-64
• Discover devices
• Map devices into 

address space
• Map interrupts for 

devices

• Hardcoded into 
hardware for 
microcontrollers
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Interrupts allow waiting to happen asynchronously

• Prior code example was synchronous
• Nothing else continued on the processor until access was complete

• Good for very fast devices (like the real-time clock, that just returns data)

• We call this “Polling”

• With interrupts, device handling is now asynchronous
• Access occurs in the background and processor can do something else

• Good for very slow devices (Disk)

• Comes with all the downsides of concurrency though…

57



Microcontroller TEMP device supports interrupts!

• Can either loop while checking the EVENTS_DATARDY register

• Or could enable an interrupt from the device
• And only bother reading data when it is ready
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When should a system use polling versus interrupts?

• Polling
• Great if the device is going to respond immediately (like 1 cycle)

• Important if we need to respond very quick (less than a microsecond)

• Interrupts
• Great if we’ll need to wait a long time for status to change

• Still responds pretty quickly, but not immediately

• Needs to context switch from running code to interrupt handler
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Check your understanding – writing to GPU

• Let’s say that a GPU has MMIO registers for an entire 4 KB page
• Takes 100 ns to write each word (8 bytes) of memory

• Assuming that we’re just writing all zeros (ignore reading from 
memory), how long does it take to write a page to MMIO?

60



Check your understanding – writing to GPU

• Let’s say that a GPU has MMIO registers for an entire 4 KB page
• Takes 100 ns to write each word (8 bytes) of memory

• Assuming that we’re just writing all zeros (ignore reading from 
memory), how long does it take to write a page to MMIO?

• 4 KB / 8 B = 512 writes * 100 ns / write = 51 µs

• (For a 3 GHz processor, that’s ~150,000 cycles)
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Direct Memory Access (DMA)

• Even with interrupts, providing data to the peripheral is time 
consuming for transferring lots of data
• Need to be interrupted every byte, to copy the next byte over

• DMA is an alternative method that uses hardware to do the 
memory transfers for the processor
• Software writes address of the data and the size to the peripheral

• Peripheral reads data directly from memory

• Processor can go do other things while read/write is occurring
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Programmed I/O versus Direct Memory Access
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General-purpose DMA
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Full peripheral interaction pattern

1. Configure the peripheral

2. Enable peripheral interrupts

3. Set up peripheral DMA transfer

4. Start peripheral

Continue on to other code

5. Interrupt occurs, signaling DMA transfer complete

6. Set up next DMA transfer

Continue on to other code, and repeat
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Break + Open Question

• What kinds of peripherals/devices should you use the DMA for?
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Break + Open Question

• What kinds of peripherals/devices should you use the DMA for?

• Anything where there is a lot of data coming in over a period of time

• Either a big buffer of lots of data, like a radio message

• Or a bunch of individual samples, coming in quickly

• Devices

• Canonical example from general computing: disks (HDD/SSD)

• Messages to/from other devices (radios, wired busses)

• Sensor readings (if read quickly)
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What is a device driver?

• A device driver is the software in the Operating System that 
manages a specific device
• Modern computers come with MANY of these pre-installed

• And have the ability to automatically find many others if needed

• Can be generic “keyboard driver”
or very specific “Ricoh IM C3000 printer driver”

• Source of many bugs in the in Operating System
• Due to amount and variety of them
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How should we write driver software?

• There are various knobs available to us from hardware
• Polling, Interrupts, DMA

• There are also various software interface design
• Synchronous

• Asynchronous Callbacks
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Synchronous device drivers

• Synchronous functions
• Function call issues a command

• Does not return until action is complete and result is ready

• Example: most functions we’re used to
• sqrt() for example

• printf() also usually works this way (with some exceptions)

• For microcontrollers: Arduino interfaces are usually like this!
• Easy to get started with and understand
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Downside of synchronous code: the waiting

• How long will it take until the function returns?
• Immediately, seconds, minutes?

• What if there’s an error and the device never responds?
• More advanced interface could include a timeout option

• Synchronous designs require other synchronous designs
• We can build synchronous interfaces from asynchronous ones

• But we can’t go the other way
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Asynchronous drivers

• Goal: let the hardware run on its own and have the code get back 
to it later

• Challenge: programmers don’t think that way

• Other challenge: how do we “get back to it later”?
• One solution: Callbacks
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Callbacks

• Callbacks reuse a similar idea to interrupts
• When the event occurs, call this function

• General pattern
• Call driver function with one argument being a function pointer

• Driver sets up interaction and returns immediately

• Later the event happens and the driver calls the function pointer
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Callback functions

• uint32_t timer_start(
            uint32_t microseconds,
            void (*callback_fn)(void*),

void* context
            );

• timer_start(duration, my_timer_handler, context);

• “Context” is often provided as well (void*)
• Ability for caller to pass an argument for the callback function
• Often a pointer to a position in a structure or a shared variable to modify
• Similar to idea of closures in other languages
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Example with callbacks (could be temp driver)

76

…



CE346 – Microprocessor System Design

• Embedded Systems
• How does hardware work?

• How do we write drivers to interact with hardware from software?

• Sensing and sensors

• Big open-ended project: anything with inputs and outputs

• Project demos: Tuesday of exam week (12/5) from 11-5 in Mudd 3514
• Public! Anyone is welcome to stop in

• Not formal presentations, just demos you can play with
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