
Lecture 17
Processes

CS213 – Intro to Computer Systems

Branden Ghena – Fall 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• HW4 and SETI Lab due after Thanksgiving
• Start early so next week isn’t so bad!

• No office hours Wednesday-Friday for Thanksgiving break
• You can still ask questions on Piazza though!

• Normal office hours next week

2

Today’s Goals

• Explore various mechanisms by which OS and processes interact
• System calls and signals

• Discuss operations on files as example system calls

• Introduce the idea of “scheduling” processes

3

4

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

• Scheduling Processes

Outline

Reminder: view of a process

• Process: program that is being executed

• Contains code, data, and a thread
• Thread contains registers, instruction pointer, and stack

5

• Registers

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

• Instruction Pointer

• Condition Codes

• Stack

• Code and
Data

Questions remaining about processes

• Interaction mechanisms with OS
• How do processes make requests of the OS?

• How does the OS inform processes of various events?

• Both answered by the same basic mechanism:
 exceptional control flow

6

Control flow

7

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

• Processors do only one thing:
• From startup to shutdown, a CPU simply reads and executes (interprets) a

sequence of instructions, one at a time

• This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

Altering control flow

• Instructions that change control flow allow software to react
changes in program state
• Jumps/branches
• Call/return

• Also need to react to changes in system state
• Data arrives at network adapter
• Instruction divides by zero
• User hits Ctrl-C on the keyboard
• System timer expires

• These mechanisms are known as “exceptional control flow”

8

Exceptional control flow

• Mechanisms that could cause exceptional control flow
• Exceptions: events cause execution to jump to OS handler

• Context switch: request or timeout causes execution to jump to OS

• Signals: event plus OS causes execution to jump to process handler

9

Running process Other code (usually OS)

Exception
Exception processing
by exception handler

•Return to I_next

Event I_current
I_next

Exceptions

• Hardware detects an event that OS software needs to resolve immediately

• Could be an error
• Invalid memory access
• Invalid instruction

• Could just be something the OS should handle
• Page fault
• USB device detected

• OS has a table of “exception handlers”, which are functions that handle
each exception class (also known as interrupt handlers)
• Hardware jumps execution to the proper handler

10

11

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

• Scheduling Processes

Outline

Things a program cannot do itself

• Print “hello world”
• because the display is a shared resource.

• Download a web page
• because the network card is a shared resource.

• Save or read a file
• because the filesystem is a shared resource, and the OS wants to check

file permissions first.

• Launch another program
• because processes are managed by the OS

• Send data to another program
• because each program runs in isolation, one at a time

12

How does a process ask the OS to do something?

• Certain things can only be accessed from kernel mode
• All of memory, I/O devices, etc.
• Kernel: the portion of the OS that is running and in memory

• Bad Idea to allow processes to switch into kernel mode
• We do NOT trust processes
• So there shouldn’t be any instruction that switches to kernel mode…

• Requirements
1. Switch execution to the kernel
2. Change into kernel mode
3. Inform the kernel what you want it to do

13

Hardware can save us!

• Solution: trigger an exception to run an OS handler
• Hardware instruction: trap

• When instruction runs:
1. Mode is changed to kernel mode

AND

2. Instruction Pointer is moved to a known location in the kernel

• Same mechanism is used for other exceptions
• Division by zero, invalid memory access

• Also very similar to hardware interrupts

14

System call example

• System call: making a request of the OS from a process
• Uses exceptional control flow to enter OS kernel

• Returns back to process when complete

• Instruction after the system call

15

User code Kernel code

Exception

Do the thing

Returns

syscall

next instruction

System call steps (simplification)

1. Process loads parameters into registers (just like a function call)

2. Process executes trap instruction (int, syscall, svc, etc.)

3. Hardware moves %rip to “handler” and switches to kernel mode

4. OS checks what the process wants to do from registers

5. OS decides whether the process is allowed to do so

16

Returning from a system call (simplification)

• After OS finishes whatever operation it was asked to do
• And when the process is scheduled to run again

1. OS places return result in a register (just like a function call)

2. OS sets process state to running

3. OS changes mode to user mode (and sets virtual memory stuff)

4. OS sets %rip to instruction after the system call

• Process continues and can use results of system call

17

Linux system calls

• Example system calls
• https://man7.org/linux/man-pages/man2/syscalls.2.html

18

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

https://man7.org/linux/man-pages/man2/syscalls.2.html

Example using system calls

• Let’s create new processes with system calls

• From process view:
• Just look like regular C functions

• Take arguments, return values

• Underneath:
• Function uses special assembly instruction to trigger exception

19

Process management system calls

pid_t fork(void);

• Create a new process that is a copy of the current one
• Returns either PID of child process (parent) or 0 (child)

void _exit(int status);

• Exit the current process (exit(), the library call cleans things up first)

pid_t waitpid(pid_t pid, int *status, int options);

• Suspends the current process until a child (pid) terminates

int execve(const char *filename, char *const argv[], char *const envp[]);

• Execute a new program, replacing the existing one
• Replaces code and data, clears registers, sets %rip to start again

20

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
 if(fork() == 0) {
 printf("Child!\n");
 } else {
 printf("Parent!\n");
 }

 printf("Both!\n");
 return 0;
}

21

Creating a new process

#include <stdio.h>
#include <unistd.h>

int main(){
 if(fork() == 0) {
 printf("Child!\n");
 } else {
 printf("Parent!\n");
 }

 printf("Both!\n");
 return 0;
}

22

Existential crisis

Executing a new program

#include <stdio.h>
#include <unistd.h>

int main(){
 if(fork() == 0) {
 execve("/bin/python3", ...);
 } else {
 printf("Parent!\n");
 }

 printf("Only parent!\n");
 return 0;
}

23

Break + Question

• What does the following code
do?

#include <stdio.h>

#include <sys/types.h>

int main() {

 while(1){

 fork();

 }

 return 0;

}

26

Break + Question

• What does the following code
do?

#include <stdio.h>

#include <sys/types.h>

int main() {

 while(1){

 fork();

 }

 return 0;

}

27

• Creates a new process
• Then each process creates a

new process
• Then each of those creates a

new process…

• Known as a Fork bomb!
• Machine eventually runs out of

memory and processing power
and will stop working

• Defense: limit number of
processes per user

Fork bombs in various languages

• Python fork bomb

import os

while 1:

 os.fork()

• Rust fork bomb

#[allow(unconditional_recursion)]

fn main() {

 std::thread::spawn(main);

 main();

}

28

• Bash fork bomb
:(){ :|:& };:

• Bash with spacing and a
clearer function name

fork() {

 fork | fork &

}

fork

29

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

• Scheduling Processes

Outline

Files

• Collections of data
• Usually in permanent storage on your computer

• Types of files
• Regular files

• Arbitrary data
• Think of as a big array of bytes

• Directories
• Collections of regular files

• Special files
• Links, pipes, devices (see CS343)

30

Sidebar: what about types of regular files?

• Text files versus Executables versus Tar files
• All just differing patterns of bytes!

• It really is just all data. The meaning is in how you interpret it.

31

Executable
File

Archive
(tar)

File permissions

• Files have owners and permissions associated with them

33

File permissions

• Files have owners and permissions associated with them

• Permissions for the owner and name of the owner
• Read, Write, eXecute

• Cannot execute `arguments.c`

• For directories: Read contents, Write new contents, Traverse directory

34

File permissions

• Files have owners and permissions associated with them

• Permissions for the group and name of the group
• Example: I could make a CS213 group, add you all to it, and only give that

group access to some folder or file

35

File permissions

• Files have owners and permissions associated with them

• Permissions for everyone else on the computer
• Not the owner and not in the group

• For my personal machine, not particularly relevant

• For Moore, probably don’t want to let others read your files…

36

How does a process access files?

• This is an example use case for system calls

• Files are a shared and managed resource on the computer
• Need to follow permissions settings

• Handle if multiple processes try to edit a file simultaneously

• Also need to simplify what the interface looks like
• Files are actually structures in filesystem likely on disk

• But the process shouldn’t need to care about the details of that

37

How do we interact with files?

• Analogy: think of a file as a book
• Big array of characters (bytes)

1. Open the book, starting at the first page

2. Read from the book

3. Write to the book

4. Change pages (without reading everything in between)

5. Close the book when finished

38

System calls for interacting with files

1. Open the book, starting at the first page
• open()

2. Read from the book
• read()

3. Write to the book
• write()

4. Change pages (without reading everything in between)
• lseek()

5. Close the book when finished
• close()

39

Higher-level methods of file interaction

• Here, we’re talking about system calls to the OS

• C standard library also defines file interactions
• fopen, fread, fwrite, fseek, fclose

• All are wrappers on top of the actual syscalls

• Buffers your interactions to make them more efficient

• Reads/Writes large chunks of data at a time

• Might collect multiple fwrite’s before doing a single real write

• fflush() guarantees that the buffer is written now

40

Opening files

• int open(const char *pathname, int flags);

• pathname is the string path for the file
• “/home/brghena/class/cs213/s21/code/arguments.c”

• “./arguments.c”

• “arguments.c”

• flags include access permission requests
• Read only, Write only, Read and Write (O_RDONLY, O_WRONLY, O_RDWR)

• Also can choose to append to a file (O_APPEND)

• Or to create the file if it does not exist (O_CREAT)

41

Open returns a “file descriptor”

• int open(const char *pathname, int flags);

• OS keeps track of opened files for each process
• File descriptor is just a number referring to the opened file
• Non-negative number. Always the lowest unused, starting at zero

• A “handle” to the file

• File descriptor is used in other calls to reference the file
• That way the OS doesn’t have to look up pathname every time

• Negative number instead specifies an error (for all of these calls)

42

Reading files

• ssize_t read(int fd, void *buf, size_t count);

• fd is the file descriptor handle

• buf is a pointer to an array of bytes to read into

• count is the number of bytes to read

• Note: nowhere do we specify where to start reading
• OS kernel keeps track of a file offset with the descriptor

• Updated on each read

• First read of 100 bytes starts at zero, next starts 100 bytes in

43

How do we know when we finished the file?

• ssize_t read(int fd, void *buf, size_t count);

• Return from read is a “signed size”, a count of bytes actually read
• Negative means an error occurred

• Zero means we have reached the end of the file

• Positive number is the number of bytes read

• Probably how many we asked for, but maybe less

44

Writing files looks a lot like reading

• ssize_t write(int fd, const void *buf, size_t count);

• File descriptor, buffer to write from, count of bytes to write

• Returns number of bytes actually written

• Write occurs at the current file offset

45

Moving the file offset

• off_t lseek(int fd, off_t offset, int whence);

• Moves to offset for this file descriptor based on whence:
• SEEK_SET – set to offset (essentially start of file plus offset)

• SEEK_CUR – current location plus the offset

• SEEK_END – end of file plus the offset (which can be negative)

• Returns the resulting offset into the file
• Units: bytes from the beginning of the file

46

Closing a file

• int close(int fd);

• Closes the file descriptor

• It is an error to keep using the file descriptor after it is closed
• Descriptor might end up getting reused for a different file

47

Sidebar: how do you figure out how these calls work?

• Manual pages

• Online: https://man7.org/linux/man-pages/man2/close.2.html

48

https://man7.org/linux/man-pages/man2/close.2.html

Example: read a file and print it to terminal

int main(int argc, char *argv[]) {

 // check argument count

 if (argc != 2) {

 printf("Usage: ./kitten FILE\n");

 return -1;

 }

 // try opening file

 int fd = open(argv[1], O_RDONLY);

 if (fd < 0) {

 printf("Error opening file!\n");

 return -1;

 }

 // array to hold read data

 uint8_t read_size = 10;

 uint8_t read_data[read_size];

49

while(true) {

 // read from file

 ssize_t read_length = read(fd, read_data, read_size);

 if (read_length < 0) {

 printf("Error reading file!\n");

 return -1;

 }

 if (read_length == 0) {

 break;

 }

 // print out data

 for (int i=0; i<read_length; i++) {

 printf("%c", read_data[i]);

 }

 }

 return 0;

}

51

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

• Scheduling Processes

Outline

How do programs talk to users?

• We glossed over this before in CS211
• printf()
• gets()

• Work through the same file mechanism
• Three special files created for each program

• stdin – standard input (file descriptor 0)
• stdout – standard output (file descriptor 1)
• stderr – standard error (file descriptor 2)

• printf(…) -> fprintf(1, …) -> handle arguments then write(1, …)

52

Standard I/O is a process thing, not a C thing

• You can access them in Python, for instance
• https://docs.python.org/3/library/sys.html#sys.stdin

53

https://docs.python.org/3/library/sys.html#sys.stdin

Example: printing to terminal with a write call

int main(int argc, char *argv[]) {

 // check argument count

 if (argc != 2) {

 printf("Usage: ./kitten FILE\n");

 return -1;

 }

 // try opening file

 int fd = open(argv[1], O_RDONLY);

 if (fd < 0) {

 printf("Error opening file!\n");

 return -1;

 }

 // array to hold read data

 uint8_t read_size = 10;

 uint8_t read_data[read_size];

54

while(true) {

 // read from file

 ssize_t read_length = read(fd, read_data, read_size);

 if (read_length < 0) {

 printf("Error reading file!\n");

 return -1;

 }

 if (read_length == 0) {

 break;

 }

 // print out data

 ssize_t write_length = write(STDOUT_FILENO,

 read_data, read_length);

 }

 return 0;

}

Redirecting standard I/O

• Shells by default setup standard I/O to connect to the keyboard
and the screen
• But any file will work

• Shell I/O redirection commands
• COMMAND < filename

• Connect standard input to filename

• COMMAND > filename
• Connect standard output to filename (overwrite)

• COMMAND >> filename
• Connect standard output to filename (append)

55

Piping commands

• A command shell desire is to run multiple commands where the
output of the first feeds into the second as input

• COMMAND1 | COMMAND2
• Connects stdout of COMMAND1 to stdin of COMMAND2

• Example: print out files and sort by size
• ls –lah | sort –h

56

Example: trace system calls for commands

• strace -o syscalls.txt COMMAND

• Tracks every system call made by the command

• Outputs to a file: syscalls.txt

• Try on
• cat

• parallel-sum-ex

• strace itself

59

Break + Open Question

• How does printf() work?

60

Break + Open Question

• How does printf() work?

1. Read in arguments and determine what it needs to format

2. Create a new string buffer and write arguments into it

3. Call write() on STDOUT with the string

61

62

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

• Scheduling Processes

Outline

Alerting processes of events

• How do we let a process know there was an event?
• Errors

• Termination

• User commands (like CTRL-C or CTRL-\)

• Events could happen whenever
• Need to interrupt process control flow and run an event handler

• Linux mechanism to do so is called “signals”

63

Signals are a different version of exceptional control flow

• Signal is generated by the OS

• Interrupts user code and jumps to a signal handler
• Then returns back to user code afterwards

• Unless the signal handler ends the program (this is the default handler)

64

User code User code

Signal

Handle Signal

Returns

some instruction

next instruction

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

65

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

66

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Errors

Signals are asynchronous messages to processes

• Sometimes the OS wants to send something like an interrupt to a
process
• Your child process completed

• You tried to use an illegal instruction

• You accessed invalid memory

• You are terminating now

• In POSIX systems, this idea is called “Signals”

67

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR
31) SIGSYS ...

Process Termination

Sending signals

• OS sends signals when it needs to

• Processes can ask the OS send signals with a system call
• int kill(pid_t pid, int sig);

• Users send signals through OS from command line or keyboard
• Shell command: kill -9 pid (SIGKILL)

• CTRL-C (SIGINT)

68

Handling signals

• Programs can register a function to handle individual signals
• signal(int sig, sighandler_t handler);

• What are you supposed to do about it?
• Do some quick processing to handle it

• Reset the process and try again

• Quit the process (default handler)

69

Signals Examples

70

Example: catching a signal

void sighandler (int signum) {

 printf("HA HA You can't kill me!\n");

}

int main (void) {

 signal(SIGINT, sighandler);

 printf("Starting\n");

 while(true) {

 printf("Going to sleep for a second...\n");

 sleep(1);

 }

 return 0;

}

71

#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>

#include <unistd.h>
#include <signal.h>

Example: catching a segfault

int* pointer = 0x00000000;

void sighandler (int signum) {

 printf("Oops, that pointer wasn't valid. Try again!\n");

 sleep(1);

}

int main (void) {

 signal(SIGSEGV, sighandler);

 printf("About to read from pointer 0x%08lX\n", (long)pointer);

 int test = *pointer;

 return(0);

}

72

#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>

Examples: sending a signal

> kill -11 pid (11 is SIGSEGV – a.k.a segfault)

73

74

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

• Scheduling Processes

Outline

Lies your operating system always told you

• “Every process on your computer gets to run at the same time!”
• This is an illusion

• My desktop at home (running Windows)
• Current load: 250 processes with 2987 threads

• So how does the magic work?

75

Processes don’t run all the time

• OS schedules processes
• Decides which of many competing

processes to run.

• A blocked process is not ready to
run and is waiting on I/O

• I/O means input/output – anything
other than computing.
• For example, reading/writing disk,

sending network packet, waiting for
keystroke, condvar/semaphore!

• While waiting for results, the OS
blocks the process, waiting to do more
computation until the result is ready

The three basic
process states:

Multiprogramming processes

77

• Even with a single processor, the
OS can provide the illusion of
many processes running
simultaneously
• And also use this opportunity to get

more useful work done

• When one process is Blocked, OS
can schedule a different process
that is Ready

• OS can also swap between various
Ready processes so they all make
progress

The three basic
process states:

Scheduling

• We know that multiple processes will be sharing the CPU
• Possibly multiple threads in each process

• Possibly multiple cores in the CPU

• Scheduling is creating a policy for sharing the CPU
• Which process/thread is chosen to run, and when?

• When (if ever) does the OS change which process is running?

78

When can the OS make scheduling decisions?

• Whenever the OS is actually running
• i.e. after a context switch

• Possible triggers
• System calls

• Process/Thread creation/termination

• I/O requests

• Synchronization primitives (futex/condvar/semaphore)

• Hardware events (interrupts)

• I/O complete

• Timer triggers

79

Example scheduler: FIFO Scheduling

• First In, First Out (FIFO)
• also known as First Come First Served (FCFS)

• Policy
• First job to arrive gets scheduled first

• Let a job continue until it is complete

• Then schedule next remaining job with earliest arrival

80

CS343 – Operating Systems

• Concurrency + Processes + Virtual Memory
• All topics that Operating Systems covers with more depth

• Also covers File Systems and Devices

• Focus: “how does the Operating System make the computer work”?

81

82

• Process Control Flow

• System Calls

• File I/O
• Standard I/O

• Signals

• Scheduling Processes

Outline

	Default Section
	Slide 1: Lecture 17 Processes

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Processes and Control Flow
	Slide 4: Outline
	Slide 5: Reminder: view of a process
	Slide 6: Questions remaining about processes
	Slide 7: Control flow
	Slide 8: Altering control flow
	Slide 9: Exceptional control flow
	Slide 10: Exceptions

	System Calls
	Slide 11: Outline
	Slide 12: Things a program cannot do itself
	Slide 13: How does a process ask the OS to do something?
	Slide 14: Hardware can save us!
	Slide 15: System call example
	Slide 16: System call steps (simplification)
	Slide 17: Returning from a system call (simplification)
	Slide 18: Linux system calls
	Slide 19: Example using system calls
	Slide 20: Process management system calls
	Slide 21: Creating a new process
	Slide 22: Creating a new process
	Slide 23: Executing a new program
	Slide 26: Break + Question
	Slide 27: Break + Question
	Slide 28: Fork bombs in various languages

	File I/O
	Slide 29: Outline
	Slide 30: Files
	Slide 31: Sidebar: what about types of regular files?
	Slide 33: File permissions
	Slide 34: File permissions
	Slide 35: File permissions
	Slide 36: File permissions
	Slide 37: How does a process access files?
	Slide 38: How do we interact with files?
	Slide 39: System calls for interacting with files
	Slide 40: Higher-level methods of file interaction
	Slide 41: Opening files
	Slide 42: Open returns a “file descriptor”
	Slide 43: Reading files
	Slide 44: How do we know when we finished the file?
	Slide 45: Writing files looks a lot like reading
	Slide 46: Moving the file offset
	Slide 47: Closing a file
	Slide 48: Sidebar: how do you figure out how these calls work?
	Slide 49: Example: read a file and print it to terminal

	Standard I/O
	Slide 51: Outline
	Slide 52: How do programs talk to users?
	Slide 53: Standard I/O is a process thing, not a C thing
	Slide 54: Example: printing to terminal with a write call
	Slide 55: Redirecting standard I/O
	Slide 56: Piping commands
	Slide 59: Example: trace system calls for commands
	Slide 60: Break + Open Question
	Slide 61: Break + Open Question

	Signals
	Slide 62: Outline
	Slide 63: Alerting processes of events
	Slide 64: Signals are a different version of exceptional control flow
	Slide 65: Signals are asynchronous messages to processes
	Slide 66: Signals are asynchronous messages to processes
	Slide 67: Signals are asynchronous messages to processes
	Slide 68: Sending signals
	Slide 69: Handling signals
	Slide 70: Signals Examples
	Slide 71: Example: catching a signal
	Slide 72: Example: catching a segfault
	Slide 73: Examples: sending a signal

	Scheduling Processes
	Slide 74: Outline
	Slide 75: Lies your operating system always told you
	Slide 76: Processes don’t run all the time
	Slide 77: Multiprogramming processes
	Slide 78: Scheduling
	Slide 79: When can the OS make scheduling decisions?
	Slide 80: Example scheduler: FIFO Scheduling

	Wrapup
	Slide 81: CS343 – Operating Systems
	Slide 82: Outline

