
Lecture 15
Compiler Optimizations

CS213 – Intro to Computer Systems

Branden Ghena – Fall 2023

Slides adapted from:
Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Attack Lab due today!
• Most of you are finished with it though ❤

• SETI Lab is out and ready to be worked on
• Today is the last of the material that will be helpful towards it
• Be careful with this one:

• Lots of C code to understand and write
• Spans Thanksgiving, so you have less time to work on it than you think

• Homework 4 should be out later today

• Reminder: midterm 2 on Wednesday of exam week
• Covers material from the second half of class

2

Today’s Goals

• Discuss the role of a compiler

• Explore basic optimizations at both the local and global levels

• Understand limitations of optimizations

• Describe how GCC can be configured to use these optimizations

3

4

• Compilers and Optimizations

• Local Optimizations

• Global Optimizations

• Obstacles to Optimization

• GNU C Compiler (GCC)

Outline

How do we get code to run on a machine?

• CPU only understands “machine code”
• All other languages must either be interpreted or compiled

• The very bad old days: write hexadecimal instructions by hand
• This was back in the 1940s and the days of vacuum tubes

• Hook up wires and switches to form data input

5

Rear Admiral Grace Hopper

• Popularized term “debugging”
• After finding a literal moth in their computer

• Invented first compiler in 1951
• “I decided data processors ought to be able

to write their programs in English, and the
computers would translate them into
machine code”

6

Other Compilers Champions

• John Backus
• Developed FORTRAN

in 1957

• “Much of my work has
come from being lazy.
I didn't like writing
programs, and so,
when I was working
on the IBM 701, I
started work on a
programming system
to make it easier to
write programs”

7

• Fran Allen
• Pioneer of compiler

optimization
techniques

• Wrote a 1966 paper
introducing control
flow graphs, which
are central to
compiler theory

• First woman to win
the Turing Award

C compilation steps

1. Pre-processor
• Text insertion of macros and #includes

2. Compiler
• Transform C source into assembly
• Also perform optimizations along the way

3. Assembler
• Transform assembly into machine code

4. Linker
• Place code at real addresses and fixup

8

Optimizations

• An optimization is a code transformation with the goal of making
a program faster
• Can be done manually, by a programmer
• Or can be done automatically, by a compiler
• MUST maintain correctness

• Some optimizations are processor-dependent
• They take advantage of unique processor capabilities
• Example: right shift instead of divide by powers of two

• Some optimizations are processor-independent
• They make programs faster regardless of processor
• Example: removing redundant code

9

General goals of compiler optimization

• Minimize number of instructions
• Don’t do calculations more than once
• Don’t do unnecessary calculations at all
• Avoid slow instructions

• Avoid waiting for memory
• Keep everything in registers whenever possible
• Access memory in cache-friendly patterns

• Avoid branching
• Branches are slow for all modern processor architectures
• Don’t make unnecessary decisions
• Make it easier for the CPU to predict branches whenever possible

10

Compilation is a pipeline

11

Preprocessing

Compilation

Assembling

Fold constants Inline functions
Eliminate
common

subexpressions

Restructure
loops

Move code out
of loops

Reduce control
flow to gotos

Eliminate dead
code

Reduce
operation
strength

Select
instructions

Schedule
instructions

Allocate
registers

Emit assembly
language

Hundreds! Many repeated.

Two categories of optimizations

• Local optimizations
• Work within a single basic block

(chunks of code with no gotos or labels)
• Examples: combining constants, eliminating dead

code

• Global optimizations
• Work across the “control flow graph” of an entire

function
• Examples: loop transformations

• Optimizations are often limited to function
boundaries

12

setup

Easy?

entry

easy complex

loop

Done?

exit

13

• Compilers and Optimizations

• Local Optimizations

• Global Optimizations

• Obstacles to Optimization

• GNU C Compiler (GCC)

Outline

Constant Folding

• Do arithmetic in the compiler

long mask = 0xFF << 8; → long mask = 0xFF00;

• Any expression with constant inputs can be folded
• Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik");

→ size_t namelen = 11;

14

Strength reduction

• Replace expensive operations with cheaper ones

long a = b * 5;

→ long a = (b << 2) + b;

• Multiplication and division are the usual targets

• Multiplication is often hiding in memory access expressions
• Example: array indexing

15

Dead code elimination

• Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

• Don’t emit code whose result is overwritten

x = 23;
x = 42;

• These may look silly, but...
• Can be produced by other optimizations
• Assignments to x might be far apart

16

Common Subexpression Elimination

• Factor out repeated calculations or memory accesses
• Only do them once
• Makes code closer to the assembly representation too

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;

→
 elt = &v[i];
 x = elt->x;
 y = elt->y;
 norm[i] = x*x + y*y;

17

Break + Question

int a = 5;

int x = 2*a;

int y = x+6;

int t = x * y;

if (t < 0) {

 printf(“Message 1\n”);

} else {

 printf(“Message 2\n”);

}

18

• Optimize the code snippet as
much as possible

Break + Question

int a = 5;

int x = 2*a;

int y = x+6;

int t = x * y;

if (t < 0) {

 printf(“Message 1\n”);

} else {

 printf(“Message 2\n”);

}

19

• Optimize the code snippet as
much as possible

• Result:
printf(“Message 2\n”);

• t is always 160
• Fold constants

• 160 is never less than 0
• Remove dead code

20

• Compilers and Optimizations

• Local Optimizations

• Global Optimizations

• Obstacles to Optimization

• GNU C Compiler (GCC)

Outline

Inlining

• Copy body of a function into its caller(s)
• Can create opportunities for many other optimizations

• Can make code much bigger and therefore slower (if larger than cache!)

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

int func(int y) {

 int tmp;

 if (y == 0) tmp = 0; else tmp = y - 1;

 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

 return tmp;

}

21

Inlining

• Copy body of a function into its caller(s)
• Can create opportunities for many other optimizations

• Can make code much bigger and therefore slower (if larger than cache!)

int func(int y) {

 int tmp;

 if (y == 0) tmp = 0; else tmp = y - 1;

 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

 return tmp;

}

Always true Does nothing Can constant fold

int pred(int x) {
 if (x == 0)
 return 0;
 else
 return x - 1;
}

int func(int y) {
 return pred(y)
 + pred(0)
 + pred(y+1);
}

22

Inlining

• Copy body of a function into its caller(s)
• Can create opportunities for many other optimizations

• Can make code much bigger and therefore slower (if larger than cache!)

int func(int y) {

 int tmp;

 if (y == 0) tmp = 0; else tmp = y - 1;

 if (0 == 0) tmp += 0; else tmp += 0 - 1;

 if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

 return tmp;

}

int func(int y) {

 int tmp = 0;

 if (y != 0) tmp = y - 1;

 if (y != -1) tmp += y;

 return tmp;

}

23

End result is MUCH simpler!

Code Motion

• Move calculations out of a loop
• Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++) {

 a[n*i+j] = b[j];
}

 →

24

long j;

 int ni = n*i;
 for (j = 0; j < n; j++) {

 a[ni+j] = b[j];
 }

Loop Transformations

Rearrange entire loop nests for maximum efficiency

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
 for (long i = 0; i < n; i++)
 for (long j = 0, j < n; j++)
 a[j*n + i] = atan2(i, j);

 for (long i = 0; i < n; i++)
 for (long j = 0, j < n; j++)
 b[i*n + j] = a[i*n + j] + (i >= 1 && j >= 1)
 ? a[(i-1)*n + (j-1)]
 : 0;
}

25

Loop Transformations

Loop interchange: do iterations in cache-friendly order

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
 for (long i = 0; i < n; i++)
 for (long j = 0, j < n; j++)
 a[i*n + j] = atan2(j, i);

 for (long i = 0; i < n; i++)
 for (long j = 0, j < n; j++)
 b[i*n + j] = a[i*n + j] + (i >= 1 && j >= 1)
 ? a[(i-1)*n + (j-1)]
 : 0;
}

26

Loop Transformations

Loop fusion: combine adjacent loops with the same limits

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
 for (long i = 0; i < n; i++) {
 for (long j = 0, j < n; j++) {
 a[i*n + j] = atan2(j, i);

 for (long i = 0; i < n; i++)
 for (long j = 0, j < n; j++)
 b[i*n + j] = a[i*n + j] + (i >= 1 && j >= 1)
 ? a[(i-1)*n + (j-1)]
 : 0;

}
}

}

27

Loop Transformations

Induction variable elimination: replace loop indices with algebra

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
 for (long i = 0; i < n*n; i++) {
 for (long j = 0, j < n; j++) {
 a[i] = atan2(i%n, i/n);

 b[i] = a[i] + (i >= n && i%n >= 1)
 ? a[i – n - 1]
 : 0;
 }
 }
}

28

Loop Transformations

Top is the original code

Bottom is the transformed
version

Note: still O(n2) complexity!

But the constant factor is
much smaller than before

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
 for (long i = 0; i < n*n; i++) {
 a[i] = atan2(i%n, i/n);
 b[i] = a[i] + (i >= n && i%n >= 1)
 ? a[i – n - 1] : 0;
 }
}

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
 for (long i = 0; i < n; i++)
 for (long j = 0, j < n; j++)
 a[j*n + i] = atan2(i, j);

 for (long i = 0; i < n; i++)
 for (long j = 0, j < n; j++)
 b[i*n + j] = a[i*n + j] + (i >= 1 && j >= 1)
 ? a[(i-1)*n + (j-1)] : 0;
}

29

Break + Quiz

• Optimize the following code: (hint: could be MUCH smaller)
long multi_loop(long orig_value) {
 long new_value = 0;
 for (int i=0; i<4; i++) {
 for (int j=0; j<8; j++) {
 new_value += 1;
 }
 new_value += orig_value;
 }
 return new_value;
}

30

Break + Quiz

• Optimize the following code: (hint: could be MUCH smaller)
long multi_loop(long orig_value) {
 long new_value = 0;
 for (int i=0; i<4; i++) {
 for (int j=0; j<8; j++) {
 new_value += 1;
 }
 new_value += orig_value;
 }
 return new_value;
}

long multi_loop(long orig_value) {

 return 4*orig_value + 32;
}

31

32

• Compilers and Optimizations

• Local Optimizations

• Global Optimizations

• Obstacles to Optimization

• GNU C Compiler (GCC)

Outline

Limits to compiler optimization

• Generally cannot improve algorithmic complexity
• Only constant factors, but those can be worth 10x or more…

• MUST NOT cause any change in program behavior
• Programmer may not care about “edge case” behavior, but compiler does not know that
• Exception: language may declare some changes acceptable (UNDEFINED BEHAVIOR)

• Often only analyze one function at a time
• Whole-program analysis (“LTO”) expensive but gaining popularity
• Exception: inlining merges many functions into one

• Tricky to anticipate run-time inputs
• Profile-guided optimization can help with common case, but…
• “Worst case” performance can be just as important as “normal”

33

Optimization Challenges

1. Memory aliasing

2. Function calls

3. Non-associative arithmetic

4. Larger cache optimizations

34

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

• Code updates b[i] on every iteration

b[i] should just be placed in a

register and only a single memory
write should occur

35

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

• Code updates b[i] on every iteration
• Why couldn’t compiler optimize this away?

sum_rows1 inner loop
.L4:
 movsd (%rsi,%rax,8), %xmm0 # FP load
 addsd (%rdi), %xmm0 # FP add
 movsd %xmm0, (%rsi,%rax,8) # FP store
 addq $8, %rdi
 cmpq %rcx, %rdi
 jne .L4

36

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Memory Aliasing

double A[9] =

 { 0, 1, 2,

 4, 8, 16,

 32, 64, 128};

sum_rows1(A, &(A[3]), 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

double A[9] =

 { 0, 1, 2,

 0, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 0, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 1, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 0, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 3, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 6, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 0,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 32,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 96,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 22, 224,

 32, 64, 128};

A and B overlap in memory?

Compiler MUST consider that memory
aliasing could occur
• Unless it can prove it is impossible

37

Avoiding aliasing penalties: with local variable

• Use a local variable for intermediate results

38

sum_rows2 inner loop
.Loop:
 addsd (%rdi), %xmm0 # FP load + add
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .Loop

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {

double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];

b[i] = val;
 }
}

Avoiding aliasing penalties: aliasing still occurs

• Still changes A if aliased because that’s what the code specifies

39

double A[9] =

 { 0, 1, 2,

 4, 8, 16,

 32, 64, 128};

sum_rows1(A, &(A[3]), 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 27, 16]

i = 2: [3, 27, 224]

Value of B:

double A[9] =

 { 0, 1, 2,

 4, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 4, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 4, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 8, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 27, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 27, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 27, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 27, 16,

 32, 64, 128};

double A[9] =

 { 0, 1, 2,

 3, 27, 224,

 32, 64, 128};

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];
 b[i] = val;
 }
}

Avoiding aliasing penalties: with restrict keyword

• Use restrict keyword to tell compiler that a and b cannot alias

40

sum_rows2 inner loop
.Loop:
 addsd (%rdi), %xmm0 # FP load + add
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .Loop

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows3(double *restrict a, double *restrict b, long n) {
 long i, j;
 for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
 b[i] += a[i*n + j];
 }
}

Avoiding aliasing penalties: with different language

• Use a different language altogether
• For example, in Fortran array arguments are assumed not to alias

41

subroutine sum_rows4(a, b, n)
implicit none
integer, parameter :: dp = kind(1.d0)
real(kind=dp), dimension(:), intent(in) :: a
real(kind=dp), dimension(:), intent(out) :: b
integer, intent(in) :: n
integer :: i, j
do i = 1,n

b(i) = 0
do j = 1,n

b(i) = b(i) + a(i*n + j)
end

end
end

sum_rows2 inner loop
.Loop:
 addsd (%rdi), %xmm0 # FP load + add
 addq $8, %rdi
 cmpq %rax, %rdi
 jne .Loop

Optimization Challenges

1. Memory aliasing

2. Function calls

3. Non-associative arithmetic

4. Larger cache optimizations

42

Function calls are opaque

• Compiler examines one function at a time
• Some exceptions for code in a single file

• Must assume a function call could do
anything

• Cannot usually
• Move function calls

• Change number of times a function is called

• Cache data from memory in registers across
function calls

size_t strlen(const char *s) {

 size_t len = 0;

 while (*s++ != '\0') {

 len++;

 }

 return len;

}

• O(n) execution time

• Return value depends on:
• value of s
• contents of memory at address s

• Only cares about whether
individual bytes are zero

• Does not modify memory

• Compiler might know some of
that (but probably not)

43

Can’t move functions out of loops

void lower_quadratic(char *s) {

 size_t i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] += 'a' - 'A';

}

44

Can’t move functions out of loops

void lower_still_quadratic(char *s) {

 size_t i, n = strlen(s);

 for (i = 0; i < n; i++)

 if (s[i] >= 'A' && s[i] <= 'Z') {

 s[i] += 'a' - 'A’;

 n = strlen(s);

 }

}

45

Can’t move functions out of loops

void lower_linear(char *s) {

 size_t i, n = strlen(s);

 for (i = 0; i < n; i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] += 'a' - 'A';

}

46

Can’t move functions out of loops

• Even calling strlen() once is

a linear function, it’s just that
the others are terrible
• Zoom in here shows that

• Putting strlen() in the loop is

a super common CS211 mistake

• Although we let it slide

47

Optimization Challenges

1. Memory aliasing

2. Function calls

3. Non-associative arithmetic

4. Larger cache optimizations

48

Non-associative arithmetic

• When is 𝒂⊙ 𝒃 ⊙ 𝒄 not equal to 𝒂⊙ (𝒃⊙ 𝒄)?
• Floating-point numbers

• Example: 𝒂 = 1.0, 𝒃 = 1.5 × 1038, 𝒄 = −1.5 × 1038

(single precision IEEE fp)

• Blocks any optimization that changes order of floating point
operations

𝑎 + 𝑏 = 1.5 × 1038 𝑎 + 𝑏 + 𝑐 = 0

𝑏 + 𝑐 = 0 𝑎 + 𝑏 + 𝑐 = 1

49

Optimization Challenges

1. Memory aliasing

2. Function calls

3. Non-associative arithmetic

4. Larger cache optimizations

50

Larger cache optimizations

a

i

b

j

x=

c

void mmm(double *a, double *b,
 double *c, int n) {
 memset(c, 0, n*n*sizeof(double));

 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k]
 * b[k*n + j];
}

i1

j1

x=

c a b

Block size B x B

void mmm(double *a, double *b,
 double *c, int n) {
 memset(c, 0, n*n*sizeof(double));

 int i, j, k, i1, j1, k1;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 for (i1 = i; i1 < i+B; i1++)
 for (j1 = j; j1 < j+B; j1++)
 for (k1 = k; k1 < k+B; k1++)
 c[i1*n+j1] += a[i1*n + k1]
 * b[k1*n + j1];
}

Compiler cannot do this transformation automatically
51

Break + Relevant xkcd

52
https://xkcd.com/1205/

https://xkcd.com/1205/

53

• Compilers and Optimizations

• Local Optimizations

• Global Optimizations

• Obstacles to Optimization

• GNU C Compiler (GCC)

Outline

GNU C Compiler (GCC)

• Very widely used compiler
• Created in 1987

• Originally just supported C, but now supports several languages

• C, C++, Objective-C, Fortran, Ada, D, Go

• Collection of tools that perform the compilation steps

54

Enabling optimizations

• Flag given to gcc chooses optimization levels
• -O# where # is one of {0, 1, 2, 3, s} (and a few custom others)

• (that flag is a capital Oh for Optimization, not a zero)

• -O0 is the default (oh zero)
• Almost all optimizations are disabled

• Code compiles more quickly!

• Code does what you expect

55

More advanced optimizations

• Each level up from there is just a collection of optimizations

• -O1

56

-fauto-inc-dec

-fbranch-count-reg

-fcombine-stack-adjustments

-fcompare-elim

-fcprop-registers

-fdce

-fdefer-pop

-fdelayed-branch

-fdse

-fforward-propagate

-fguess-branch-probability

...

Explanation of optimizations:
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Optimizations examples in godbolt

• Go to Godbolt!

57

Architecture-dependent optimizations

• By default, GCC knows which ISA you are compiling for
• x86-64

• GCC does not know the specific processor you’re compiling for
• So it can make architecture-dependent choices

• But it cannot make processor-dependent optimizations

• -march=cpu-type
• Informs GCC of the specific processor you’re on

• Make sure you tell it the correct processor!

• The wrong one might lead to code that crashes

59

Optimizations in SETI Lab

• Enable optimizations to start with
• This should be enough to get you to 100%

• Assuming you’ve got the concurrency part correct

• To achieve extra credit
• Look into more advanced flags and what they do

• Consider what optimizations you could perform on the code that the
compiler cannot

• Note: must focus these on the loops that are doing the most work

60

Be sure to apply optimizations to everything!

• Common SETI Lab bug: only apply optimizations to p_band_scan.c
• In reality, much of the work is performed in the functions it calls to do

signal processing

• Be sure to make clean and then recompile everything after
enabling or changing optimizations

61

Compilers courses

• Is this lecture content interesting to you?
• There is a LOT more depth here

• Certainly more advanced optimizations

• Also the idea of how does a compiler parse and understand your code

• Courses to consider:
• CS322 – Compiler Construction

• CS323 – Code Analysis and Transformation

62

63

• Compilers and Optimizations

• Local Optimizations

• Global Optimizations

• Obstacles to Optimization

• GNU C Compiler (GCC)

Outline

	Default Section
	Slide 1: Lecture 15 Compiler Optimizations

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Compilers and Optimizations
	Slide 4: Outline
	Slide 5: How do we get code to run on a machine?
	Slide 6: Rear Admiral Grace Hopper
	Slide 7: Other Compilers Champions
	Slide 8: C compilation steps
	Slide 9: Optimizations
	Slide 10: General goals of compiler optimization
	Slide 11: Compilation is a pipeline
	Slide 12: Two categories of optimizations

	Local Optimizations
	Slide 13: Outline
	Slide 14: Constant Folding
	Slide 15: Strength reduction
	Slide 16: Dead code elimination
	Slide 17: Common Subexpression Elimination
	Slide 18: Break + Question
	Slide 19: Break + Question

	Global Optimizations
	Slide 20: Outline
	Slide 21: Inlining
	Slide 22: Inlining
	Slide 23: Inlining
	Slide 24: Code Motion
	Slide 25: Loop Transformations
	Slide 26: Loop Transformations
	Slide 27: Loop Transformations
	Slide 28: Loop Transformations
	Slide 29: Loop Transformations
	Slide 30: Break + Quiz
	Slide 31: Break + Quiz

	Obstacles to Optimization
	Slide 32: Outline
	Slide 33: Limits to compiler optimization
	Slide 34: Optimization Challenges
	Slide 35: Memory Aliasing
	Slide 36: Memory Aliasing
	Slide 37: Memory Aliasing
	Slide 38: Avoiding aliasing penalties: with local variable
	Slide 39: Avoiding aliasing penalties: aliasing still occurs
	Slide 40: Avoiding aliasing penalties: with restrict keyword
	Slide 41: Avoiding aliasing penalties: with different language
	Slide 42: Optimization Challenges
	Slide 43: Function calls are opaque
	Slide 44: Can’t move functions out of loops
	Slide 45: Can’t move functions out of loops
	Slide 46: Can’t move functions out of loops
	Slide 47: Can’t move functions out of loops
	Slide 48: Optimization Challenges
	Slide 49: Non-associative arithmetic
	Slide 50: Optimization Challenges
	Slide 51: Larger cache optimizations
	Slide 52: Break + Relevant xkcd

	GNU C Compiler (GCC)
	Slide 53: Outline
	Slide 54: GNU C Compiler (GCC)
	Slide 55: Enabling optimizations
	Slide 56: More advanced optimizations
	Slide 57: Optimizations examples in godbolt
	Slide 59: Architecture-dependent optimizations
	Slide 60: Optimizations in SETI Lab
	Slide 61: Be sure to apply optimizations to everything!

	Wrapup
	Slide 62: Compilers courses
	Slide 63: Outline

