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Administrivia

• Attack Lab due today!
• Most of you are finished with it though ❤

• SETI Lab is out and ready to be worked on
• Today is the last of the material that will be helpful towards it
• Be careful with this one:

• Lots of C code to understand and write
• Spans Thanksgiving, so you have less time to work on it than you think

• Homework 4 should be out later today

• Reminder: midterm 2 on Wednesday of exam week
• Covers material from the second half of class
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Today’s Goals

• Discuss the role of a compiler

• Explore basic optimizations at both the local and global levels

• Understand limitations of optimizations

• Describe how GCC can be configured to use these optimizations
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How do we get code to run on a machine?

• CPU only understands “machine code”
• All other languages must either be interpreted or compiled

• The very bad old days: write hexadecimal instructions by hand
• This was back in the 1940s and the days of vacuum tubes

• Hook up wires and switches to form data input
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Rear Admiral Grace Hopper

• Popularized term “debugging”
• After finding a literal moth in their computer

• Invented first compiler in 1951
• “I decided data processors ought to be able 

to write their programs in English, and the 
computers would translate them into 
machine code”
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Other Compilers Champions

• John Backus
• Developed FORTRAN 

in 1957

• “Much of my work has 
come from being lazy. 
I didn't like writing 
programs, and so, 
when I was working 
on the IBM 701, I 
started work on a 
programming system 
to make it easier to 
write programs”

7

• Fran Allen
• Pioneer of compiler 

optimization 
techniques

• Wrote a 1966 paper 
introducing control 
flow graphs, which 
are central to 
compiler theory

• First woman to win 
the Turing Award



C compilation steps

1. Pre-processor
• Text insertion of macros and #includes

2. Compiler
• Transform C source into assembly
• Also perform optimizations along the way

3. Assembler
• Transform assembly into machine code

4. Linker
• Place code at real addresses and fixup
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Optimizations

• An optimization is a code transformation with the goal of making 
a program faster
• Can be done manually, by a programmer
• Or can be done automatically, by a compiler
• MUST maintain correctness

• Some optimizations are processor-dependent
• They take advantage of unique processor capabilities
• Example: right shift instead of divide by powers of two

• Some optimizations are processor-independent
• They make programs faster regardless of processor
• Example: removing redundant code
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General goals of compiler optimization

• Minimize number of instructions
• Don’t do calculations more than once
• Don’t do unnecessary calculations at all
• Avoid slow instructions

• Avoid waiting for memory
• Keep everything in registers whenever possible
• Access memory in cache-friendly patterns

• Avoid branching
• Branches are slow for all modern processor architectures
• Don’t make unnecessary decisions
• Make it easier for the CPU to predict branches whenever possible
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Compilation is a pipeline
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Preprocessing

Compilation

Assembling

Fold constants Inline functions
Eliminate 
common 

subexpressions

Restructure 
loops

Move code out 
of loops

Reduce control 
flow to gotos

Eliminate dead 
code

Reduce 
operation 
strength

Select 
instructions

Schedule 
instructions

Allocate 
registers

Emit assembly 
language

Hundreds! Many repeated.



Two categories of optimizations

• Local optimizations
• Work within a single basic block

(chunks of code with no gotos or labels)
• Examples: combining constants, eliminating dead 

code

• Global optimizations
• Work across the “control flow graph” of an entire 

function
• Examples: loop transformations

• Optimizations are often limited to function 
boundaries
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setup

Easy?

entry

easy complex

loop

Done?

exit
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Constant Folding

• Do arithmetic in the compiler

long mask = 0xFF << 8;   →   long mask = 0xFF00;

• Any expression with constant inputs can be folded
• Might even be able to remove library calls…

size_t namelen = strlen("Harry Bovik");

→  size_t namelen = 11;
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Strength reduction

• Replace expensive operations with cheaper ones

long a = b * 5;

→ long a = (b << 2) + b;

• Multiplication and division are the usual targets

• Multiplication is often hiding in memory access expressions
• Example: array indexing
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Dead code elimination

• Don’t emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

• Don’t emit code whose result is overwritten

x = 23;
x = 42;

• These may look silly, but...
• Can be produced by other optimizations
• Assignments to x might be far apart
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Common Subexpression Elimination

• Factor out repeated calculations or memory accesses
• Only do them once
• Makes code closer to the assembly representation too

norm[i] = v[i].x*v[i].x + v[i].y*v[i].y;

→  
 elt = &v[i];
 x = elt->x;
 y = elt->y;
 norm[i] = x*x + y*y;
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Break + Question

int a = 5;

int x = 2*a;

int y = x+6;

int t = x * y;

if (t < 0) {

  printf(“Message 1\n”);

} else {

  printf(“Message 2\n”);

}

18

• Optimize the code snippet as 
much as possible



Break + Question

int a = 5;

int x = 2*a;

int y = x+6;

int t = x * y;

if (t < 0) {

  printf(“Message 1\n”);

} else {

  printf(“Message 2\n”);

}
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• Optimize the code snippet as 
much as possible

• Result:
printf(“Message 2\n”);

• t is always 160
• Fold constants

• 160 is never less than 0
• Remove dead code
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Inlining

• Copy body of a function into its caller(s)
• Can create opportunities for many other optimizations

• Can make code much bigger and therefore slower (if larger than cache!)

int pred(int x) {
    if (x == 0)
        return 0;
    else
        return x - 1;
}

int func(int y) {
    return pred(y)
         + pred(0)
         + pred(y+1);
} 

int func(int y) {

  int tmp;

  if (y == 0) tmp = 0; else tmp = y - 1;

  if (0 == 0) tmp += 0; else tmp += 0 - 1;

  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

  return tmp;

} 
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Inlining

• Copy body of a function into its caller(s)
• Can create opportunities for many other optimizations

• Can make code much bigger and therefore slower (if larger than cache!)

int func(int y) {

  int tmp;

  if (y == 0) tmp = 0; else tmp = y - 1;

  if (0 == 0) tmp += 0; else tmp += 0 - 1;

  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

  return tmp;

} 

Always true Does nothing Can constant fold

int pred(int x) {
    if (x == 0)
        return 0;
    else
        return x - 1;
}

int func(int y) {
    return pred(y)
         + pred(0)
         + pred(y+1);
} 
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Inlining

• Copy body of a function into its caller(s)
• Can create opportunities for many other optimizations

• Can make code much bigger and therefore slower (if larger than cache!)

int func(int y) {

  int tmp;

  if (y == 0) tmp = 0; else tmp = y - 1;

  if (0 == 0) tmp += 0; else tmp += 0 - 1;

  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

  return tmp;

} 

int func(int y) {

  int tmp = 0;

  if (y != 0) tmp = y - 1;

  if (y != -1) tmp += y;

  return tmp;

} 
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End result is MUCH simpler!



Code Motion

• Move calculations out of a loop
• Only valid if every iteration would produce same result

long j;
for (j = 0; j < n; j++) {

    a[n*i+j] = b[j];
}

     →
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long j;

 int ni = n*i;
 for (j = 0; j < n; j++) {

 a[ni+j] = b[j];
 }



Loop Transformations

Rearrange entire loop nests for maximum efficiency

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
  for (long i = 0; i < n; i++)
    for (long j = 0, j < n; j++)
      a[j*n + i] = atan2(i, j);

  for (long i = 0; i < n; i++)
    for (long j = 0, j < n; j++)
      b[i*n + j] = a[i*n + j] + (i >= 1 && j >= 1)
                     ? a[(i-1)*n + (j-1)]
                     : 0;
}
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Loop Transformations

Loop interchange: do iterations in cache-friendly order

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
  for (long i = 0; i < n; i++)
    for (long j = 0, j < n; j++)
      a[i*n + j] = atan2(j, i);

  for (long i = 0; i < n; i++)
    for (long j = 0, j < n; j++)
      b[i*n + j] = a[i*n + j] + (i >= 1 && j >= 1)
                     ? a[(i-1)*n + (j-1)]
                     : 0;
}
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Loop Transformations

Loop fusion: combine adjacent loops with the same limits

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
  for (long i = 0; i < n; i++) {
    for (long j = 0, j < n; j++) {
      a[i*n + j] = atan2(j, i);

  for (long i = 0; i < n; i++)
    for (long j = 0, j < n; j++)
      b[i*n + j] = a[i*n + j] + (i >= 1 && j >= 1)
                     ? a[(i-1)*n + (j-1)]
                     : 0;

}
}

}
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Loop Transformations

Induction variable elimination: replace loop indices with algebra

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
  for (long i = 0; i < n*n; i++) {
    for (long j = 0, j < n; j++) {
      a[i] = atan2(i%n, i/n);

      b[i]      = a[i] + (i >= n && i%n >= 1)
                    ? a[i – n - 1]
                    : 0;
    }
  }
}
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Loop Transformations

Top is the original code

Bottom is the transformed 
version

Note: still O(n2) complexity!

But the constant factor is 
much smaller than before

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
  for (long i = 0; i < n*n; i++) {
      a[i] = atan2(i%n, i/n);
      b[i] = a[i] + (i >= n && i%n >= 1)
                   ? a[i – n - 1] : 0;
  }
}

/* Two stages of some calculation */
void compute(double *a, double *b, long n) {
  for (long i = 0; i < n; i++)
    for (long j = 0, j < n; j++)
      a[j*n + i] = atan2(i, j);

  for (long i = 0; i < n; i++)
    for (long j = 0, j < n; j++)
      b[i*n + j] = a[i*n + j] + (i >= 1 && j >= 1)
                   ? a[(i-1)*n + (j-1)] : 0;
}
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Break + Quiz

• Optimize the following code:    (hint: could be MUCH smaller)
long multi_loop(long orig_value) {
    long new_value = 0;
    for (int i=0; i<4; i++) {
        for (int j=0; j<8; j++) {
            new_value += 1;
        }
        new_value += orig_value;
    }
    return new_value;
} 
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Break + Quiz

• Optimize the following code:    (hint: could be MUCH smaller)
long multi_loop(long orig_value) {
    long new_value = 0;
    for (int i=0; i<4; i++) {
        for (int j=0; j<8; j++) {
            new_value += 1;
        }
        new_value += orig_value;
    }
    return new_value;
} 

long multi_loop(long orig_value) {

    return 4*orig_value + 32;
} 
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Limits to compiler optimization

• Generally cannot improve algorithmic complexity
• Only constant factors, but those can be worth 10x or more…

• MUST NOT cause any change in program behavior
• Programmer may not care about “edge case” behavior, but compiler does not know that
• Exception: language may declare some changes acceptable (UNDEFINED BEHAVIOR)

• Often only analyze one function at a time
• Whole-program analysis (“LTO”) expensive but gaining popularity
• Exception: inlining merges many functions into one

• Tricky to anticipate run-time inputs
• Profile-guided optimization can help with common case, but…
• “Worst case” performance can be just as important as “normal”
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Optimization Challenges

1. Memory aliasing

2. Function calls

3. Non-associative arithmetic

4. Larger cache optimizations
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/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
     b[i] += a[i*n + j];
    }
}

Memory Aliasing

• Code updates b[i] on every iteration

b[i] should just be placed in a 

register and only a single memory 
write should occur
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/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
     b[i] += a[i*n + j];
    }
}

Memory Aliasing

• Code updates b[i] on every iteration
• Why couldn’t compiler optimize this away?

# sum_rows1 inner loop
.L4:
  movsd   (%rsi,%rax,8), %xmm0  # FP load
  addsd   (%rdi), %xmm0    # FP add
  movsd   %xmm0, (%rsi,%rax,8)  # FP store
  addq    $8, %rdi
  cmpq    %rcx, %rdi
  jne     .L4
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/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
     b[i] += a[i*n + j];
    }
}

Memory Aliasing

double A[9] = 

  { 0,   1,   2,

    4,   8,  16,

   32,  64, 128};

sum_rows1(A, &(A[3]), 3);

i = 0: [3, 8, 16]

init:  [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

double A[9] = 

  { 0,   1,   2,

    0,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    0,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    1,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   0,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   3,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   6,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22,   0,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22,  32,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22, 96,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  22, 224,

   32,  64, 128};

A and B overlap in memory?

Compiler MUST consider that memory 
aliasing could occur
• Unless it can prove it is impossible
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Avoiding aliasing penalties: with local variable

• Use a local variable for intermediate results

38

# sum_rows2 inner loop
.Loop:
        addsd   (%rdi), %xmm0 # FP load + add
        addq    $8, %rdi
        cmpq    %rax, %rdi
        jne     .Loop

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {

double val = 0;
 for (j = 0; j < n; j++)
 val += a[i*n + j];

b[i] = val;
    }
}



Avoiding aliasing penalties: aliasing still occurs

• Still changes A if aliased because that’s what the code specifies
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double A[9] = 

  { 0,   1,   2,

    4,   8,  16,

   32,  64, 128};

sum_rows1(A, &(A[3]), 3);

i = 0: [3, 8, 16]

init:  [4, 8, 16]

i = 1: [3, 27, 16]

i = 2: [3, 27, 224]

Value of B:

double A[9] = 

  { 0,   1,   2,

    4,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    4,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    4,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,   8,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  27,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  27,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  27, 16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  27,  16,

   32,  64, 128};

double A[9] = 

  { 0,   1,   2,

    3,  27, 224,

   32,  64, 128};

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 double val = 0;
 for (j = 0; j < n; j++)
     val += a[i*n + j];
 b[i] = val;
    }
}



Avoiding aliasing penalties: with restrict keyword

• Use restrict keyword to tell compiler that a and b cannot alias
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# sum_rows2 inner loop
.Loop:
        addsd   (%rdi), %xmm0 # FP load + add
        addq    $8, %rdi
        cmpq    %rax, %rdi
        jne     .Loop

/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows3(double *restrict a, double *restrict b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
 b[i] = 0;
 for (j = 0; j < n; j++)
     b[i] += a[i*n + j];
    }
}



Avoiding aliasing penalties: with different language

• Use a different language altogether
• For example, in Fortran array arguments are assumed not to alias
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subroutine sum_rows4(a, b, n)
implicit none
integer, parameter :: dp = kind(1.d0)
real(kind=dp), dimension(:), intent(in) :: a
real(kind=dp), dimension(:), intent(out) :: b
integer, intent(in) :: n
integer :: i, j
do i = 1,n

b(i) = 0
do j = 1,n

b(i) = b(i) + a(i*n + j)
end

end
end

# sum_rows2 inner loop
.Loop:
        addsd   (%rdi), %xmm0 # FP load + add
        addq    $8, %rdi
        cmpq    %rax, %rdi
        jne     .Loop



Optimization Challenges

1. Memory aliasing

2. Function calls

3. Non-associative arithmetic

4. Larger cache optimizations
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Function calls are opaque

• Compiler examines one function at a time
• Some exceptions for code in a single file

• Must assume a function call could do 
anything

• Cannot usually
• Move function calls

• Change number of times a function is called

• Cache data from memory in registers across 
function calls

size_t strlen(const char *s) {

    size_t len = 0;

    while (*s++ != '\0') {

        len++;

    }

    return len;

}

• O(n) execution time

• Return value depends on:
• value of s
• contents of memory at address s

• Only cares about whether 
individual bytes are zero

• Does not modify memory

• Compiler might know some of 
that (but probably not)
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Can’t move functions out of loops

void lower_quadratic(char *s) {

  size_t i;

  for (i = 0; i < strlen(s); i++)

    if (s[i] >= 'A' && s[i] <= 'Z')

      s[i] += 'a' - 'A';

}
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Can’t move functions out of loops

void lower_still_quadratic(char *s) {

  size_t i, n = strlen(s);

  for (i = 0; i < n; i++)

    if (s[i] >= 'A' && s[i] <= 'Z') {

      s[i] += 'a' - 'A’;

      n = strlen(s);

    }

}
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Can’t move functions out of loops

void lower_linear(char *s) {

  size_t i, n = strlen(s);

  for (i = 0; i < n; i++)

    if (s[i] >= 'A' && s[i] <= 'Z')

      s[i] += 'a' - 'A';

}
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Can’t move functions out of loops

• Even calling strlen() once is 

a linear function, it’s just that 
the others are terrible
• Zoom in here shows that

• Putting strlen() in the loop is 

a super common CS211 mistake

• Although we let it slide
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Optimization Challenges

1. Memory aliasing

2. Function calls

3. Non-associative arithmetic

4. Larger cache optimizations

48



Non-associative arithmetic

• When is 𝒂⊙ 𝒃 ⊙ 𝒄 not equal to 𝒂⊙ (𝒃⊙ 𝒄)?
• Floating-point numbers

• Example: 𝒂 = 1.0, 𝒃 = 1.5 × 1038, 𝒄 = −1.5 × 1038

(single precision IEEE fp)

• Blocks any optimization that changes order of floating point 
operations

𝑎 + 𝑏 = 1.5 × 1038 𝑎 + 𝑏 + 𝑐 = 0

𝑏 + 𝑐 = 0 𝑎 + 𝑏 + 𝑐 = 1
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Optimization Challenges

1. Memory aliasing

2. Function calls

3. Non-associative arithmetic

4. Larger cache optimizations
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Larger cache optimizations

a

i

b

j

x=

c

void mmm(double *a, double *b,
         double *c, int n) {
  memset(c, 0, n*n*sizeof(double));

  int i, j, k;
  for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
      for (k = 0; k < n; k++)
        c[i*n + j] += a[i*n + k] 
                    * b[k*n + j];
}

i1

j1

x=

c a b

Block size B x B

void mmm(double *a, double *b,
         double *c, int n) {
  memset(c, 0, n*n*sizeof(double));

  int i, j, k, i1, j1, k1;
  for (i = 0; i < n; i+=B)
    for (j = 0; j < n; j+=B)
      for (k = 0; k < n; k+=B)
        for (i1 = i; i1 < i+B; i1++)
          for (j1 = j; j1 < j+B; j1++)
            for (k1 = k; k1 < k+B; k1++)
    c[i1*n+j1] += a[i1*n + k1]
                          * b[k1*n + j1];
}

Compiler cannot do this transformation automatically
51



Break + Relevant xkcd

52
https://xkcd.com/1205/

https://xkcd.com/1205/
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GNU C Compiler (GCC)

• Very widely used compiler
• Created in 1987

• Originally just supported C, but now supports several languages

• C, C++, Objective-C, Fortran, Ada, D, Go

• Collection of tools that perform the compilation steps
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Enabling optimizations

• Flag given to gcc chooses optimization levels
• -O# where # is one of {0, 1, 2, 3, s} (and a few custom others)

• (that flag is a capital Oh for Optimization, not a zero)

• -O0 is the default (oh zero)
• Almost all optimizations are disabled

• Code compiles more quickly!

• Code does what you expect
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More advanced optimizations

• Each level up from there is just a collection of optimizations

• -O1

56

-fauto-inc-dec

-fbranch-count-reg

-fcombine-stack-adjustments

-fcompare-elim

-fcprop-registers

-fdce

-fdefer-pop

-fdelayed-branch

-fdse

-fforward-propagate

-fguess-branch-probability

...

Explanation of optimizations:
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Optimizations examples in godbolt

• Go to Godbolt!
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Architecture-dependent optimizations

• By default, GCC knows which ISA you are compiling for
• x86-64

• GCC does not know the specific processor you’re compiling for
• So it can make architecture-dependent choices

• But it cannot make processor-dependent optimizations

• -march=cpu-type
• Informs GCC of the specific processor you’re on

• Make sure you tell it the correct processor!

• The wrong one might lead to code that crashes
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Optimizations in SETI Lab

• Enable optimizations to start with
• This should be enough to get you to 100%

• Assuming you’ve got the concurrency part correct

• To achieve extra credit
• Look into more advanced flags and what they do

• Consider what optimizations you could perform on the code that the 
compiler cannot

• Note: must focus these on the loops that are doing the most work
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Be sure to apply optimizations to everything!

• Common SETI Lab bug: only apply optimizations to p_band_scan.c
• In reality, much of the work is performed in the functions it calls to do 

signal processing

• Be sure to make clean and then recompile everything after 
enabling or changing optimizations
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Compilers courses

• Is this lecture content interesting to you?
• There is a LOT more depth here

• Certainly more advanced optimizations

• Also the idea of how does a compiler parse and understand your code

• Courses to consider:
• CS322 – Compiler Construction

• CS323 – Code Analysis and Transformation
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• Compilers and Optimizations

• Local Optimizations

• Global Optimizations

• Obstacles to Optimization

• GNU C Compiler (GCC)

Outline
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