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Administrivia

• Homework 3
• Due today!

• Attack Lab
• Due next week Tuesday

• SETI Lab and Homework 4 will be out by next week
• Due after Thanksgiving break
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Today’s Goals

• Explore impacts of cache and code design

• Calculate cache performance based on array accesses

• Understand what it means to write “cache-friendly code”
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• Memory Mountain

• Cache Metrics

• Cache Performance for Arrays

• Improving code
• Rearranging Matrix Math

• Matrix Math in Blocks

Outline



Writing Cache-Friendly Code

• Caches are key to program performance
• CPU accessing main memory = CPU twiddling its thumbs = bad
• Want to avoid as much as possible

• Minimize cache misses in the inner loops of core functions
• That’s usually where your program spends most of its time (“hot” code)

• Programmers are notoriously bad at guessing these spots
• Use a profiler to find them (e.g., gprof)

• Repeated references to variables are good (temporal locality)
• Stride-1 reference patterns are good (spatial locality)

• I.e., accessing array elements in sequence, not jumping around

• Now that we know how cache memories work
• We can quantify the effect of locality on performance
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A Memory Mountain
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The Memory Mountain

• Read throughput (read bandwidth)
• Number of bytes read from the memory subsystem per second (MB/s)
• The higher it is, the less likely your CPU is to be waiting on memory

• Memory mountain: Measures read throughput as a function of spatial 
and temporal locality.
• We run variants of the same program with different levels of spatial and temporal 

locality, then measure read throughput
• Compact way to characterize memory system performance
• Different systems (with different caches) have different mountains!

• Observation: if you decrease locality, bandwidth drops
• As we’d expect; locality is key to having the right data in the cache
• And if data is not in the cache, need to get it from next level down
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Mapping the Memory Mountain

/* The test function */

void test(int elems, int stride) {

    int i, result = 0; 

    volatile int sink; 

    for (i = 0; i < elems; i += stride)

 result += data[i];

    sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */

double run(int size, int stride, double Mhz)

{

    double cycles;

    int elems = size / sizeof(int); 

    test(elems, stride);

    cycles = fcyc2(test, elems, stride, 0);

    return (size / stride) / (cycles / Mhz);

}

Lower = more spatial locality
(we visit close-by addresses
one after the other)

Lower = more temporal locality
(fewer elements = less likely to
get kicked out by conflicts)

Basically: a ton of memory reads in a loop
and nothing else (that takes much time)

Harness code
• Warms up cache

(don’t want to count cold misses)
• Measures read throughput
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Cache Performance Metrics

• Miss Rate
• Fraction of memory references not found in cache (misses / accesses) = 1 – hit rate
• Typical numbers (in percentages):

• 3-10% for L1
• Can be quite small (e.g., < 1%) for L2, depending on dataset size, etc.
• However, many applications have >30% miss rate in L2 cache

• Hit Time
• Time to deliver a line in the cache to the processor

• Includes time to determine whether the line is in the cache
• Assumption: always check first cache before going to the next level

• Typical numbers:
• 1-2 clock cycles for L1
• 5-20 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss
• Typically 50-200 cycles for main memory

• Not really a “penalty”, just how long it takes to read from memory
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Let’s think about those numbers

• Huge difference between a hit and a miss
• Could be 100x, if comparing L1 and main memory

• Would you believe a 99% hit rate is twice as good as 97%?
• Consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

• Average access time:

  97% hits:  100 instructions: 100*1 (L1 accesses) + 3*100 (misses)

   on average: 1 cycle/instr. + 0.03 * 100 cycles/instr. = 4 cycles/instr.

  99% hits:  on average: 1 cycle/instr. + 0.01 * 100 cycles/instr. = 2 cycles/instr.

• This is why “miss rate” is used instead of “hit rate”
• In our example, 1% miss rate vs. 3% miss rate

• Makes the radical performance difference more obvious

• “Computation is what happens between cache misses.”
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Average Memory Access Time (AMAT)

• AMAT = Hit time + Miss rate × Miss penalty
• Generalization of previous formula

• Can extend for multiple layers of caching
• AMAT = Hit Time L1 + Miss Rate L1 × Miss Penalty L1

• Miss Penalty L1 = Hit Time L2 + Miss Rate L2 × Miss Penalty L2

• Miss Penalty L2 = Hit Time Main Memory

• Generally: multi-level caching helps minimize AMAT
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Example Memory Access Time Problem

• Computer specs: One layer of cache plus main memory
• Cache Hit Time: 5 nanoseconds

• Cache Miss Rate: 2%

• Memory Access Time: 100 nanoseconds

• Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)

• 5 ns + 0.02 * 100 ns

• = 5 ns + 2 ns

• = 7 ns
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Break + Practice

• Computer specs: Two layers of cache plus main memory
• L1 Cache Hit Time: 4 nanoseconds

• L1 Cache Miss Rate: 10%

• L2 Cache Hit Time: 8 nanoseconds

• L2 Cache Miss Rate: 2%

• Memory Access Time: 100 nanoseconds

• Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)

17



Break + Practice

• Computer specs: Two layers of cache plus main memory
• L1 Cache Hit Time: 4 nanoseconds

• L1 Cache Miss Rate: 10%

• L2 Cache Hit Time: 8 nanoseconds

• L2 Cache Miss Rate: 2%

• Memory Access Time: 100 nanoseconds

• Calculate Average Memory Access Time (Hit Time + Miss Rate * Miss Penalty)

• 4 ns + 0.10 * (8 ns + 0.02 * 100 ns)

• = 4 ns + 0.10 * (8 ns + 2 ns)

• = 4 ns + 0.10 * 10 ns

• = 5 ns
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Contiguous Memory vs Indirection

• The rest of this lecture will focus on loops over arrays
• I.e., operating on contiguous blocks of memory

• Not all programs are like that
• “Pointer-chasing” is common

• E.g., traversing a linked list, following a pointer for every node
• (Usually) terrible for locality

• See earlier comment about some programs having >30% L2 misses
• A good allocator (malloc) can help some, but no miracles

• Specialized data structures can improve locality while still having a 
linked structure, e.g., for trees
• E.g., ropes, B-trees, HAMTs, etc.
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Considering cache sizes

• Cache parameters
• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

• Blocks per set: 1

• Sets: 256/16 = 16

• Assume data starts at address 0 
and cache starts empty

21

Set Valid Tag Block

0000 0 ??

0001 0 ??

0010 0 ??

0011 0 ??

0100 0 ??

0101 0 ??

0110 0 ??

0111 0 ??

1000 0 ??

1001 0 ??

1010 0 ??

1011 0 ??

1100 0 ??

1101 0 ??

1110 0 ??

1111 0 ??



Considering cache sizes

• Cache parameters
• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

• Blocks per set: 1

• Sets: 256/16 = 16

• Assume data starts at address 0 
and cache starts empty
• Valid & Tag bits don’t really matter
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Set Block (16 byte)
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Layout of C Arrays in Memory (review)

• C arrays allocated in row-major order
• Each row in contiguous memory locations
• Here, let’s assume we have a matrix of long or double (8 bytes)
• That matrix is so large that we can’t even fit a whole row in the cache

• Stepping through columns in one row:
• for (i = 0; i < N; i++)

sum += a[0][i];

• accesses successive elements
• if cache block size (B) > 8 bytes (element size), exploit spatial locality

• cold/compulsory miss rate = 1 miss / Elements in Block = 1/(Block size / 8) = 8 / Block size

• Stepping through rows in one column:
• for (j = 0; j < M; j++)

sum += a[j][0];

• accesses distant elements
• no spatial locality!

• cold/compulsory miss rate = 1 (i.e. 100%) if data is large enough
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How do 1D arrays map to caches?

• How would an array of int map to this cache?
• int -> 4 bytes

• So, 4 int values per block

• Where do the items go?
• First four (0-3) go in set 0

• Next four (4-7) go in set 1

• Next four (8-11) go in set 2

• etc.

• What if there are more elements in the array than 
there are blocks in the cache?
• It wraps around and starts at set 0 again!

• Indexes 60-63 go in set 15

• Indexes 64-67 go in set 0 -> possible conflict!!

24

Set Block (16 byte)

0000 [0-3]

0001 [4-7]

0010 [8-11]

0011 [12-15]

0100 [16-19]

0101 [20-23]

0110 [24-27]

0111 [28-31]

1000 [32-35]

1001 [36-39]

1010 [40-43]

1011 [44-47]

1100 [48-51]

1101 [52-55]

1110 [56-59]

1111 [60-63]



How do 2D arrays map to caches?

• How would a 2D array of int map to this cache?
• int -> 4 bytes

• So, 4 int values per block

• Breakdown of indexes depends on the shape of 
the array
• If there are 4 values per row, entire row fits in a block

25

Set Block (16 byte)

0000 [0][0-3]

0001 [1][0-3]

0010 [2][0-3]

0011 [3][0-3]

0100 [4][0-3]

0101 [5][0-3]

0110 [6][0-3]

0111 [7][0-3]

1000 [8][0-3]

1001 [9][0-3]

1010 [10][0-3]

1011 [11][0-3]

1100 [12][0-3]

1101 [13][0-3]

1110 [14][0-3]

1111 [15][0-3]



How do 2D arrays map to caches?

• How would a 2D array of int map to this cache?
• int -> 4 bytes

• So, 4 int values per block

• Breakdown of indexes depends on the shape of 
the array
• If there are 4 values per row, entire row fits in a block

• If there are 16 values per row, ¼ of row fits in a block

26

Set Block (16 byte)

0000 [0][0-3]

0001 [0][4-7]

0010 [0][8-11]

0011 [0][12-15]

0100 [1][0-3]

0101 [1][4-7]

0110 [1][8-11]

0111 [1][12-15]

1000 [2][0-3]

1001 [2][4-7]

1010 [2][8-11]

1011 [2][12-15]

1100 [3][0-3]

1101 [3][4-7]

1110 [3][8-11]

1111 [3][12-15]



Example cache performance problem

• Cache parameters
• Direct-mapped data cache

• 256-byte total size

• 16-byte blocks

• Blocks per set: 1

• Sets: 256/16 = 16

• Assume data starts at address 0 
and cache starts empty

27

int mat[6][16];

• First, think about how array 
maps to the cache
• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache blocks

• First 4 rows * 16 cols fit
in cache without overlap
• Next 2 rows overlap with first 2 

rows



Thinking visually about a 2D array

• int mat[6][16];
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Set Block (16 byte)
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Thinking visually about a 2D array

• int mat[6][16];
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Thinking visually about a 2D array

• int mat[6][16];
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Set Block (16 byte)
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Thinking visually about a 2D array

• int mat[6][16];
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Set Block (16 byte)
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Thinking visually about a 2D array

• int mat[6][16];
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Set Block (16 byte)

0000

0001

0010
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Conflict!



Example: accessing elements in a row

int mat[6][16];

• First, think about how array 
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache 

blocks

• First 4 row * 16 cols fit
in cache without overlap

• Next 2 rows overlap with 
first 2 rows
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for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j]   = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate



Example: accessing elements in a row

34

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j]   = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate

int mat[6][16];

• First, think about how array 
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache 

blocks

• First 4 row * 16 cols fit
in cache without overlap

• Next 2 rows overlap with 
first 2 rows



Example: accessing elements in a row

35

for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j]   = 0;

mat[i][j+1] = 1;

mat[i][j+2] = 2;

mat[i][j+3] = 3;

}

}

• Calculate miss rate
• All four accesses within loop fit in a cache block!

• 1 miss, 3 hits

• The next set of columns repeat pattern
• The next row repeats pattern

• Nothing already in cache from before
• Never reference old cells again

• Miss rate: 25%

int mat[6][16];

• First, think about how array 
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache 

blocks

• First 4 row * 16 cols fit
in cache without overlap

• Next 2 rows overlap with 
first 2 rows



Example: reordering element access
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for (int i = 0; i < 6; i = i+1) {

for (int j = 0; j < 16; j = j+4) {

mat[i][j+2] = 2;

mat[i][j]   = 0;

mat[i][j+3] = 3;

mat[i][j+1] = 1;

}

}

• Does this change anything?
• No! First access brings in entire block
• Later accesses within block are hits

int mat[6][16];

• First, think about how array 
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache 

blocks

• First 4 row * 16 cols fit
in cache without overlap

• Next 2 rows overlap with 
first 2 rows



Example: accessing elements by column
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for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 6; i = i+1) {

mat[i][j] = 7;

}

}

• Calculate miss rate

int mat[6][16];

• First, think about how array 
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache 

blocks

• First 4 row * 16 cols fit
in cache without overlap

• Next 2 rows overlap with 
first 2 rows



Example: accessing elements by column (graphically)

38

x x x x

x x x x

x x x x

x x x x

Grey blocks are loaded into the cache, but not accessed at this time



Example: accessing elements by column

39

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 6; i = i+1) {

mat[i][j] = 7;

}

}

• Calculate miss rate

• 6 misses for 1st load of each row
• 4 misses for 2nd column in the row (2 hits)
• 4 misses for 3rd column in the row (2 hits)
• 4 misses for 4th column in the row (2 hits)
• Repeat

• Miss rate = (6+4+4+4)/24 = 75%

int mat[6][16];

• First, think about how array 
maps to the cache

• Element size: 4 bytes
• Array size: 384 bytes (too big)

• 4 elements per cache block
• Array row takes up 4 cache 

blocks

• First 4 row * 16 cols fit
in cache without overlap

• Next 2 rows overlap with 
first 2 rows



Break + Question

40

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 4; i = i+1) { // 4!

mat[i][j] = 7;

}

}

• Calculate miss rate

int mat[4][16];

• Same cache from 
before:
• Direct-mapped data 

cache
• 256-byte total size
• 16-byte blocks

• Change matrix to be 4 
rows of 16 columns 
(not 6 rows)



Break + Question

41

for (int j = 0; j < 16; j = j+1) {

for (int i = 0; i < 4; i = i+1) { // 4!

mat[i][j] = 7;

}

}

• Calculate miss rate

• Entire array fits in cache!
• No conflicts

• 1 miss per four accesses

• Miss rate = 25%

int mat[4][16];

• Same cache from 
before:
• Direct-mapped data 

cache
• 256-byte total size
• 16-byte blocks

• Change matrix to be 4 
rows of 16 columns 
(not 6 rows)
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Our Benchmark: Matrix Multiplication

• Review from your linear algebra class

1 3
2 4

5 6
7 8

× =

1 3
2 4

5 6
7 8

5

1 × 5 + 3 × 7 = 26

1 × 6 + 3 × 8 = 30

2 × 5 + 4 × 7 = 38

2 × 6 + 4 × 8 = 44
26 630

1038 1244

26 30

38 44

43

When is matrix 
multiplication important?
• ML and AI algorithms!!



Miss Rate Analysis for Matrix Multiply

• Assume:
• Line size = 32B (big enough for four 64-bit longs)
• Matrix dimension (N) is very large

• Approximate 1/N as 0.0
• Cache is not big enough to hold even one row

• Analysis Method:
• Look at access pattern of inner loop

• Now we’ll see why the standard matrix multiplication is bad!
• From a performance standpoint, that is

A

k

i

B

k

j

C

i

j

44
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A

B

C

N
N

N N

i

k

k

j

i

j

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

} 

Matrix Multiplication Example

 Multiply N x N matrices

 O(N3) total operations

 Each source element 
read N times

 N values summed per 
destination

Variable sum
held in register
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Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

} 

Misses per inner loop iteration:
  A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wise Fixed

Column-
wise

0.25 1 0

Total misses/iteration: 1.25
46



Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++)  {

  for (i=0; i<n; i++) {

    sum = 0.0;

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

}

Misses per inner loop iteration:
  A B C
    

Remember: Line size = 32B
(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wise

Column-
wise

Fixed

0.25 1 0

Total misses/iteration: 1.25
47



Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

  for (i=0; i<n; i++) {

    r = a[i][k];

    for (j=0; j<n; j++)

      c[i][j] += r * b[k][j];   

  }

}

Misses per inner loop iteration:
  A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wiseFixed

Row-wise

0 0.25 0.25

Total misses/iteration: 0.5
48



Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

  for (k=0; k<n; k++) {

    r = a[i][k];

    for (j=0; j<n; j++)

      c[i][j] += r * b[k][j];

  }

}

Misses per inner loop iteration:
  A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

i

j

Row-wiseFixed

Row-wise

0 0.25 0.25

Total misses/iteration: 0.5
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Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

  for (k=0; k<n; k++) {

    r = b[k][j];

    for (i=0; i<n; i++)

      c[i][j] += a[i][k] * r;

  }

}

Misses per inner loop iteration:
  A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

j

Column-
wise

Fixed

i

Column-
wise

1 0 1

Total misses/iteration: 2
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Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

  for (j=0; j<n; j++) {

    r = b[k][j];

    for (i=0; i<n; i++)

      c[i][j] += a[i][k] * r;

  }

}

Misses per inner loop iteration:
  A B C Remember: Line size = 32B

(big enough for four 64-bit longs)

Inner loop:

A

B

C

i

k

k

j

j

Column-
wise

Fixed

i

Column-
wise

1 0 1

Total misses/iteration: 2
51



Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2

for (i=0; i<n; i++) {

  for (j=0; j<n; j++) {

   sum = 0.0;

   for (k=0; k<n; k++) 

     sum += a[i][k] * b[k][j];

   c[i][j] = sum;

 }

} 

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

  r = a[i][k];

  for (j=0; j<n; j++)

   c[i][j] += r * b[k][j];   

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

   r = b[k][j];

   for (i=0; i<n; i++)

    c[i][j] += a[i][k] * r;

 }

}

A

B

C
i

k

k
j

i

j

Row-wise Fixed

Column-
wise

A

B

C
i

k

k

j

i

j
Row-wiseFixed

Row-wise

A

B

C
i

k

k

j

j

Column-
wise

Fixed

i
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Core i7 Matrix Multiply Performance
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kij / ikj (0.5 misses/iter)

Essentially the same algorithm, just different data access patterns!
The most natural way to write code may not be the best one!
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Core i7 Matrix Multiply Performance
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Essentially the same algorithm, just different data access patterns!
The most natural way to write code may not be the best one!
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For a sufficiently small N, any 
implementation is “good enough”



Break + Open Question

• What about those writes? Do they have additional costs?
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Break + Open Question

• What about those writes? Do they have additional costs?
• Assumption: write-back cache such that they don’t cost more than reads 

until evicted

• As long as evictions of modified (dirty) data happen once per array cell, 
we’re equivalent to the one write outside of the for loop

• This is not the case here since entire row doesn’t fit in cache

• If evictions of modified (dirty) data happen multiple times per array cell,
question becomes complicated

• How much does that hurt compared to extra cache misses?

• Writes can happen in the background (while processor is running)

• Likely need to measure real-world performance to understand
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Example: Matrix Multiplication

a b

i

j

*

c

=

double *c = (double *) malloc(sizeof(double)*n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

  for (int i = 0; i < n; i++) {

    for (int j = 0; j < n; j++) {

      double sum = 0.0;

      for (int k = 0; k < n; k++) {

        sum += a[i*n + k] * b[k*n + j];

      }

      c[i*n+j] = sum;

} } }

A

B

C

i

k

k

j

i

j

Row-wise Fixed

Column-
wise
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        A

        B

        C

k

k

Cache Miss Analysis (approximate)

• Assume: 
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C <<< n (much smaller than n)

• 1st iteration (i,j,k=0,0,*):
• How many misses?

• n/8 + n + 1 = 
9n/8+1 misses

        A

        B

        C

k

k

Afterwards in cache:

8-wide
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Cache Miss Analysis (approximate)

• Assume: 
• Matrix elements are doubles

• Cache block = 8 doubles

• Cache size C <<< n (much smaller than n)

• 2nd iteration (i,j,k=0,1,*):
• Again:

n/8 + n + 1 = 
9n/8+1 misses

 Total misses:
▪ Every iteration: 9n/8 + 1

▪ # iterations: n2

▪ (9n/8+1)*n2 = (9/8)*n3 +n2

60

        A

        B

        C

k

k

        A

        B

        C

k

k
8-wide

Afterwards in cache:



Enter Blocking Algorithms

• Special class of algorithms designed specifically to have excellent temporal 
and spatial locality

• Key idea: don’t operate on individual elements; instead operate on blocks !
• Treat the overall matrices as containing submatrices as elements

• See next slide

• General principle: use a piece of data as much as we can
• Then it’s ok to kick it out of the cache
• As opposed to using, kicking out, using again later, and so on

• Same result, but much nicer locality!
• And thus can leverage the cache better (more hits, fewer misses)
• Still same computational complexity

• May get a bit mind bending
• I want you to understand the general principle
• But you don’t need to fully understand the details of the algorithm
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Matrices as Matrices of Submatrices

• Elements of are not scalars anymore
• But rather smaller matrices

• To compute a result submatrix
• Just do a smaller matrix multiplication!

1 3
2 4

5 7
6 8

9 11
10 12

13 15
14 16

17 19
18 20

21 23
22 24

1 3
2 4

25 27
26 28

(A*B) 
+(C*D)

A

B

C
D
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Blocked Matrix Multiplication
double * c = (double *) malloc(sizeof(double)*n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

  for (int i = 0; i < n; i+=B) {

    for (int j = 0; j < n; j+=B) {

      for (int k = 0; k < n; k+=B) {

        /* B x B mini matrix multiplications */

        for (int i1 = i; i1 < i+B; i1++) {

          for (int j1 = j; j1 < j+B; j1++) {

            double sum = 0.0;

            for (int k1 = k; k1 < k+B; k1++) {

              sum += a[i1*n + k1] * b[k1*n + j1];

            }

            c[i1*n + j1] = sum;

} } } } } }

a b

i1

j1

*

c

=

Block size B x B 63



Cache Miss Analysis (approximate)

• Assume: 
• Cache block = 8 doubles
• Cache size <<< n (much smaller than n)
• Three blocks       fit into cache: 3B2 < Cache size

• First (block) iteration:
• B2/8 misses for any given block
• 2B2/8 misses for each 

BxB-block multiplication
(only counting A, B misses)

• # BxB multiplications: n/B
• B2/8 misses for C[ ] block total
• 2B2/8*n/B+B2/8 = nB/4+B2/8

• Afterwards in cache
• No waste! We used all that we brought in!

*=

   A    B

*
   C =

Block size B x B

n/B blocks
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Cache Miss Analysis (approximate)

• Assume: 
• Cache block = 8 doubles
• Cache size << n (much smaller than n)
• Three blocks       fit into cache: 3B2 < Cache size

• Second (block) iteration:
• Same as first iteration
• misses = nB/4+B2/8

• Total misses:
• #block iterations: (n/B)2

• (nB/4 +B2/8)* (n/B)2 = n3/(4B) + n2/8

*=

Block size B x B

n/B blocks
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Performance Impact

• Misses without blocking: (9/8) * n3 + n2 

• Misses with blocking: 1/(4B) * n3 + 1/8 * n2 

• Largest possible block size B, but limit 3B2 < C → B = 𝐶/3
 

• e.g., Cache size = 32K = 32,768 Bytes, then pick B = 104 (note: 104=13*8)
• No blocking: 1.125*n3 + n2

• Blocking: 0.0024*n3 + 0.125*n2

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality
• But program has to be written properly to take advantage of it

468x 8x
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Takeaways

• Writing code to take advantage of the cache is challenging
• It’s totally possible, but high effort

• Generally: maximize spatial and temporal locality
• Use elements close to each other (moving horizontally in 2D array)

• Use the same element as many times as possible in a row (output)

• Well-designed math libraries will do this for you!
• MATLAB, Mathematica, R, SciPy, etc.

• Jack Dongarra won a Turing award for this in 2021!
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