
Lecture 10
Buffer Overflows

CS213 – Intro to Computer Systems

Branden Ghena – Fall 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Continue work on Bomb Lab

• Homework 3 releases late tonight or early tomorrow
• Due on Tuesday, November 7th

• Attack Lab is out after class
• Due on Wednesday, February 22nd

2

Today’s Goals

• Introduce the domain of Computer Security

• Understand buffer overflows and return-oriented programming
• What enables them

• How they are used

• How to protect against them

3

Why is computer security so important?

• Most public security happens at least in
some portion on the honor system
• Pretty easy to break a window

• Keyed locks are easy to pick

• Master keys can be determined and
manufactured (Matt Blaze attack)

• Laws apply after you’ve done it

4

https://www.mattblaze.org/masterkey.html

Early computers didn’t have any security either

• Simple machines for doing computation do not
have private files or contention

• Sometimes there were multiple users, but all
were employees of the same company
• Permissions needed to be as secure as a file in a

locked drawer on a desk

“The act of breaking into a computer system has to
have the same social stigma as breaking into a
neighbor's house. It should not matter that the
neighbor's door is unlocked.”
- Ken Thompson, Turing Award Lecture, 1984

5

Connectivity of computers makes security a top concern

• Security of physical items is dependent on the fact that only one
person can possess a thing at a time
• And it’s usually obvious when theft occurs
• Not the case for private information on a computer!

• The internet makes security incredibly important
• Usually not people breaking into computers manually, one at a time
• Instead, it is computers breaking into computers by means of scripting
• And you can access a computer from anywhere on Earth

• Breaking into or controlling one car is a crime
• Controlling 100,000 cars remotely is a problem for the manufacturer

6

7

• Buffer Overflows

• Protecting Against Buffer Overflows

• Return-Oriented Programming

• Protecting Against Return-Oriented Programming

Outline

Memory Referencing Bug Example

• Abuses undefined behavior

• Result is system specific

fun(0)  3.14

fun(1)  3.14

fun(2)  3.1399998664856

fun(3)  2.00000061035156

fun(4)  3.14

fun(5)  3.14

fun(6)  Segmentation fault (core dumped)

typedef struct {

 int a[2];

 double d;

} struct_t;

double fun(int i) {

 volatile struct_t s; // volatile ≈ don’t optimize this away

 s.d = 3.14;

 s.a[i] = 1073741824; // Possibly out of bounds

 return s.d;

}

8

Memory Referencing Bug Example

typedef struct {

 int a[2];

 double d;

} struct_t;

fun(0)  3.14

fun(1)  3.14

fun(2)  3.1399998664856

fun(3)  2.00000061035156

fun(4)  3.14

fun(5)  3.14

fun(6)  Segmentation fault

Location accessed by

fun(i)

Explanation:

Return Addr 6

? 5

? 4

d4 ... d7 3

d0 ... d3 2

a[1] 1

a[0] 0

struct_t

9

Such problems are a BIG deal

• Generally called a “buffer overflow”
• Going past end of memory allocated for an array (AKA buffer)

• Why is it a big deal?
• #1 technical cause of security vulnerabilities

• (#1 overall cause is social engineering)

• Most common form:
• Unchecked lengths on string inputs

• Particularly with character arrays on the stack

• Sometimes referred to as “stack smashing”

10

/* Get string from stdin */

char *gets(char *dest)

{

 int c = getchar();

 char *p = dest;

 while (c != EOF && c != '\n') {

 *p++ = c;

 c = getchar();

 }

 *p = '\0';

 return dest;

}

String library code

• Implementation of Unix function gets
• No way to specify limit on number of characters to read

• Similar problems with other Unix functions
• strcpy, strcat: Copies string of arbitrary length
• scanf, fscanf, sscanf, when given %s specifier

No bounds
checking!

11

Vulnerable buffer code
int main(){

 printf("Type a string:");

 call_echo();

 return 0;

}

/* Prints whatever is read */

void echo(){

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}

unix>./bufdemo-nsp

Type a string: 00001111222233334444555

00001111222233334444555

unix>./bufdemo-nsp

Type a string: 0000111122223333444455556

Segmentation Fault

void call_echo() {

 echo();

}

Much more than 4 characters!

unix>./bufdemo-nsp

Type a string:012

012

12

Buffer Overflow Disassembly

00000000004006cf <echo>:

 4006cf: 48 83 ec 18 sub $24,%rsp

 4006d3: 48 89 e7 mov %rsp,%rdi

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 4006db: 48 89 e7 mov %rsp,%rdi

 4006de: e8 3d fe ff ff callq 400520 <puts@plt>

 4006e3: 48 83 c4 18 add $24,%rsp

 4006e7: c3 retq

00000000004006e8 <call_echo>:

 4006e8: 48 83 ec 08 sub $8,%rsp

 4006ec: b8 00 00 00 00 mov $0,%eax

 4006f1: e8 d9 ff ff ff callq 4006cf <echo>

 4006f6: 48 83 c4 08 add $8,%rsp

 4006fa: c3 retq

call_echo:

echo:

13

Sidebar: the compiler
is optimizing here to
use 8-byte alignment
instead of 16-byte.

It knows no function
this calls needs 16-
byte alignment.

Buffer Overflow Stack

14

echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}

call_echo:

 . . .

 4006f1: callq 4006cf <echo>

 4006f6: add $8,%rsp

 . . .

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 Return Address (8 bytes)

10
20 bytes unused

08

00 ?? ?? ?? ??

return

address

Offsets from
%rsp in hex

Stack
grows
down

Buffer Overflow Stack Example

15

echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}

call_echo:

 . . .

 4006f1: callq 4006cf <echo>

 4006f6: add $8,%rsp

 . . .

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 F6 06 40 00 00 00 00 00

10
20 bytes unused

08

00 ?? ?? ?? ??

return

address

Offsets from
%rsp in hex

Stack
grows
down

Buffer Overflow Stack Example #1

unix>./bufdemo-nsp

Type a string: 00001111222233334444555

00001111222233334444555

Overflowed buffer, but did not corrupt state 16

echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}

call_echo:

 . . .

 4006f1: callq 4006cf <echo>

 4006f6: add $8,%rsp

 . . .

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 F6 06 40 00 00 00 00 00

10 34 34 34 34 35 35 35 00

08 32 32 32 32 33 33 33 33

00 30 30 30 30 31 31 31 31

return

address

Offsets from
%rsp in hex

Stack
grows
down

Buffer Overflow Stack Example #2

unix>./bufdemo-nsp

Type a string: 0000111122223333444455556

Segmentation Fault

Overflowed buffer and corrupted return address. Could point to unmapped memory, etc.

Is it a string?
Is it an address?
Depends on context!

17

echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}

call_echo:

 . . .

 4006f1: callq 4006cf <echo>

 4006f6: add $8,%rsp

 . . .

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 36 00 40 00 00 00 00 00

10 34 34 34 34 35 35 35 35

08 32 32 32 32 33 33 33 33

00 30 30 30 30 31 31 31 31

return

address

Offsets from
%rsp in hex

Stack
grows
down

Buffer Overflow Stack Example #3

unix>./bufdemo-nsp

Type a string: 000011112222333344445555

000011112222333344445555

Overflowed buffer, corrupted return address, but program seems to work! Latent bug!

echo:

 subq $24, %rsp

 movq %rsp, %rdi

 call gets

 . . .

void echo()

{

 char buf[4];

 gets(buf);

 . . .

}

call_echo:

 . . .

 4006f1: callq 4006cf <echo>

 4006f6: add $8,%rsp

 . . .

18

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 00 06 40 00 00 00 00 00

10 34 34 34 34 35 35 35 35

08 32 32 32 32 33 33 33 33

00 30 30 30 30 31 31 31 31

return

address

Offsets from
%rsp in hex

Stack
grows
down

Buffer Overflow Stack Example #3 Explained

%rsp

After call to gets

register_tm_clones:

 . . .

 400600: mov %rsp,%rbp

400603: mov %rax,%rdx

400606: shr $0x3f,%rdx

40060a: add %rdx,%rax

40060d: sar %rax

400610: jne 400614

400612: pop %rbp

400613: retq

“Returns” to unrelated code
Lots of things happen, without modifying critical state
Eventually executes retq back to main as if nothing happened...

19

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 00 06 40 00 00 00 00 00

10 34 34 34 34 35 35 35 35

08 32 32 32 32 33 33 33 33

00 30 30 30 30 31 31 31 31

return

address

Offsets from
%rsp in hex

Stack
grows
down

Break + Question

• Generally: How many bytes must be
written to corrupt the return address?
(assume char buf[4];)

• Is the answer the same for all programs?

• Is it the same each time the code runs?

20

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 Return Address (8 bytes)

10
20 bytes unused

08

00 ?? ?? ?? ??

return

address

Offsets from
%rsp in hex

Stack
grows
down

Break + Question

• Generally: How many bytes must be
written to corrupt the return address?
(assume char buf[4];) -> 25 bytes

• Is the answer the same for all programs?
• No! Depends how much stack space the

function uses

• Is it the same each time the code runs?
• Almost certainly yes. Functions usually use the

same amount of stack space each time

21

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 Return Address (8 bytes)

10
20 bytes unused

08

00 ?? ?? ?? ??

return

address

Offsets from
%rsp in hex

Stack
grows
down

AB

Malicious use of buffer overflow

• Input string contains binary representation of executable code

• Overwrite return address with address of buffer

• When bar() returns, where do we go?
• Into the beginning of malicious_code on the stack! 😱

void bar() {

 char buf[64];

 gets(buf);

 ...

}

void foo(){

 bar();

 ...

}

return

address

A

foo

stack

frame

bar

stack

frame

B

pad

data

written

by
gets()

08048444 <malicious_code>:

 8048444: 55 push %ebp

 8048445: 89 e5 mov %esp,%ebp

 8048447: 53 push %ebx

 8048448: 83 ec 24 sub $0x24,%esp

 804844b: 8d 5d f4 lea -0xc(%ebp),%ebx

 804844e: 89 1c 24 mov %ebx,(%esp)

 8048451: e8 fa fe ff ff call 8048350

 8048456: 89 1c 24 mov %ebx,(%esp)

Max Memory

Address

Memory

Address 0

…
…

buf
exploit

code

22

Exploits based on buffer overflows

• Buffer overflow bugs can allow remote machines to execute arbitrary code on
victim machines

• Distressingly common in real programs
• Programmers keep making the same mistakes 😭
• Recent measures make these attacks much more difficult

• Examples across the decades
• Original “Internet worm” (1988)

• Attacked fingerd server, replicated itself across the internet
• Stuxnet (2010)

• Attack on Iran nuclear program, malicious code destroyed centrifuges
• … and many, many more

• You will learn some of these tricks with the attack lab
• Hopefully convincing you to never leave such holes in your programs!

23

26

• Buffer Overflows

• Protecting Against Buffer Overflows

• Return-Oriented Programming

• Protecting Against Return-Oriented Programming

Outline

1. Avoiding Buffer Overflow Vulnerability

• Use safe library routines that limit string lengths
• fgets instead of gets
• strncpy instead of strcpy
• Don’t use scanf with %s conversion specification

• Use fgets to read the string

• Or use format specifier %ns where n is a suitable integer

• Also: don’t write your programs in C, when possible
• Fundamental design of C is to be fast, not to be secure

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 fgets(buf, 4, stdin); /* length limit! */

 puts(buf);

}

27

2. System-Level Protection: Randomized Stack

• Buffer overflow attack requires knowing
the absolute address of the buffer
• To overwrite return address to that

• At start of program, allocate a random
amount of space on stack
• Different every time the program runs

• Shifts stack addresses for entire program
• Program still runs fine
• Legitimate accesses to the stack are relative to %rsp

• But absolute addresses get randomly shifted
• Don’t know what return address should be!
• Still not impossible to overcome (NOP sled)

main

Application
Code

Random
allocation

Stack base

B?

B?

exploit
code

pad

28

3. System-Level Protection: Explicit Execute Page Permissions

• Non-executable stack
• On x86-64, can mark a region of

memory as “non-executable”

• Trying to execute something in that
region → crash

• More about page permissions in the
virtual memory lecture (later in class)

• OpenBSD goes further: W^X
• A region of memory can be writeable or

executable, but not both (xor!)

• Causes trouble for JITs

Stack after call to gets()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

29

Break + Open Question

• Why is a buffer overflow in a web browser so bad?

30

Break + Open Question

• Why is a buffer overflow in a web browser so bad?

• The buffer overflow will exist in at least all instances of the same version
of the web browser installed on the same OS and architecture

• Possibly many other versions too

• If it can be triggered from a website, then you could run malicious code on
computers without any manual effort

• Any website could be suspect

• Scale is enormous: Chrome has roughly 3 billion users

31

32

• Buffer Overflows

• Protecting Against Buffer Overflows

• Return-Oriented Programming

• Protecting Against Return-Oriented Programming

Outline

How else are buffer overflows dangerous?

• Without the ability to write malicious code, our computers are
safe, right??

1. Some computers won’t fix it: legacy hardware, forgot, etc.

2. Buffer overflows are definitely still happening
• Can we take advantage of that in some way?

33

Finding a new way to abuse a vulnerability

• Buffer overflows can still write values to the stack

• Even if they can’t place malicious code directly on the stack, they
can always modify return addresses

• We can use that idea to build an attack from pieces of already
existing program code that we reuse for malicious purposes
• This is one of those ideas that sounds impossible to pull off in the real world

• But actually, it totally works AND we’ll have you do it in Attack Lab!

34

Return-Oriented Programming (ROP)

• Challenge (for would-be hackers)
• Stack randomization → predicting buffer location is hard

• So it’s hard to know where to jump and start executing

• Making stack non-executable → injecting code doesn’t work
• We can inject anything we want, but we can’t run it

• Alternative strategy: Don’t inject your own code!
• Use code that’s already in the program!
• It’s in a predictable location!

• Otherwise, don’t know where to call/jump
• It’s executable

• Otherwise, the program wouldn’t run at all…

35

Return-Oriented Programming (ROP)

• But wait, the code I want to run isn’t in the program!
• Unlikely that, e.g., a mail client includes code to, e.g., launch missiles

• Key idea: construct the code you want to run from pieces that you find
in the program!
• We’ll call these pieces gadgets

• Strategy: find machine code fragments that do one small step of the
malicious program you want to run, then return
• Then we’ll put these small steps together to get the whole program
• These return instructions will be the glue that tie them together

• “The program” includes the standard library!
• Things like printf, scanf, etc.
• That’s a lot of code! So, lots of gadgets to choose from

36

Gadget Examples

• Use the end of existing functions

• Repurpose parts of instructions

long ab_plus_c

 (long a, long b, long c){

 return a*b + c;

}

void setval

 (unsigned *p) {

 *p = 3347663060u;

}

00000000004004d0 <ab_plus_c>:

4004d0: 48 0f af fe imul %rsi,%rdi

4004d4: 48 8d 04 17 lea (%rdi,%rdx,1),%rax

4004d8: c3 ret

00000000004004d9 <setval>:

4004d9: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)

4004df: c3 ret

Gadget: rax ← rdi + rdx
Address: 0x4004d4

Encodes: movq %rax, %rdi
Gadget: rdi ← rax
Address: 0x4004dc

37

Combining Gadgets

• Let’s say our malicious program is this:
%rax = (%rbx * %rcx) + %rdi

• And let’s say we found the following gadgets in the standard library

•

• Combine gadgets by adding pointers to them to the stack

• Arrange on the stack by overflowing a buffer, like before

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

Given a large enough
standard library, can
find gadgets that do
pretty much anything
we want! Plenty of
code to pick from.

400474

40047d

400479

%rsp

…

… buf

38

Gadget Execution

• Step 1: we overflowed the buffer, like before
• We set up the stack with the gadget addresses, as on last slide
• Now we’re about to return from the vulnerable function (echo)

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

400474

40047d

400479

%rsp

…

… buf

00000000004006cf <echo>:

 ...

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 ...

 4006e7: c3 retq

%rip = 4006e7

…

39

Gadget Execution

• Step 2: return from echo
• Get the return address from %rsp
• Oh, that’s the address of the first gadget!

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

400474

40047d

400479

%rsp

00000000004006cf <echo>:

 ...

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 ...

 4006e7: c3 retq

%rip = 400474

…

40

Gadget Execution

• Step 3: run the first gadget
• %rcx = %rbx × %rcx

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

40047d

400479 %rsp

00000000004006cf <echo>:

 ...

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 ...

 4006e7: c3 retq

%rip = 400474

…

41

Gadget Execution

• Step 4: return from the first gadget
• Get the return address from %rsp
• QUIZ: where do we go next?

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

00000000004006cf <echo>:

 ...

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 ...

 4006e7: c3 retq

%rip = 400478

…

40047d

400479 %rsp

400479, that’s gadget 2!

42

Gadget Execution

• Step 5: run the second gadget
• %rdi = (%rbx × %rcx) + %rdi

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

40047d %rsp

00000000004006cf <echo>:

 ...

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 ...

 4006e7: c3 retq

%rip = 400479

…

43

Gadget Execution

• Step 6: return from the second gadget
• Get the return address from %rsp
• Oh, that’s the address of the third gadget!

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

00000000004006cf <echo>:

 ...

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 ...

 4006e7: c3 retq

%rip = 40047d

…

40047d %rsp

44

Gadget Execution

• Step 7: run the third gadget
• %rax = (%rbx × %rcx) + %rdi
• We’ve run the program we wanted to run. Our job is done.

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

%rsp

00000000004006cf <echo>:

 ...

 4006d6: e8 a5 ff ff ff callq 400680 <gets>

 ...

 4006e7: c3 retq

%rip = 40047d

…

45

Gadget Execution

• Step 8: Return from the third gadget
• At this point, return to whatever address we find on the stack.
• That’s past the data we put there ourselves, so it’s whatever was there before.

Maybe not meant to be an address! Could be anything!

• But we don’t care about what the program does anymore!
• We’ve run the code we wanted to run, nothing else matters!
• (Maybe we stole from bank accounts, launched missiles, etc.)

0000000000400474 <g1>:

400474: 48 0f af cb imul %rbx,%rcx

400478: c3 retq

0000000000400479 <g2>:

400479: 48 01 cf add %rcx,%rdi

40047c: c3 retq

000000000040047d <g3>:

40047d: 48 89 f8 mov %rdi,%rax

400480: c3 retq

%rsp

%rip = ???

…

46

...

Return-Oriented Programming Execution

• Trigger with ret instruction in
the current function

• “Returns” to gadget 1, instead
of to its caller

• Gadget 1 does its thing, then
returns to gadget 2, etc.
• Repeat as necessary

• Complete! You’ve “run” the
“function” you wanted to run!

%rsp

Gadget n code

Gadget 1 code

Gadget 2 code

c3

c3

c3

47

...

...

48

• Buffer Overflows

• Protecting Against Buffer Overflows

• Return-Oriented Programming

• Protecting Against Return-Oriented Programming

Outline

1. Avoiding buffer overflow vulnerabilities

• Write better code please

• Return-oriented programming starts with a buffer overflow
• To set up gadget addresses on the stack

• No buffer overflow, no return-oriented programming!

49

2. Stack Canaries

• Idea
• Place special value (“canary”) on stack just beyond buffer

• Check for corruption before exiting function

• So we can detect buffer overflows before we run malicious code

• Then just crash the program instead of doing bad things

• Analogy: canary in a coal mine

• GCC Implementation
• -fstack-protector

• Now the default for potentially
vulnerable functions

• (disabled in attack lab to show the vulnerability)

unix>./bufdemo-sp

Type a string:0123456

0123456

unix>./bufdemo-sp

Type a string:01234567

*** stack smashing detected ***

50

2. Stack Canaries - Disassembly

40072f: sub $0x18,%rsp

400733: mov %fs:0x28,%rax

40073c: mov %rax,0x8(%rsp)

400741: xor %eax,%eax

400743: mov %rsp,%rdi

400746: callq 4006e0 <gets>

40074b: mov %rsp,%rdi

40074e: callq 400570 <puts@plt>

400753: mov 0x8(%rsp),%rax

400758: xor %fs:0x28,%rax

400761: je 400768 <echo+0x39>

400763: callq 400580 <__stack_chk_fail@plt>

400768: add $0x18,%rsp

40076c: retq

echo:

Read value from a
special, read-only
segment in memory

Store it on the stack at
offset 8 from %rsp

Check the canary is fine
using xorl (0 if the two
values are identical)

51

echo:

 . . .

 movq %fs:40, %rax # Get canary

 movq %rax, 8(%rsp) # Place on stack

 xorl %eax, %eax # Erase canary

 . . .

2. Stack Canaries - Setting up canary

52

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 Return Address (8 bytes)

10 Canary (8 bytes)

08 12 bytes unused

00 ?? ?? ?? ??

return

address

Offsets from
%rsp in hex

Stack
grows
down

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}

/* Echo Line */

void echo()

{

 char buf[4]; /* Way too small! */

 gets(buf);

 puts(buf);

}

2. Stack Canaries - Setting up canary

53

echo:

 . . .

 movq 8(%rsp), %rax # Retrieve from stack

 xorq %fs:40, %rax # Compare to canary

 je .L6 # If same, OK

 call __stack_chk_fail # FAIL

.L6: . . .

%rsp

After call to gets

0 1 2 3 4 5 6 7

…
Stack frame for
call_echo

28

20

18 Return Address (8 bytes)

10 00 Canary (overwritten)

08 32 32 32 32 33 33 33 33

00 30 30 30 30 31 31 31 31

return

address

Offsets from
%rsp in hex

Stack
grows
down

Input: 000111122223333

Code crashes due to canary mismatch

3. Address space layout randomization (ASLR)

• Like stack randomization, generalized to all
of memory
• Especially: executable code

• Code, stack, heap all start in random
locations
• Determined when program starts up
• You know the gadget you want is at the end of
ab_plus_c

• But if you don’t know where ab_plus_c is,
that’s no use!

• Can be circumvented by clever side-channel
attacks
• But really hard! Much harder than ROP

???? <ab_plus_c>:

????: 48 0f af fe

????: 48 8d 04 17

????: c3

stack

heap

code

stack

heap

code

54

Security is an arms race

• There is no single fix for system security
• New attacks are constantly being discovered
• New solutions are constantly being applied

1. Find a vulnerability and how it can be exploited

2. Fix vulnerability

3. Go back to 1

• A good goal is to at least avoid all the simple known attacks

• Designing with security in mind can make vulnerabilities harder to
find in the first place

55

56

• Buffer Overflows

• Protecting Against Buffer Overflows

• Return-Oriented Programming

• Protecting Against Return-Oriented Programming

Outline

	Default Section
	Slide 1: Lecture 10 Buffer Overflows

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: Why is computer security so important?
	Slide 5: Early computers didn’t have any security either
	Slide 6: Connectivity of computers makes security a top concern

	Buffer Overflows
	Slide 7: Outline
	Slide 8: Memory Referencing Bug Example
	Slide 9: Memory Referencing Bug Example
	Slide 10: Such problems are a BIG deal
	Slide 11: String library code
	Slide 12: Vulnerable buffer code
	Slide 13: Buffer Overflow Disassembly
	Slide 14: Buffer Overflow Stack
	Slide 15: Buffer Overflow Stack Example
	Slide 16: Buffer Overflow Stack Example #1
	Slide 17: Buffer Overflow Stack Example #2
	Slide 18: Buffer Overflow Stack Example #3
	Slide 19: Buffer Overflow Stack Example #3 Explained
	Slide 20: Break + Question
	Slide 21: Break + Question
	Slide 22: Malicious use of buffer overflow
	Slide 23: Exploits based on buffer overflows

	Protecting Against Buffer Overflows
	Slide 26: Outline
	Slide 27: 1. Avoiding Buffer Overflow Vulnerability
	Slide 28: 2. System-Level Protection: Randomized Stack
	Slide 29: 3. System-Level Protection: Explicit Execute Page Permissions
	Slide 30: Break + Open Question
	Slide 31: Break + Open Question

	Return-Oriented Programming
	Slide 32: Outline
	Slide 33: How else are buffer overflows dangerous?
	Slide 34: Finding a new way to abuse a vulnerability
	Slide 35: Return-Oriented Programming (ROP)
	Slide 36: Return-Oriented Programming (ROP)
	Slide 37: Gadget Examples
	Slide 38: Combining Gadgets
	Slide 39: Gadget Execution
	Slide 40: Gadget Execution
	Slide 41: Gadget Execution
	Slide 42: Gadget Execution
	Slide 43: Gadget Execution
	Slide 44: Gadget Execution
	Slide 45: Gadget Execution
	Slide 46: Gadget Execution
	Slide 47: Return-Oriented Programming Execution

	Protections Against ROP
	Slide 48: Outline
	Slide 49: 1. Avoiding buffer overflow vulnerabilities
	Slide 50: 2. Stack Canaries
	Slide 51: 2. Stack Canaries - Disassembly
	Slide 52: 2. Stack Canaries - Setting up canary
	Slide 53: 2. Stack Canaries - Setting up canary
	Slide 54: 3. Address space layout randomization (ASLR)

	Wrapup
	Slide 55: Security is an arms race
	Slide 56: Outline

