
Lecture 06
Arithmetic Instructions

CS213 – Intro to Computer Systems

Branden Ghena – Fall 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Pack Lab due tonight by midnight
• Warning: office hours today are going to be very full

• Slip days (3 total) start to apply after the deadline

• You don’t have to ask, we’ll use them automatically as best helps you

• Bomb Lab releases later today
• Practice interpreting assembly code

• Due after the midterm exam

• But we strongly recommend you start it early as assembly practice

• Partnership survey on Piazza

2

One more (hopefully last) office hour change

• Starting today!
• Tuesdays 6-7 has moved to Tech M120

• Tuesdays 7-9 is still in Tech M164

3

Administrivia

• Midterm exam in 1.5 weeks
• Class time next week Thursday (Oct 19th)

• Covers everything from the start of class through Control Flow
• Does NOT cover function calls in assembly (“Procedures” lecture)

• Bring a pencil and one 8.5”x11” inch paper with notes
• Notes can be on both sides, handwritten or typed

• No calculators

• Practice exams (and solutions) are on the Canvas home page
• Also good practice: Homework 2 (due Tuesday), phases 1-3 of Bomb Lab

• ANU students: I’ll reach out this week with details

4

Instruction Set Architecture sits at software/hardware interface

5

C Language

x86-64

Intel Pentium 4

Intel Core i7

AMD RyzenGCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple M1

ClangProgram
B

Program
A

CompilerSource code Architecture

Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware

Instruction set

x86-64 Integer Registers

%rax %eax %ax %ah %al

%rbx %ebx %bx %bh %bl

%rcx %ecx %cx %ch %cl

%rdx %edx %dx %dh %dl

%rsi %esi %si

%rdi %edi %di

%rbp %ebp %bp

%rsp %esp %sp

%r8 %r8d %r8w

32-bit registers

16-bit registers

8-bit

…

%r15 %r15d %r15w

… …
%sil

%dil

%bpl

%spl

%r8b

%r15b

64-bit registers

8-bit

6

Three Basic Kinds of Instructions

1. Transfer data between memory and register
• Load data from memory into register

• %reg = Mem[address]

• Store register data into memory

• Mem[address] = %reg

2. Perform arithmetic operation on register or memory data
• c = a + b; z = x << y; i = h & g;

3. Control flow: what instruction to execute next
• Unconditional jumps to/from procedures

• Conditional branches

In x86-64 these basic types can often be combined

7

Remember: Memory
is indexed just like an
array of bytes!

Operand Combinations

Source Dest Src, Dest C Analog

movq

Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

Mem Reg movq (%rax), %rdx

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

8

Cannot do memory-memory transfer with a single instruction

Today’s Goals

• Continue exploring x86-64 assembly
• Arithmetic

• Discuss real-world x86-64
• Special cases

• Generating assembly

• Understand condition codes
• Method for testing Boolean conditions

9

10

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

Two-operand instructions

Some arithmetic operations

Instruction Effect Description

addq S, D D ← D + S Add

subq S, D D ← D – S Substract

imulq S, D D ← D * S Multiply

xorq S, D D ← D ^ S Exclusive or

orq S, D D ← D | S Or

andq S, D D ← D & S And

Instruction Effect Description

sarq k, D D ← D >> k Shift arithmetic right

shrq k, D D ← D >> k Shift logical right

salq k, D D ← D << k Shift left

shlq k, D D ← D << k Shift left (same as salq)

Shifts

Operand types
• Immediate
• Register
• Memory
(Only one can be memory)

Be careful with
operand order!!!
(Matters for some
operations)

11

A note on instruction names

• Instruction names can look somewhat arcane
• shlq? movzbl?

• But, good news: names (usually) follow conventions
• Common prefixes (add), suffixes (b, w, l, q), etc.
• So you can understand pieces separately
• Then combine their meanings

12

Some Arithmetic Operations

• Unary (one-operand) Instructions:

• See textbook Section 3.5.5 for more instructions:
mulq, cqto, idivq, divq

13

Instruction Effect Description

incq D D ← D + 1 Increment

decq D D ← D – 1 Decrement

negq D D ← -D Negate

notq D D ← ~D Complement

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

 a = b + c;

14

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

 a = b + c;

movq %rbx, %rax (a = b;)

addq %rcx, %rax (a += c;)

15

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

 a = b + c;

movq $0, %rax

addq %rbx, %rax

addq %rcx, %rax

16

Is this okay?

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

 a = b + c;

movq $0, %rax

addq %rbx, %rax

addq %rcx, %rax

17

Is this okay?

Yes: just a little slower

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

 a = b + c;

addq %rbx, %rcx

movq %rcx, %rax

18

Is this okay?

op src, dst

Converting C to Assembly

• Suppose a → %rax, b → %rbx, c → %rcx
Convert the following C statement to x86-64:

 a = b + c;

addq %rbx, %rcx

movq %rcx, %rax

19

Is this okay?

No: overwrites C
which could still be
used later in code!

op src, dst

Question + Break

• Suppose a → %rax, b → %rbx, c→ %rcx
Convert the following C statement to x86-64:

c = (a-b)+5;

20

Reminder
addq, src, dst → dst = dst + src

[A]
movq %rax, %rcx
subq %rbx, %rcx
addq $5, %rcx

[B]
movq %rax, %rcx
subq %rbx, %rcx
movq $5, %rcx

[C]
subq %rcx, %rax, %rbx
addq %rcx, %rcx, $5

[D]
subq %rbx, %rax
addq $5, %rax
movq %rax, %rcx

Question + Break

• Suppose a → %rax, b → %rbx, c→ %rcx
Convert the following C statement to x86-64:

c = (a-b)+5;

[A]
movq %rax, %rcx
subq %rbx, %rcx
addq $5, %rcx

[B]
movq %rax, %rcx
subq %rbx, %rcx
movq $5, %rcx

[C]
subq %rcx, %rax, %rbx
addq %rcx, %rcx, $5

[D]
subq %rbx, %rax
addq $5, %rax
movq %rax, %rcx

Reminder: addq, src, dst → dst = dst + src

c = 5

Not x86

Overwrites
a

21

22

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

x86-64 Integer Registers

%rax %eax %ax %ah %al

%rbx %ebx %bx %bh %bl

%rcx %ecx %cx %ch %cl

%rdx %edx %dx %dh %dl

%rsi %esi %si

%rdi %edi %di

%rbp %ebp %bp

%rsp %esp %sp

%r8 %r8d %r8w

32-bit registers

16-bit registers

8-bit

…

%r15 %r15d %r15w

… …
%sil

%dil

%bpl

%spl

%r8b

%r15b

64-bit registers

8-bit

23

Moving data of different sizes

• “Vanilla” move can only move between source and dest of the same size
• Larger → smaller: use the smaller version of registers

• Smaller → larger: extension! We have two options: zero-extend or sign-extend

Instruction Effect Description

movX S,D

 X ∈ {q, l, w, b}

D ← S Copy quad-word (8B), long-word (4B),
word (2B) or byte (1B)

movsXX S,D

 XX ∈ {bw, bl, wl, bq, wq, lq}

D ← SignExtend(S) Copy sign-extended byte to word, byte
to long-word, etc.

movzXX S,D

 XX ∈ {bw, bl, wl, bq, wq, lq}

D ← ZeroExtend(S) Copy zero-extended byte to word, byte
to long-word, etc.

cltq

(convert long to quad)

%rax ← SignExtend(%eax) Sign-extend %eax to %rax

24

Example: moving byte data

• Note the differences between movb, movsbl and movzbl

• Assume %dl = 0xCD, %eax = 0x98765432

 movb %dl,%al

 movsbl %dl,%eax

 movzbl %dl,%eax

%eax = 0x987654CD

%eax = 0xFFFFFFCD

%eax = 0x000000CD

25

op src, dst

32-bit Instruction Peculiarities

• Instructions that move or generate 32-bit values also set the upper
32 bits of the respective 64-bit register to zero, while 16 or 8 bit
instructions don't.

 movabsq $0xffffffffffffffff, %rax # rax = 0xffffffffffffffff

 movb $0, %al # rax = 0xffffffffffffff00

 movw $0, %ax # rax = 0xffffffffffff0000

 movl $0, %eax # rax = 0x0000000000000000

• This includes 32-bit arithmetic! (e.g., addl)

26

op src, dst

27

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

Complete Memory Addressing Modes

• General:
• D(Rb,Ri,S)

• Rb: Base register (any register)

• Ri: Index register (any register except %rsp)

• S: Scale factor (1, 2, 4, 8) (sizes of common C types)

• D: Constant displacement value (a.k.a. immediate)

• Mem[Reg[Rb] + Reg[Ri]*S + D]

28

Saving computed addresses

• Generally, any instruction with () in it, accesses memory
• Address is computed first

• Load if in a source operand

• Store if in a destination operand

• But what if what you really want is the address?
• lea – load effective address

• Exception to () rule. Does NOT load from memory

• Also used for arbitrary arithmetic

• This is the compiler’s favorite instruction

29

Address computation instruction

• leaq src, dst
• "lea" stands for load effective address

• src MUST be an address expression (any of the formats we’ve seen)

• dst is a register

• Sets dst to the address computed by the src expression
(does not go to memory! – it just does math)

• Example: leaq (%rdx,%rcx,4), %rax

• Uses:
• Computing addresses without a memory reference

• e.g. translation of p = &x[i];

• Computing arithmetic expressions of the form x+k*i+d

• Though k can only be 1, 2, 4, or 8

30

Example: lea vs. mov

31

0x120

0x118

0x110

0x108

0x100

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x4

0x100

%rdi

%rsi

leaq (%rdx,%rcx,4), %rax

movq (%rdx,%rcx,4), %rbx

leaq (%rdx), %rdi

movq (%rdx), %rsi

Example: lea vs. mov

32

0x120

0x118

0x110

0x108

0x100

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x4

0x100

%rdi

%rsi

leaq (%rdx,%rcx,4), %rax

movq (%rdx,%rcx,4), %rbx

leaq (%rdx), %rdi

movq (%rdx), %rsi

Example: lea vs. mov

33

0x120

0x118

0x110

0x108

0x100

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x8

0x4

0x100

%rdi

%rsi

leaq (%rdx,%rcx,4), %rax

movq (%rdx,%rcx,4), %rbx

leaq (%rdx), %rdi

movq (%rdx), %rsi

Example: lea vs. mov

34

0x120

0x118

0x110

0x108

0x100

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x8

0x4

0x100

%rdi 0x100

%rsi

leaq (%rdx,%rcx,4), %rax

movq (%rdx,%rcx,4), %rbx

leaq (%rdx), %rdi

movq (%rdx), %rsi

Example: lea vs. mov

35

0x120

0x118

0x110

0x108

0x100

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x8

0x4

0x100

%rdi 0x100

%rsi 0x1

leaq (%rdx,%rcx,4), %rax

movq (%rdx,%rcx,4), %rbx

leaq (%rdx), %rdi

movq (%rdx), %rsi

Why does the compiler love lea?

• Sometimes it’s good for computing addresses

• Usually the compiler uses it to do math in fewer instructions
• addq only adds a source and a destination, and overwrites destination

• leaq adds up to two registers and an immediate, AND stores to a
different register!

36

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

 long t1 = x+y;

 long t2 = z+t1;

 long t3 = x+4;

 long t4 = y * 48;

 long t5 = t3 + t4;

 long rval = t2 * t5;

}

 # rdi = x

 # rsi = y

 # rdx = z

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

37

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

 long t1 = x+y;

 long t2 = z+t1;

 long t3 = x+4;

 long t4 = y * 48;

 long t5 = t3 + t4;

 long rval = t2 * t5;

}

 # rdi = x

 # rsi = y

 # rdx = z

 leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

38

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

 long t1 = x+y;

 long t2 = z+t1;

 long t3 = x+4;

 long t4 = y * 48;

 long t5 = t3 + t4;

 long rval = t2 * t5;

}

 # rdi = x

 # rsi = y

 # rdx = z

 leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

 leaq (%rsi,%rsi,2),%rsi # rsi = y + 2*y = 3*y

 salq $4,%rsi # rsi = (3*y)*16 = 48*y (t4)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

39

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

 long t1 = x+y;

 long t2 = z+t1;

 long t3 = x+4;

 long t4 = y * 48;

 long t5 = t3 + t4;

 long rval = t2 * t5;

}

 # rdi = x

 # rsi = y

 # rdx = z

 leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

 leaq (%rsi,%rsi,2),%rsi # rsi = y + 2*y = 3*y

 salq $4,%rsi # rsi = (3*y)*16 = 48*y (t4)

 addq %rdx,%rcx # rcx = z+t1 (t2)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

40

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

 long t1 = x+y;

 long t2 = z+t1;

 long t3 = x+4;

 long t4 = y * 48;

 long t5 = t3 + t4;

 long rval = t2 * t5;

}

 # rdi = x

 # rsi = y

 # rdx = z

 leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

 leaq (%rsi,%rsi,2),%rsi # rsi = y + 2*y = 3*y

 salq $4,%rsi # rsi = (3*y)*16 = 48*y (t4)

 addq %rdx,%rcx # rcx = z+t1 (t2)

 leaq 4(%rsi,%rdi),%rdi # rdi = t4+x+4 (t5)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

41

Compiling Arithmetic Operations

int arith (long x, long y, long z) {

 long t1 = x+y;

 long t2 = z+t1;

 long t3 = x+4;

 long t4 = y * 48;

 long t5 = t3 + t4;

 long rval = t2 * t5;

}

 # rdi = x

 # rsi = y

 # rdx = z

 leaq (%rsi,%rdi),%rcx # rcx = x+y (t1)

 leaq (%rsi,%rsi,2),%rsi # rsi = y + 2*y = 3*y

 salq $4,%rsi # rsi = (3*y)*16 = 48*y (t4)

 addq %rdx,%rcx # rcx = z+t1 (t2)

 leaq 4(%rsi,%rdi),%rdi # rdi = t4+x+4 (t5)

 imulq %rcx,%rdi # rdi = t2*t5 (rval)

• Compiler can reorder operations
• Can have one statement take

multiple instructions
• Can have one instruction handle

multiple statements

• Don’t expect a 1-1 mapping

42

Practice Question #1

Address 0 1 2 3 4 5 6 7

0x2000 B5 B7 DC ED 7D 59 08 93
0x2008 1D 23 58 46 9C 22 2F 5D
0x2010 C6 83 75 00 41 19 87 1C
0x2018 24 0C 26 AA C7 BD 03 1E
0x2020 E3 00 00 00 00 00 00 00
0x2028 8B DB 66 D7 21 23 6B 99

43

Register Value
%rax 0x2000
%rbx 0x20
%rcx 0x8

Operation Address Loaded %rcx Value
movq (%rax, rbx), %rcx

First, determine whether an address is loaded, and if so, which address?

Practice Question #1

Address 0 1 2 3 4 5 6 7

0x2000 B5 B7 DC ED 7D 59 08 93
0x2008 1D 23 58 46 9C 22 2F 5D
0x2010 C6 83 75 00 41 19 87 1C
0x2018 24 0C 26 AA C7 BD 03 1E
0x2020 E3 00 00 00 00 00 00 00
0x2028 8B DB 66 D7 21 23 6B 99

44

Register Value
%rax 0x2000
%rbx 0x20
%rcx 0x8

Operation Address Loaded %rcx Value
movq (%rax, rbx), %rcx 0x2020

Second, determine the final value in %rcx

Practice Question #1

Address 0 1 2 3 4 5 6 7

0x2000 B5 B7 DC ED 7D 59 08 93
0x2008 1D 23 58 46 9C 22 2F 5D
0x2010 C6 83 75 00 41 19 87 1C
0x2018 24 0C 26 AA C7 BD 03 1E
0x2020 E3 00 00 00 00 00 00 00
0x2028 8B DB 66 D7 21 23 6B 99

45

Register Value
%rax 0x2000
%rbx 0x20
%rcx 0x8

Operation Address Loaded %rcx Value
movq (%rax, rbx), %rcx 0x2020 0xE3

Practice Question #2

Address 0 1 2 3 4 5 6 7

0x2000 B5 B7 DC ED 7D 59 08 93
0x2008 1D 23 58 46 9C 22 2F 5D
0x2010 C6 83 75 00 41 19 87 1C
0x2018 24 0C 26 AA C7 BD 03 1E
0x2020 E3 00 00 00 00 00 00 00
0x2028 8B DB 66 D7 21 23 6B 99

46

Register Value
%rax 0x2000
%rbx 0x20
%rcx 0x8

Operation Address Loaded %rcx Value
leaq (%rax, rbx), %rcx

First, determine whether an address is loaded, and if so, which address?

Practice Question #2

Address 0 1 2 3 4 5 6 7

0x2000 B5 B7 DC ED 7D 59 08 93
0x2008 1D 23 58 46 9C 22 2F 5D
0x2010 C6 83 75 00 41 19 87 1C
0x2018 24 0C 26 AA C7 BD 03 1E
0x2020 E3 00 00 00 00 00 00 00
0x2028 8B DB 66 D7 21 23 6B 99

47

Register Value
%rax 0x2000
%rbx 0x20
%rcx 0x8

Operation Address Loaded %rcx Value
leaq (%rax, rbx), %rcx None

Second, determine the final value in %rcx

Practice Question #2

Address 0 1 2 3 4 5 6 7

0x2000 B5 B7 DC ED 7D 59 08 93
0x2008 1D 23 58 46 9C 22 2F 5D
0x2010 C6 83 75 00 41 19 87 1C
0x2018 24 0C 26 AA C7 BD 03 1E
0x2020 E3 00 00 00 00 00 00 00
0x2028 8B DB 66 D7 21 23 6B 99

48

Register Value
%rax 0x2000
%rbx 0x20
%rcx 0x8

Operation Address Loaded %rcx Value
leaq (%rax, rbx), %rcx None 0x2020

Break + Say hi to your neighbors

• Things to share
• Name

• Major

• One of the following

• Favorite Candy

• Favorite Pokemon

• Favorite Emoji

49

Break + Say hi to your neighbors

• Things to share
• Name -Branden

• Major -Electrical and Computer Engineering, and Computer Science

• One of the following

• Favorite Candy - Twix

• Favorite Pokemon - Eevee

• Favorite Emoji - 🍢

50

51

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

What can instructions do?

• Move data: ✓

• Arithmetic: ✓

• Transfer control: ✘
• Instead of executing next instruction, go somewhere else

• Let’s back out. Why do we want that?

• Sometimes we want to go from the red code to the green code
• But the blue code is what’s next!
• Need to transfer control! Execute an instruction that is not the next one
• And conditionally, too! (i.e., based on a condition)

if (x > y)

 result = x-y;

else

 result = y-x;

while (x > y)

 result = x-y;

return result;

52

Condition codes

• Control is mediated via Condition codes
• single-bit registers that record answers to questions about values

• E.g., Is value x greater than value y? Are they equal? Is their sum even?

• Let’s keep “question” abstract for now. We’ll see the details in a bit.

• Terminology:

• a bit is set if it is 1

• a bit is cleared (or reset) if it is 0

53

Conditionals at the machine level

• At machine level, conditional operations are a 2-step process:
• Perform an operation that sets or clears condition codes (ask questions)

• Then observe which condition codes are set, do the operation (or not)

• Can express Boolean operations, conditionals, loops, etc.
• We will see the first today, and more control next lecture

• So now we need three things:
1. Instructions that compare values and set condition codes

2. Instructions that observe condition codes and do something (or not)

3. A set of actual condition codes (what questions do we track answers to?)

54

Carnegie Mellon

Two-Step Conditional Process: Boolean Operations

• Lots of new pieces

• Lets give an example first, then learn more
about each
• Translate C code on right into assembly

• We’ll do this in the next steps

bool gt (int x, int y)

{

 return x > y;

}

cmpq %rsi, %rdi # Compare x:y

setg %al # Set when x > y (i.e., %rdi > %rsi)

ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

55

Carnegie Mellon

Two-Step Conditional Process: Boolean Operations

• Step 1, cmpq: compare quad words
• compare the values in %rsi and %rdi,

keep track of all you can learn, and set the
relevant condition codes

• Are the two equal? Set the condition codes
that records they were equal

• Was the right one greater? Or less? Etc.

• We don’t know yet which answer we
are going to need! So just save them all.

bool gt (int x, int y)

{

 return x > y;

}

cmpq %rsi, %rdi # Compare x:y

setg %al # Set when x > y (i.e., %rdi > %rsi)

ret

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

y x

56

cmpq %rsi, %rdi # Compare x to y

setg %al # Set when x > y (i.e., %rdi > %rsi)

ret

Carnegie Mellon

Two-Step Conditional Process: Boolean Operations

• Step 2, setX: set destination register
to 1 if condition is met
• setg = set if the 2nd operand is greater

than the 1st (careful about the order!)

• There’s also setl for less than, etc.

• Reads the condition codes that encodes
the answer to that question

• Set the 1-byte register %al to 1 if true

al = (x > y) y x

57

bool gt (int x, int y)

{

 return x > y;

}

Register Use(s)

%rdi Argument x

%rsi Argument y

%rax Return value

Step 1: Setting condition codes

• Analogy: Asking ALL the possible questions at once
• And recording the answers
• We don’t know yet which question is the one we care about!

• Done in one of two ways
• Implicitly: all* arithmetic instructions set (and reset) condition codes in addition

to producing a result
• *except lea; it’s not “officially” an arithmetic instruction

• Explicitly: by instructions whose sole purpose is to set condition codes
• E.g., cmpq
• They don’t actually produce results (in registers or memory)

• Condition codes are left unchanged by other operations (such as mov)

58

Implicitly Setting Condition Codes

• Condition codes on x86
• CF Carry Flag (for unsigned) SF Sign Flag (for signed)

• ZF Zero Flag OF Overflow Flag (for signed)

• PF Parity Flag

• Not an arbitrary set! By combining them, can keep track of answers to
many useful questions! (We’ll see exactly which in a bit.)

59

Implicitly Setting Condition Codes

• Set (or reset) based on the result of arithmetic operations
Example: addq Src,Dest # C-analog: t = a+b

• ZF set if t == 0

• SF set if t < 0 (as signed encoding)

• CF set if carry out from most significant bit (unsigned overflow)
 also CF takes the value of the last bit shifted (left or right)

• OF set if twos-complement (signed) overflow (pos/neg overflow)
 (a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

 also, set if a 1-bit shift operation changes the sign of the result

• PF set if t has an even number of 1 bits
60

 CF (Carry) SF (Sign) ZF (Zero) OF (Overflow) PF (Parity)

Carnegie Mellon

Explicitly Setting Condition Codes: Compare

• cmp{b,w,l,q} Src2, Src1

• cmpq b,a computes t = a-b, then throws away the result
• And sets condition codes along the way, like subq would!

• Follows the rules we saw on the previous slide for arithmetic instructions

• Beware the order of the cmp operands!

• Use cases
• ZF set if a == b

• SF set if (a-b) < 0 (as signed), i.e., b > a in a signed comparison!

• CF and OF used mostly in combinations with others (see in a few slides)

61

Carnegie Mellon

Explicitly Setting Condition Codes: Test

• test{b,w,l,q} Src2,Src1

• testq b,a computes t = a&b, then throws away the result!
• And sets condition codes like andq would (order doesn’t matter here)

• So again, same rules as arithmetic instructions

• Use cases
• ZF set when a&b == 0, i.e., a and b have no bits in common

• SF set when a&b < 0

• Useful when doing bit masking
• E.g., x & 0x1, to know whether x is even or odd

• If the result of the & is 0, it’s even, if 1, it’s odd

62

Carnegie Mellon

Step 2: Reading Condition Codes

• Cannot read condition codes directly; instead observe via instructions
• And generally observe combinations of condition codes, not individual ones

• Example: the setX family of instructions
• Write single-byte destination register based on combinations of condition codes

• set{e, ne, s, …} D where D is a 1-byte register

• Example: sete %al

• means: %al=1 if flag ZF is set, %al=0 otherwise

63

Using condition codes for comparison

• setle – Less than or equal (signed)
• Combination of condition codes: (SF^OF)|ZF
• SF - Sign Flag (true if negative)
• OF – Overflow Flag (true if signed overflow occurred)
• ZF – Zero Flag (true if result is zero)

• All of the combos expect to be run after a cmp src,dst
• dst <= src (runs dst-src)

• If:
• The result is zero – src and dst were equal

• OR if one but not both:
• The result is negative (and didn’t overflow) – src was larger than dst
• The result overflowed (and is positive) – dst is negative, src is positive

64

Carnegie Mellon

Condition codes combinations

SetX Description Condition

sete Equal / Zero ZF

setne Not Equal / Not Zero ~ZF

sets Negative SF

setns Nonnegative ~SF

setg Greater (Signed) ~(SF^OF)&~ZF

setge Greater or Equal (Signed) ~(SF^OF)

setl Less (Signed) (SF^OF)

setle Less or Equal (Signed) (SF^OF)|ZF

seta Above (unsigned) ~CF&~ZF

setb Below (unsigned) CF

Note: suffixes do not
indicate operand sizes,
but rather conditions

These same suffixes
will come back when
we see other instructions
that read condition codes.

Expect to be run after a cmp

65

Step 2: Reading Condition Codes

• setX (and others) read the current state of condition codes
• Whatever it is, and whichever instruction changed it last

• So when you see (for example) setne, work backwards!
• Look at previous instructions, to find the last one to change conditions

• Then you’ll know the two values that were compared

• Ignore instructions that don’t touch condition codes (like moves)

• Usually you’ll see a cmpX (or testX, or arithmetic) right before
• But not always, so know what to do in general

66

What do you need to know?

• 90%+ of the time
• cmp instruction followed by setX instruction (or a branch, next lecture)

• Don’t have to think about condition codes at all!

• Think of as dst X src

• dst <= src or dst != src etc.

• 10% or less of the time
• Arbitrary arithmetic instruction sets the condition codes

• Or testq sets the condition codes

• Followed by a setX or branch (next lecture)

• And you actually have to think about which condition codes are set to
figure out what the assembly is doing, which can be challenging

67

68

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

How to Get Your Hands on Assembly

• From C source code, using a compiler

• gcc –O1 -S sum.c

• Produces file sum.s

• Warning: May get very different results on different machines due to
different versions of gcc and different compiler settings

C Code: sum.c
long plus(long x, long y);

void sum(long x, long y,

 long *dest)

{

 long t = plus(x, y);

 *dest = t;

}

Generated x86-64 assembly: sum.s

sum:

 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

69

How to Get Your Hands on Assembly

• From machine code, using a disassembler

• objdump -d sum.o

• Within the gdb Debugger
 linux> gdb prog

 (gdb) disassemble sum

• gdb tutorial coming soon!

• Warning: Disassemblers are approximate; some information is lost during translation from
assembly to machine code
• Label names are lost, what is just data (vs code) is lost, etc.

• Useful if you don’t have the source

0000000000400595 <sum>:

 400595: 53 push %rbx

 400596: 48 89 d3 mov %rdx,%rbx

 400599: e8 f2 ff ff ff callq 400590 <plus>

 40059e: 48 89 03 mov %rax,(%rbx)

 4005a1: 5b pop %rbx

 4005a2: c3 retq
70

Godbolt

Ignore section labeled:
“_dl_relocate_static_pie”

Play around with this to
try stuff on your own

https://godbolt.org/

71

https://godbolt.org/

• Godbolt example!

72

73

• Arithmetic Instructions

• Special Cases
• Non 64-bit Data

• Load Effective Address

• Condition Codes

• Viewing x86-64 Assembly

Outline

	Default Section
	Slide 1: Lecture 06 Arithmetic Instructions

	Goals
	Slide 2: Administrivia
	Slide 3: One more (hopefully last) office hour change
	Slide 4: Administrivia

	Review
	Slide 5: Instruction Set Architecture sits at software/hardware interface
	Slide 6: x86-64 Integer Registers
	Slide 7: Three Basic Kinds of Instructions
	Slide 8: Operand Combinations
	Slide 9: Today’s Goals

	Arithmetic Instructions
	Slide 10: Outline
	Slide 11: Some arithmetic operations
	Slide 12: A note on instruction names
	Slide 13: Some Arithmetic Operations
	Slide 14: Converting C to Assembly
	Slide 15: Converting C to Assembly
	Slide 16: Converting C to Assembly
	Slide 17: Converting C to Assembly
	Slide 18: Converting C to Assembly
	Slide 19: Converting C to Assembly
	Slide 20: Question + Break
	Slide 21: Question + Break

	Non 64-bit Data
	Slide 22: Outline
	Slide 23: x86-64 Integer Registers
	Slide 24: Moving data of different sizes
	Slide 25: Example: moving byte data
	Slide 26: 32-bit Instruction Peculiarities

	Load Effective Address
	Slide 27: Outline
	Slide 28: Complete Memory Addressing Modes
	Slide 29: Saving computed addresses
	Slide 30: Address computation instruction
	Slide 31: Example: lea vs. mov
	Slide 32: Example: lea vs. mov
	Slide 33: Example: lea vs. mov
	Slide 34: Example: lea vs. mov
	Slide 35: Example: lea vs. mov
	Slide 36: Why does the compiler love lea?
	Slide 37: Compiling Arithmetic Operations
	Slide 38: Compiling Arithmetic Operations
	Slide 39: Compiling Arithmetic Operations
	Slide 40: Compiling Arithmetic Operations
	Slide 41: Compiling Arithmetic Operations
	Slide 42: Compiling Arithmetic Operations
	Slide 43: Practice Question #1
	Slide 44: Practice Question #1
	Slide 45: Practice Question #1
	Slide 46: Practice Question #2
	Slide 47: Practice Question #2
	Slide 48: Practice Question #2
	Slide 49: Break + Say hi to your neighbors
	Slide 50: Break + Say hi to your neighbors

	Condition Codes
	Slide 51: Outline
	Slide 52: What can instructions do?
	Slide 53: Condition codes
	Slide 54: Conditionals at the machine level
	Slide 55: Two-Step Conditional Process: Boolean Operations
	Slide 56: Two-Step Conditional Process: Boolean Operations
	Slide 57: Two-Step Conditional Process: Boolean Operations
	Slide 58: Step 1: Setting condition codes
	Slide 59: Implicitly Setting Condition Codes
	Slide 60: Implicitly Setting Condition Codes
	Slide 61: Explicitly Setting Condition Codes: Compare
	Slide 62: Explicitly Setting Condition Codes: Test
	Slide 63: Step 2: Reading Condition Codes
	Slide 64: Using condition codes for comparison
	Slide 65: Condition codes combinations
	Slide 66: Step 2: Reading Condition Codes
	Slide 67: What do you need to know?

	Viewing Assembly Code
	Slide 68: Outline
	Slide 69: How to Get Your Hands on Assembly
	Slide 70: How to Get Your Hands on Assembly
	Slide 71: Godbolt
	Slide 72

	Wrapup
	Slide 73: Outline

