Lecture 04 Floating Point

CS213 – Intro to Computer Systems Branden Ghena – Fall 2023

Slides adapted from: St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Administrivia

- Homework 1 due today! (11:59 pm Central)
	- Submit on Gradescope
	- About 60% of the class has submitted so far $\mathcal D$

- Pack Lab is due next week Tuesday
	- Reminder: work collaboratively with your partner, not separately
- Reminder: small office hours changes
	- Monday 11-12 was removed. Monday 2-3 was added
	- Wednesday 10-12 (with me) moved rooms
	- Make use of office hours!

Today's Goals

• Explore representing real (decimal) numbers with binary

• Understand IEEE754 encoding

• Discuss encoding impacts on floating-point arithmetic

What is hard about floating point?

- LOTS OF RULES
	- No, more than that

• Homework 2 will give you a chance to practice

• Plus on exams you'll have a notes sheet to write down rules on

Outline

• **Fractional Binary Numbers**

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Floating point numbers

- In decimal:
	- 123450 $_{10}$
	- 123.450 $_{10}$
	- 1.23450 $_{10}$
- We can use this same system in binary as well:
	- 1010110₂ (86₁₀)
	- 1010.110₂ $(10.75_{10} = \frac{86}{23})$ $\frac{88}{2^3}$

•
$$
1.010110_2
$$
 $(1.34375_{10} = \frac{86}{2^6})$

Fractional Binary Numbers

- Representation
	- Bits to right of "binary point" represent fractional powers of 2
	- Represents rational number:

Example binary conversion

1010.110

Before the binary point: $1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 1*2^3 + 1*2^1 = 8+2 = 10$

After the binary point: $1*2^{-1} + 1*2^{-2} + 0*2^{-3} = 1*2^{-1} + 1*2^{-2} = 1/2 + 1/4 = 3/4 = 0.75$ Fractional Binary Number Examples

Binary point is part of the solution, but not an entire encoding

- Some problems remain:
- 1. Computers are finite, but real numbers are not
	- Need to choose how many bits to use
	- Many decimal numbers would take infinite binary bits to represent perfectly
		- 3.14 $_{10}$ = 11.0010001111010111₂ (we could keep going)
- 2. We also need to represent where the "binary point" is located • We'll use some of our bits to do so
- 3. Should do signed numbers while we're at it

Outline

• Fractional Binary Numbers

• **Representing Floating Point**

• Smaller Floating Point

• Floating Point Arithmetic

Floating Point Standard – IEEE754

- Floating point representations
	- Encodes rational numbers of the form $V = m \times 2^e$
	- Base 2 scientific notation!
- IEEE Standard 754 (IEEE floating point)
	- Established in 1985 as uniform standard for floating point arithmetic
		- Before that, many idiosyncratic formats
	- Headed by William Kahan, CS prof. at UC Berkeley (later won Turing Award)
	- Supported by all major CPUs
- Driven by numerical concerns and numerical analysts
	- Nice standards for rounding, overflow, underflow
	- Had to be implementable in fast hardware as well and support many languages

Floating Point Representation

- Sign bit **S** determines whether number is negative or positive
- Significand **M** normally a fractional value in range [1.0,2.0) or [0.0,1.0)
	- Called **mantissa** or **significand**
- Exponent **E** weights value by power of two

Floating Point Encoding

- Encoding
	- MSb is sign bit (can still look at most-significant bit alone to determine sign!)
	- **exp** field encodes E, k-bits (note: "*encodes E" != "is E"*)
	- **frac** field encodes M, n-bits

s exp frac

Floating Point Precision

- Sizes
	- Single precision: k = 8 exp bits, n= 23 frac bits (32b total). **float** in C

• Double precision: k = 11 exp bits, n = 52 frac bits (64b total). **double** in C

Categories for Encoded Values

- Value encoded three cases, depending on value of **exp**
	- 1. Normalized, the most common

s ≠ 0 && not all 1s frac

2. Denormalized (very small values)

3. Special values – infinity and NaN

Categories for Encoded Values

- Value encoded three cases, depending on value of **exp**
	- **1. Normalized, the most common**

s ≠ 0 && not all 1s frac

2. Denormalized (very small values)

3. Special values – infinity and NaN

Normalized, Signifcand

$$
V = (-1)^s * M * 2^E
$$

- Condition: not a special exponent (all zeros or ones)
- Significand is encoded with implied leading 1
	- $M = 1.xxx...x_2 (1+f where f = 0.xxx_2)$
		- xxx…x: bits of **frac** used directly
- Idea: every normalized number is 1.xxxx
	- So we're not going to include the leading 1 in the frac
	- We'll just know it's there when we convert to decimal
	- Saves one extra bit in the encoding!

Normalized, Exponent

 $V = (-1)^{S^*} M * 2^E$

- Condition: not a special exponent (all zeros or ones)
- Exponent coded as a biased value
	- $E = Exp Bias$
		- Exp : unsigned value denoted by **exp**
		- Bias : Bias value = 2^{k-1} 1, k is number of exponent bits
			- Single precision (8-bit exp): 127 (Exp: 1…254, E: -126…127)
			- Double precision (11-bit exp): 1023 (Exp: 1…2046, E: -1022…1023)
- Exponent really just pushes the binary point around
	- 1.11 * 2^2 = 11.1 * 2^2 = 111.0 * 2^0 = 111
	- 111 * 2^-2 = 11.1 * 2^-1 = 1.11 * 2^0 = 1.11

Decoding example for normalized floating point (32-bit)

- 0x41900000 = 0b01000001100100000000000000000000
	- Group bits **s**: 0 **exp**: 10000011 **frac**: 00100000000000000000000
	- exp is not all zeros or all ones => not a special case
- M = **1**.00100000000000000000000 = 1.001

•
$$
E = exp - bias = 131 - 127 = 4
$$

• bias = 2^{k-1} -1, k=8 -> 2^7 -1 = 127

• Result =
$$
(-1)^0 * 1.001^2 * 2^4 = 10.01^2 * 2^3 = 10010^2 = 18
$$

 $V = (-1)^S * M * 2^E \begin{vmatrix} s & \text{exp} & \text{frac} \end{vmatrix}$ **s exp frac**

Normalized Encoding Example

- **Value**
	- **float F = 15213.0; // single precision: 8 exp bits, 23 frac bits**
	- 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ \times 2¹³

• **Significand**

- $M = 1.1101101101101_2$
-

• **Exponent**

- $E = 13$
- Bias = 127
- $exp = E + Bias = 140 = 10001100$

Floating Point Representation: Hex: 4 6 6 D B 4 0 0 Binary: 0100 0110 0110 1101 1011 0100 0000 0000 exp: 100 0110 0 frac: 110 1101 1011 0100 0000 0000

• frac = 1101101101101000000000 pad with 0s **on the right**. (example: 1.5 = 1.500)

More examples and practice in the bonus slides after the end

Normalized Numbers: Why These Choices?

- Significand coded with **implied leading 1**
	- Any non-zero integer will start with a 1 bit somewhere
	- Leading 1 carries no information, so don't need to store it!
	- Can express mantissas between:
		- 1.0 when frac is all 0s
		- 2.0 (nearly) when frac is all 1s
			- Want smaller? Use a smaller exponent!
- Exponent coded as biased value
	- $E = Exp Bias$
	- Alternative to using two's complement to represent signed integers
	- Reasons are a bit tricky
		- Floating point binary values increase in the same order as unsigned $=$ share comparisons!
		- Bias provides a more useful range (when considering denormalized)

Question + Break

- 0x3F800000 = 0b00111111100000000000000000000000
	- Group bits **s**: 0 **exp**: 01111111 **frac**: 00000000000000000000000
	- \exp is not 0...0 or 1...1 = > not a special case

 \bullet M $=$

- E = **exp bias** =
	- bias = 2^{k-1} -1, k=8 -> $2^{7}-1$ = 127

$$
V = (-1)^{S_{*}} M * 2^{E}
$$
 s exp frac

Question + Break

- 0x3F800000 = 0b00111111100000000000000000000000
	- Group bits **s**: 0 **exp**: 01111111 **frac**: 00000000000000000000000
	- \exp is not 0...0 or 1...1 = > not a special case
- M = 1.00000000000000000000000 = 1.0

•
$$
E = exp - bias = 127 - 127 = 0
$$

\n- bias =
$$
2^{k-1} - 1
$$
, $k = 8 \rightarrow 2^7 - 1 = 127$
\n

• Result =
$$
(-1)^0 * 1.0^2 * 2^0 = 1
$$

$$
V = (-1)^{S_*} M * 2^E \Big| \text{ s} \qquad \text{exp} \qquad \qquad \text{frac} \qquad \text
$$

Categories for Encoded Values

- Value encoded three cases, depending on value of **exp**
	- 1. Normalized, the most common

s ≠ 0 && not all 1s frac

2. Denormalized (very small values)

3. Special values – infinity and NaN

Normalized floating point leaves a gap around zero

- Gap is the size of $1.0000 * 2^{Min Exponent}$ (due to leading 1 bit)
	- And how do we encode "zero" anyways?

- Solution: fill in numbers between 0 and $1 * 2^{Min Exponent}$
	- Using same spacing as the previous range, in the form **0**.XXXXX

Denormalized Values

 $V = (-1)^{S^*} M * 2^E$

- Purpose: gracefully represent numbers approaching ± 0
- Condition: $exp = 000...0$
- Value
	- Exponent value E = **1 - Bias**
		- Note: not simply $E = 0$ Bias as it would be if we followed the previous rules
		- This means we're re-using the spacing from smallest normalized numbers
	- Significand value $M = 0.$ xxx...x₂ (0.*frac*)
		- xxx…x: bits of frac. Leading 0 instead of leading 1
- Cases
	- $exp = 000...0$, frac = $000...0$ => Represents value 0
		- Note that we have distinct values $+0$ and -0
	- $\exp = 000...0$, frac $\neq 000...0$ => Numbers very close to 0.0

Categories for Encoded Values

- Value encoded three cases, depending on value of **exp**
	- 1. Normalized, the most common

s ≠ 0 && not all 1s frac

2. Denormalized (very small values)

3. Special values – infinity and NaN

Special Values

- Purpose: represent quantities that $(-1)^{s}$ * M * 2^{E} cannot
- Condition: $exp = 111...1$
- Cases
	- $exp = 111...1_2$, frac = 000...0₂
		- Represents value ∞ (infinity)
		- Both positive and negative infinity (sign bit to tell apart)
		- Operation that overflows: nicer mathematical behavior than modulo!
		- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $-1.0/0.0 = -\infty$
	- $exp = 111...1$ ₂, frac $\neq 000...0$ ₂
		- Not-a-Number (NaN)
		- Represents case when no numeric value can be determined
			- Fraction could be used to distinguish sources (rarely used in practice)
		- E.g., $\sqrt{-1}$, ∞ ∞ , ∞ * 0

Floating Point in C

- C guarantees two levels
	- **float** single precision
	- **double** double precision
- Conversions
	- **int → float**
		- maybe rounded
		- less bits for actual value (32 **→** 23)
	- **int** or **float** → **double**
		- exact value preserved
		- double has greater range and higher precision (52 bits for **frac**)
	- **double** → **float**
		- may overflow, underflow (too small to represent), or be rounded (IEEE 754)
		- C99 standard says **undefined** if value out of range
	- **double** or **float** → **int**
		- rounded toward zero $(-1.999 \rightarrow -1)$
		- C99 standard says **undefined** if value out of range

Break + Summary of FP Real Number Encodings

$$
V = (-1)^s * M * 2^E
$$

Outline

• Fractional Binary Numbers

• Representing Floating Point

• **Smaller Floating Point**

• Floating Point Arithmetic

Floating point examples

- We'll often do floating point in custom bit widths
	- Rather than 32-bit (float) or 64-bit (double)
- Reasons
	- 1. 64 is just too many bits to write out and think about
	- 2. Make sure you understand the concepts of floating point
		- Smaller versions still demonstrate concepts! (e.g., 8-bit)

Example: Tiny Floating Point

- 8-bit Floating Point Representation
	- Sign bit is in the most significant bit.
	- Next four (k) bits are exp, with a bias of 7 $(2^{k-1}-1)$
	- Last three (n) bits are frac
- Same general form as IEEE 754 format
	- normalized, denormalized numbers
	- representation of 0, NaN, infinity

Sidebar: increasingly useful for Machine Learning use!

> • Models often don't need 32-bits of precision

Denormalized encoding example

- Convert 5/512 to 8-bit tiny float
	- $5/512 = 0$ b $101 * 2^{-9} = 10.1 * 2^{-8} = 1.01 * 2^{-7}$

•
$$
E = exp - bias \rightarrow -7 = exp - (2^{(4-1)}-1) \rightarrow -7 = exp -7
$$

- $exp = 0$???
- But exp can't be less than 1 (or we're denormalized)
- So, the answer must be a denormalized number. Reset the problem!

Denormalized encoding example

- Convert 5/512 to 8-bit tiny float
	- $5/512 = 0$ b $101 * 2^{-9} = 10.1 * 2^{-8} = 1.01 * 2^{-7}$

•
$$
E = 1 - bias = 1 - 7 = -6
$$

$$
\bullet \ 0.xxx * 2^{-6} = 1.01 * 2^{-7} \rightarrow 0.101 * 2^{-6}
$$

- S: 0 (positive) exp: 0000 (denorm) frac: 101
- \cdot 0b0 0000 101 -> 0x05

Exponents for 8-bit tiny floats

Bias = 2^{4-1} - 1 = 7 (4-bit exp)

Denormalized		exp	exp	\mathbf{E}	2^E	
$E = 1 - Bias$ Normalized $E = exp - Bias$		$\boldsymbol{0}$	0000	-6	1/64	(denorms)
		$\mathbf{1}$	0001	-6	1/64	
		$\overline{2}$	0010	-5	1/32	
		3	0011	-4	1/16	
		$\overline{\mathbf{4}}$	0100	-3	1/8	
		5	0101	-2	1/4	
		6	0110	-1	1/2	
		7	0111	$\bf{0}$	$\mathbf 1$	
		8	1000	$+1$	$\overline{2}$	
		9	1001	$+2$	$\overline{\mathbf{4}}$	
		10	1010	$+3$	8	
		11	1011	$+4$	16	
		12	1100	$+5$	32	
		13	1101	$+6$	64	
Special		14	1110	$+7$	128	
		15	1111	n/a		(inf, NaN)

```
0 0001 000 -6 8/8*1/64 = 8/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0000 000 -6 0
0 0000 001 -6 1/8*1/64(2-6)= 1/512
0 0000 010 -6 2/8*1/64 = 2/512
...
0 0000 110 -6 6/8*1/64 = 6/512
0 0001 001
...
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
...
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf
0 1111 001 n/a NaN
...
0 1111 111 39
```
0 0001 000 -6 8/8*1/64 = 8/512 0 0000 111 -6 7/8*1/64 = 7/512 s exp frac **0 0000 000 -6 0 0 0000 001 -6 1/8*1/64(2-6)= 1/512 0 0000 010 -6 2/8*1/64 = 2/512 ... 0 0000 110 -6 6/8*1/64 = 6/512** 0 0001 001 **... 0 0110 110 -1 14/8*1/2 = 14/16 0 0110 111 -1 15/8*1/2 = 15/16 0 0111 000 0 8/8*1 = 1 0 0111 001 0 9/8*1 = 9/8 0 0111 010 0 10/8*1 = 10/8 ... 0 1110 110 7 14/8*128 = 224 0 1110 111 7 15/8*128 = 240 0 1111 000 n/a inf 0 1111 001 n/a NaN ... 0 1111 111** 40

Distribution of Values

- 6-bit IEEE-like format
	- $exp = 3$ exponent bits
	- frac $= 2$ fraction bits
	- Bias is $3(2^{3-1}-1)$
- Notice how the distribution gets denser toward zero.

Distribution of Values (Close-up View)

- 6-bit IEEE-like format
	- $exp = 3$ exponent bits
	- frac $= 2$ fraction bits
	- Bias is 3 $(2^{3-1}-1)$

- Smooth transition between normalized and de-normalized numbers due to definition $E = 1 - Bias$ for denormalized values
	- Zeros are denormalized numbers too! (+0 and -0)

Outline

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• **Floating Point Arithmetic**

Floating Point Operations

- Conceptual view
	- $x + f$ _{float} $y = Fit(x + f)$ _{math} y • $\mathbf{x} \star_{\text{float}} \mathbf{y} = \text{Fit}(\mathbf{x} \star_{\text{math}} \mathbf{y})$
- First compute exact, mathematical result
	- As a human: convert to decimal first, do math in decimal
- Then make it fit into desired precision
	- **Step 1**: Determine frac, exp
		- Frac must be of the form 1.xxxx (0.xxx if denormalized)
		- Change exp if needed to get frac to that form (e.g., result is 101.xxx)
	- **Step 2**: Possibly overflow if exponent too is large
		- Unlike integer overflow, result is mathematically reasonable: infinity
	- **Step 3**: Possibly round to fit into frac if we have too many mantissa bits

Rounding

- Default rounding mode for IEEE floating point is Round-to-even
	- Other methods are statistically biased (round up, round down, round-to-zero)
		- Sum of set of positive numbers will consistently be over- or under- estimated
	- Round to nearest number
		- If **exactly** in between, round to nearest **even** number
- Round-to-even example
	- Illustrated with rounding of money

\$1.40 \$1.60 Rounded $$1$ $$2$

Rounding

- Default rounding mode for IEEE floating point is Round-to-even
	- Other methods are statistically biased (round up, round down, round-to-zero)
		- Sum of set of positive numbers will consistently be over- or under- estimated
	- Round to nearest number
		- If **exactly** in between, round to nearest **even** number
- Round-to-even example
	- Illustrated with rounding of money

\$1.40 \$1.60 \$1.50 \$2.50 –\$1.50 Rounded $$1$ $$2$

Rounding

- Default rounding mode for IEEE floating point is Round-to-even
	- Other methods are statistically biased (round up, round down, round-to-zero)
		- Sum of set of positive numbers will consistently be over- or under- estimated
	- Round to nearest number
		- If **exactly** in between, round to nearest **even** number
- Round-to-even example
	- Illustrated with rounding of money

 $$1.40$ $$1.60$ $$1.50$ $$2.50$ $$1.50$ Rounded $$1$ $$2$ $$2$ $$2$ $$2$ $$2$

Closer Look at Round-to-even

- Rounding to other decimal places than the decimal point
	- When exactly halfway between two possible values
		- Round so that least significant digit is even
	- E.g., round to nearest hundredth (i.e., 2 decimal digits in fractional part)
		- 1.23 $\frac{49999}{ } \implies 1.23$ (Less than half way)
		- 1.23**50001** => 1.24 (Greater than half way)
		- 1.23 $\frac{50000}{2}$ = > 1.24 (Half way—round to even)
		- 1.24 $\frac{50000}{}$ = > 1.24 (Half way—round to even)

Rounding Binary Numbers

- Binary fractional numbers
	- Are "even" when least significant bit is 0
	- Are half-way when bits to right of rounding position = $100...0₂$ General form $XX...X.YY...Y100...0$ last Y is the position to which we want to round

• Examples

• Round to nearest 1/4 (2 bits right of binary point)

Important: remember how rounding works

- Only two options when rounding
	- Leave the number alone
	- Or add one to the number
- 1010.000010010000
	- Part to remove is 10...0, so we need to round
	- Options are:
		- 1010.00001000 (leave it alone)
		- 1010.00001001 (add one)
	- Pick the one that ends in zero: 1010.00001000

Mathematical Properties of FP Arithmetic

- Mathematical properties of FP Addition
	- Addition is Associative? NO
		- $(x + y) + z = x + (y + z)$
		- Possibility of overflow and inexactness of rounding
			- $(3.14 + 1e10) 1e10 = 0$ (rounding)
			- $3.14 + (1e10 1e10) = 3.14$
- Mathematical properties of FP Multiplication
	- Multiplication is Associative? NO
		- $(x \times y) \times z = x \times (y \times z)$
		- Possibility of overflow, inexactness of rounding
	- Multiplication distributes over addition? NO
		- $x \times (y + z) = (x \times y) + (x \times z)$
		- Possibility of overflow, inexactness of rounding
- More in bonus slides

Floating Point Summary

- IEEE Floating point (IEEE 754) has clear mathematical properties
	- But not always the ones you may expect!
- Represents numbers of form $(-1)^S \times M \times 2^E$
- One can reason about operations independent of implementation
	- As if computed with perfect precision and then rounded
- Not the same as arithmetic on real numbers
	- Violates associativity/distributivity
	- Makes life difficult for compilers & serious numerical applications programmers

Outline

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Outline

- Bonus slides
	- Use these for additional practice
	- And if you're interested in additional topics

Interesting Numbers for **float**/**double**

- Single \sim 3.4 X 10³⁸
- Double $\sim 1.8 \times 10^{308}$

Normalized Encoding Example

- Value
	- **float F = 12345.0; // single precision: k=8, n=23**
	- 12345 $_{10}$ = 11000000111001 $_{2}$ = 1.1000000111001 $_{2}$ X 2¹³
- Significand
	- M = 1.1000000111001 ₂
	- frac = 10000001110010000000000 (drop leading 1, add 10 zeros)
- Exponent
	- $E = 13$
	- Bias = 127
	- E = exp Bias \rightarrow exp = E + Bias = 140 = 10001100,

Creating a Floating Point Number

• Steps

- Is the number within the range $(-2^{1-Bias}, +2^{1-Bias})$?
	- If yes, "denormalize" to have a leading 0
	- otherwise, normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding
- QUIZ in next three slides
	- Convert 8-bit unsigned numbers to tiny floating point format

Step 1: Normalize

• Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
	- Decrement exponent as shift left

- Round up conditions
	- round up if <Guard, Round, Sticky> = $\langle x11 \rangle$ because >0.5
	- round up if \leq Guard, Round, Sticky $>$ = \leq 110 $>$ as per round to even rules

Step 3: Postnormalize

- Issue
	- Rounding may have caused overflow
	- Handle by shifting right once & incrementing exponent

Floating Point Puzzles

- For each of the following C expressions, either:
	- Argue that it is true for all argument values
	- Explain why not true

Floating Point Puzzles

- For each of the following C expressions, either:
	- Argue that it is true for all argument values
	- Explain why not true

Floating-Point Multiplication, Directly

- For cases where you can't work with exact results
	- E.g., when doing it in hardware
- Operands
	- $(-1)^{s_1}$ M1 2^{E1} * $(-1)^{s_2}$ M2 2^{E2}
- Exact result
	- $(-1)^s M 2^E$
	- Sign s: $s1 \wedge s2$
	- Significand M: M1 * M2
	- Exponent E: $E1 + E2$
- Fixing
	- **If M ≥ 2, shift M right, increment E**
	- If E out of range, overflow
	- Round M to fit frac precision
- Implementation
	- Biggest chore is multiplying significands

E1=3 M1=1.11010010 E2=5 M2=1.11001110 -- E=8 M=11.01001000111111 E=8+1 M=1.101001000111111 E=9 M=1.1010010010

Floating-Point Addition, Directly

- Operands
	- $(-1)^{s_1} M_1 2^{s_1}$
	- $(-1)^{s2}$ M2 2^{E2}
	- Assume $E^1 > E^2$
- Exact Result
	- $(-1)^s M 2^E$
	- Sign s, significand M: Result of signed align & add
	- Exponent E: E^1
- Fixing
	- If $M \geq 2$, shift M right, increment E
	- if $M < 1$, shift M left k places, decrement E by k
	- Overflow if E out of range
	- Round M to fit frac precision


```
E1=5 M1=1.11010010
E2=2 M2=1.11001110
E2=2 M2=0001.11001110
-----------------------------------
```
E1=5 M1=1.11010010 E2=5 M2=0.00111001110

```
------------------------------------
E = 5 M = 10.00001011110
E = 6 M = 1.000001011110
```
Mathematical Properties of FP Add

- Compare to those of Abelian Group
	- Closed under addition? YES
		- But may generate infinity or NaN
	- Commutative? YES
	- Associative? NO
		- Overflow and inexactness of rounding
			- (3.14+1e10)-1e10=0 (rounding)
			- $3.14+(1e10-1e10)=3.14$
	- 0 is additive identity? YES
	- Every element has additive inverse? ALMOST
		- Except for infinities & NaNs
- Monotonicity
	- $a \ge b \Rightarrow a+c \ge b+c$? ALMOST
		- Except for NaNs

Mathematical Properties of FP Multiplication

- Compare to commutative ring
	- Closed under multiplication? YES
		- But may generate infinity or NaN
	- Multiplication Commutative? YES
	- Multiplication is Associative? MO
		- Possibility of overflow, inexactness of rounding
	- 1 is multiplicative identity?YES
	- Multiplication distributes over addition? NO
		- Possibility of overflow, inexactness of rounding
- Monotonicity
	- $a \ge b$ & $c \ge 0$ \Rightarrow $a * c \ge b * c$? ALMOST
		- Except for NaNs