Lecture 04 Floating Point

CS213 – Intro to Computer Systems Branden Ghena – Fall 2023

Slides adapted from: St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O'Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Northwestern

Administrivia

- Homework 1 due today! (11:59 pm Central)
 - Submit on Gradescope
 - About 60% of the class has submitted so far

- Pack Lab is due next week Tuesday
 - Reminder: work collaboratively with your partner, not separately
- Reminder: small office hours changes
 - Monday 11-12 was removed. Monday 2-3 was added
 - Wednesday 10-12 (with me) moved rooms
 - Make use of office hours!

Today's Goals

• Explore representing real (decimal) numbers with binary

• Understand IEEE754 encoding

• Discuss encoding impacts on floating-point arithmetic

What is hard about floating point?

- LOTS OF RULES
 - No, more than that

• Homework 2 will give you a chance to practice

• Plus on exams you'll have a notes sheet to write down rules on

Outline

Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Floating point numbers

- In decimal:
 - 123450₁₀
 - 123.450₁₀
 - 1.23450₁₀
- We can use this same system in binary as well:
 - 1010110₂ (86₁₀)
 - 1010.110₂ (10.75₁₀ = $\frac{86}{2^3}$)
 - 1.010110_2 ($1.34375_{10} = \frac{86}{2^6}$)

Fractional Binary Numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

Example binary conversion

1010.110

Before the binary point: $1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 1*2^3 + 1*2^1 = 8+2 = 10$

After the binary point: $1^{*}2^{-1} + 1^{*}2^{-2} + 0^{*}2^{-3} = 1^{*}2^{-1} + 1^{*}2^{-2} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} = 0.75$

Fractional Binary Number Examples

Binary point is part of the solution, but not an entire encoding

- Some problems remain:
- 1. Computers are finite, but real numbers are not
 - Need to choose how many bits to use
 - Many decimal numbers would take infinite binary bits to represent perfectly
 - $3.14_{10} = 11.0010001111010111_2$ (we could keep going)
- 2. We also need to represent where the "binary point" is locatedWe'll use some of our bits to do so
- 3. Should do signed numbers while we're at it

Outline

• Fractional Binary Numbers

Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Floating Point Standard – IEEE754

- Floating point representations
 - Encodes rational numbers of the form V = $m \times 2^{e}$
 - Base 2 scientific notation!
- IEEE Standard 754 (IEEE floating point)
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Headed by William Kahan, CS prof. at UC Berkeley (later won Turing Award)
 - Supported by all major CPUs
- Driven by numerical concerns and numerical analysts
 - Nice standards for rounding, overflow, underflow
 - Had to be implementable in fast hardware as well and support many languages

Floating Point Representation

- Sign bit **S** determines whether number is negative or positive
- Significand *M* normally a fractional value in range [1.0,2.0) or [0.0,1.0)
 - Called *mantissa* or *significand*
- Exponent *E* weights value by power of two

Floating Point Encoding

- Encoding
 - MSb is sign bit (can still look at most-significant bit alone to determine sign!)
 - **exp** field encodes E, *k*-bits (note: "*encodes* E" != "*is* E")
 - frac field encodes M, *n*-bits

Floating Point Precision

- Sizes
 - Single precision: k = 8 exp bits, n= 23 frac bits (32b total). float in C

• Double precision: k = 11 exp bits, n = 52 frac bits (64b total). double in C

Categories for Encoded Values

- Value encoded three cases, depending on value of **exp**
 - 1. Normalized, the most common

s **≠ 0 && not all 1s** frac

2. Denormalized (very small values)

s 0000000	frac
-----------	------

3. Special values – infinity and NaN

Categories for Encoded Values

- Value encoded three cases, depending on value of **exp**
 - **1.** Normalized, the most common

s **≠ 0 && not all 1s** frac

2. Denormalized (very small values)

3. Special values – infinity and NaN

Normalized, Signifcand

$$V = (-1)^S * M * 2^E$$

- Condition: not a special exponent (all zeros or ones)
- Significand is encoded with implied leading 1
 - $M = 1.xxx...x_2$ (1+f where f = 0.xxx_2)
 - xxx...x: bits of **frac** used directly
- Idea: every normalized number is 1.xxxx
 - So we're not going to include the leading 1 in the frac
 - We'll just know it's there when we convert to decimal
 - Saves one extra bit in the encoding!

s	exp	frac	
---	-----	------	--

Normalized, Exponent

 $V = (-1)^{s} * M * 2^{E}$

- Condition: not a special exponent (all zeros or ones)
- Exponent coded as a biased value
 - E = Exp Bias
 - Exp : unsigned value denoted by **exp**
 - Bias : Bias value = $2^{k-1} 1$, k is number of exponent bits
 - Single precision (8-bit exp): 127 (Exp: 1...254, E: -126...127)
 - Double precision (11-bit exp): 1023 (Exp: 1...2046, E: -1022...1023)
- Exponent really just pushes the binary point around
 - 1.11 * 2² = 11.1 * 2¹ = 111.0 * 2⁰ = 111
 - 111 * 2⁻² = 11.1 * 2⁻¹ = 1.11 * 2⁰ = 1.11

s exp frac

Decoding example for normalized floating point (32-bit)

- - exp is not all zeros or all ones => not a special case

•
$$E = exp - bias = 131 - 127 = 4$$

• bias = 2^{k-1} -1, k=8 -> 2⁷-1 = 127

• Result =
$$(-1)^0 * 1.001_2 * 2^4 = 10.01_2 * 2^3 = 10010_2 = 18$$

 $V = (-1)^S * M * 2^E$ s exp frac 20

Normalized Encoding Example

- Value
 - float F = 15213.0; // single precision: 8 exp bits, 23 frac bits
 - $15213_{10} = 11101101101_2 = 1.1101101101_2 \times 2^{13}$

Significand

- M = 1.<u>1101101101101</u>₂
- frac = <u>1101101101101</u>000000000

• Exponent

- E = 13
- Bias = 127
- $exp = E + Bias = 140 = 10001100_2$

Floating Point Representation:									
Hex:	4	6	6	D	в	4	0	0	
Binary:	0100	0110	0110	1101	1011	0100	0000	0000	
exp:	100	0110	0						
frac:			110	1101	1011	0100	0000	0000	

pad with 0s on the right. (example: 1.5 = 1.500)

More examples and practice in the bonus slides after the end

Normalized Numbers: Why These Choices?

- Significand coded with <u>implied leading 1</u>
 - Any non-zero integer will start with a 1 bit somewhere
 - Leading 1 carries no information, so don't need to store it!
 - Can express mantissas between:
 - 1.0 when frac is all 0s
 - 2.0 (nearly) when frac is all 1s
 - Want smaller? Use a smaller exponent!
- Exponent coded as biased value
 - E = Exp Bias
 - Alternative to using two's complement to represent signed integers
 - Reasons are a bit tricky
 - Floating point binary values increase in the same order as unsigned = share comparisons!
 - Bias provides a more useful range (when considering denormalized)

Question + Break

- - exp is not 0...0 or 1...1 => not a special case

• M =

- •E = exp bias =
 - bias = 2^{k-1} -1, k=8 -> 2⁷-1 = 127

$$V = (-1)^S * M * 2^E$$
 s exp frac 23

Question + Break

- - exp is not 0...0 or 1...1 => not a special case

•
$$E = exp - bias = 127 - 127 = 0$$

• Result =
$$(-1)^0 * 1.0_2 * 2^0 = 1$$

$$V = (-1)^S * M * 2^E$$
 s exp frac

Categories for Encoded Values

- Value encoded three cases, depending on value of exp
 - 1. Normalized, the most common

s **≠ 0 && not all 1s** frac

2. Denormalized (very small values)

s 0000000 frac	
----------------	--

3. Special values – infinity and NaN

Normalized floating point leaves a gap around zero

- Gap is the size of 1.0000 * 2^{Min Exponent} (due to leading 1 bit)
 - And how do we encode "zero" anyways?

- Solution: fill in numbers between 0 and 1 * 2^{Min Exponent}
 - Using same spacing as the previous range, in the form **<u>0</u>**.XXXXX

Denormalized Values

$$V = (-1)^{s} * M * 2^{E}$$

- Purpose: gracefully represent numbers approaching ±0
- Condition: $exp = 000...0_2$ +++
- Value
 - Exponent value E = <u>**1**</u> **Bias**
 - Note: not simply E = 0 Bias as it would be if we followed the previous rules
 - This means we're re-using the spacing from smallest normalized numbers
 - Significand value $M = \mathbf{0}.xxx...x_2$ (0.*frac*)
 - xxx...x: bits of frac. Leading 0 instead of leading 1
- Cases
 - exp = 000...0, frac = 000...0 => Represents value 0
 - Note that we have distinct values +0 and -0
 - exp = 000...0, frac $\neq 000...0 =>$ Numbers very close to 0.0

Categories for Encoded Values

- Value encoded three cases, depending on value of **exp**
 - 1. Normalized, the most common

s **≠ 0 && not all 1s** frac

2. Denormalized (very small values)

3. Special values – infinity and NaN

Special Values

- Purpose: represent quantities that $(-1)^{s} * M * 2^{E}$ cannot
- Condition: $exp = 111...1_2$
- Cases
 - $exp = 111...1_2$, frac = $000...0_2$
 - Represents value ∞ (infinity)
 - Both positive and negative infinity (sign bit to tell apart)
 - Operation that overflows: nicer mathematical behavior than modulo!
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $-1.0/0.0 = -\infty$
 - exp = $111...1_2$, frac $\neq 000...0_2$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - Fraction could be used to distinguish sources (rarely used in practice)
 - E.g., $\sqrt{-1}$, $\infty \infty$, $\infty * 0$

Floating Point in C

- C guarantees two levels
 - float single precision
 - double double precision
- Conversions
 - int \rightarrow float
 - maybe rounded
 - less bits for actual value $(32 \rightarrow 23)$
 - int Or float \rightarrow double
 - exact value preserved
 - double has greater range and higher precision (52 bits for frac)
 - double \rightarrow float
 - may overflow, underflow (too small to represent), or be rounded (IEEE 754)
 - C99 standard says **undefined** if value out of range
 - double Or float \rightarrow int
 - rounded toward zero (-1.999 \rightarrow -1)
 - C99 standard says **undefined** if value out of range

Break + Summary of FP Real Number Encodings

$$V = (-1)^{s} * M * 2^{E}$$

	Normalized	Denormalized		
S	0/1 means +/-	0/1 means +/-		
ехр	$exp \neq 0000_2$ and $exp \neq 1111_2$	$exp = 0000_2$		
frac	$x_1 x_2 x_3 x_j$	$x_1 x_2 x_3 x_j$		
Bias=	$2^{(k-1)} - 1$, for <i>k</i> exponent bits	$2^{(k-1)} - 1$, for <i>k</i> exponent bits		
E=	exp – Bias	1 – Bias		
M=	1. $x_1 x_2 x_3 \dots x_j$ a.k.a. 1.frac	0. $x_1 x_2 x_3 \dots x_j$ a.k.a. 0.frac		
V=	$(-1)^{s} \times (1.\text{frac}) \times 2^{(exp - Bias)}$	$(-1)^{s} \times (0.\text{frac}) \times 2^{(1 - Bias)}$		

Outline

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Floating point examples

- We'll often do floating point in custom bit widths
 - Rather than 32-bit (float) or 64-bit (double)
- Reasons
 - 1. 64 is just too many bits to write out and think about
 - 2. Make sure you understand the concepts of floating point
 - Smaller versions still demonstrate concepts! (e.g., 8-bit)

Example: Tiny Floating Point

- 8-bit Floating Point Representation
 - Sign bit is in the most significant bit.
 - Next four (k) bits are exp, with a bias of 7 $(2^{k-1}-1)$
 - Last three (n) bits are frac
- Same general form as IEEE 754 format
 - normalized, denormalized numbers
 - representation of 0, NaN, infinity

Sidebar: increasingly useful for Machine Learning use!

 Models often don't need 32-bits of precision Denormalized encoding example

• $5/512 = 0b101 * 2^{-9} = 10.1 * 2^{-8} = 1.01 * 2^{-7}$

• E = exp - bias -> -7 = exp -
$$(2^{(4-1)}-1)$$
 -> -7 = exp - 7

- exp = 0 ???
- But exp can't be less than 1 (or we're denormalized)
- So, the answer must be a denormalized number. Reset the problem!

76

exp

S

3 2

0

frac

Denormalized encoding example

- Convert 5/512 to 8-bit tiny float
 - $5/512 = 0b101 * 2^{-9} = 10.1 * 2^{-8} = 1.01 * 2^{-7}$

•
$$E = 1 - bias = 1 - 7 = -6$$

•
$$0.xxx * 2^{-6} = 1.01 * 2^{-7} -> 0.101 * 2^{-6}$$

- S: 0 (positive) exp: 0000(denorm) frac: 101
- 0b0 0000 101 -> 0x05

Exponents for 8-bit tiny floats

Bias = $2^{4-1} - 1 = 7$ (4-bit exp)

Denormalized		exp	exp	E	2 ^E		
E = 1 - Bias		0	0000	-6	1/64	(deno:	rms)
		1	0001	-6	1/64		
		2	0010	-5	1/32		
		3	0011	-4	1/16		
		4	0100	-3	1/8		
		5	0101	-2	1/4		
		6	0110	-1	1/2		
Normalized		7	0111	0	1		
E = exp - Blas		8	1000	+1	2		
		9	1001	+2	4		
		10	1010	+3	8		
		11	1011	+4	16		
		12	1100	+5	32		
		13	1101	+6	64		
Special		14	1110	+7	128		
Opecial	\rightarrow	15	1111	n/a		(inf,	NaN)

```
0 0000 000
0 0000 001
0 0000 010
• • •
0 0000 110
0 0000 111
0 0001 000
0 0001 001
. . .
0 0110 110
0 0110 111
0 0111 000
0 0111 001
0 0111 010
. . .
0 1110 110
0 1110 111
0 1111 000
0 1111 001
• • •
0 1111 111
```

Bias = 7	s ex	p frac	
V= $(-1)^{s}$ × (0.frac) × 2 ^(1 - Bias)	0 00 0 00 0 00	000 000 000 001 000 010	
Denormalized numbers	0 00 0 00	000 110	
Normalized numbers	0 00 00 00 00 00 00 00 00 00 00 00 00 0	001 000 001 001	
$V = (-1)^{s}$ $\times (1.frac)$	0 01 0 01 0 01	.10 111 .10 111 .11 000	
X 2(exp - bias)	0 01	.11 010	
Special	0 11 0 11 0 11	<u>10 111</u> 11 000 11 001	
values	 0 11	.11 111	

Bias = 7	s exp	frac	E	Value
V= $(-1)^{s}$	0 0000 0 0000 0 0000	000 001 010	-6 -6 -6	0 1/8*1/64(2 ⁻⁶)= 1/512 2/8*1/64 = 2/512
Denormalized numbers	 0 0000 0 0000	110 111	-6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512
Normalized numbers	0 0001 0 0001 	000 001	-6 -6	8/8*1/64 = 8/512 9/8*1/64 = 9/512
$V = (-1)^{s}$ $\times (1.\text{frac})$	0 0110 0 0110 0 0111	110 111 000	-1 -1 0	14/8*1/2 = 14/16 15/8*1/2 = 15/16 8/8*1 = 1
$\times 2^{(exp - Bias)}$	0 0111 0 0111	001 010	0 0	9/8*1 = 9/8 10/8*1 = 10/8
	0 1110 0 1110	110 111	7	14/8*128 = 224 15/8*128 = 240
Special values	0 1111 0 1111 	000 001	n/a n/a	inf NaN
	0 1111	111	n/a	NaN

Bias = 7	s exp	frac	E	Value	Notes of Interest
V= $(-1)^{s}$ $\times (0.frac)$ $\times 2^{(1 - Bias)}$	0 0000 0 0000 0 0000	000 001 010	-6 -6 -6	0 1/8*1/64(2 ⁻⁶)= 1/512 2/8*1/64 = 2/512	closest to zero
Denormalized numbers	 0 0000 0 0000	110 111	-6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512	largest denorm
Normalized	0 0001 0 0001	000 001	-6 -6	8/8*1/64 = 8/512 9/8*1/64 = 9/512	smallest norm > 0
$V = (-1)^{s}$ $\times (1 \text{ frac})$	0 0110 0 0110 0 0111	110 111 000	-1 -1 0	14/8*1/2 = 14/16 15/8*1/2 = 15/16 8/8*1 = 1	closest to 1 below
$\times 2^{(exp - Bias)}$	0 0111 0 0111	001 010	0 0	9/8*1 = 9/8 10/8*1 = 10/8	closest to 1 above
	0 1110 0 1110	110 111	7	14/8*128 = 224 15/8*128 = 240	largest norm
Special values	0 1111 0 1111 	000 001	n/a n/a	inf NaN	
	0 1111	111	n/a	NaN	

Distribution of Values

- 6-bit IEEE-like format
 - exp = 3 exponent bits
 - frac = 2 fraction bits
 - Bias is 3 (2³⁻¹-1)
- Notice how the distribution gets denser toward zero.

Distribution of Values (Close-up View)

- 6-bit IEEE-like format
 - exp = 3 exponent bits
 - frac = 2 fraction bits
 - Bias is 3 (2³⁻¹-1)

- Smooth transition between normalized and de-normalized numbers due to definition E = 1 Bias for denormalized values
 - Zeros are denormalized numbers too! (+0 and -0)

Outline

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Floating Point Operations

- Conceptual view
 - x +_{float} y = Fit(x +_{math} y) • x *_{float} y = Fit(x *_{math} y)
- First compute exact, mathematical result
 - As a human: convert to decimal first, do math in decimal
- Then make it fit into desired precision
 - Step 1: Determine frac, exp
 - Frac must be of the form 1.xxxx (0.xxx if denormalized)
 - Change exp if needed to get frac to that form (e.g., result is 101.xxx)
 - Step 2: Possibly overflow if exponent too is large
 - Unlike integer overflow, result is mathematically reasonable: infinity
 - Step 3: Possibly round to fit into frac if we have too many mantissa bits

Rounding

- Default rounding mode for IEEE floating point is Round-to-even
 - Other methods are statistically biased (round up, round down, round-to-zero)
 - Sum of set of positive numbers will consistently be over- or under- estimated
 - Round to nearest number
 - If **exactly** in between, round to nearest **even** number
- Round-to-even example
 - Illustrated with rounding of money

\$1.40 \$1.60 Rounded \$1 \$2

Rounding

- Default rounding mode for IEEE floating point is Round-to-even
 - Other methods are statistically biased (round up, round down, round-to-zero)
 - Sum of set of positive numbers will consistently be over- or under- estimated
 - Round to nearest number
 - If **exactly** in between, round to nearest **even** number
- Round-to-even example
 - Illustrated with rounding of money

\$1.40 \$1.60 \$1.50 \$2.50 -\$1.50 Rounded \$1 \$2

Rounding

- Default rounding mode for IEEE floating point is Round-to-even
 - Other methods are statistically biased (round up, round down, round-to-zero)
 - Sum of set of positive numbers will consistently be over- or under- estimated
 - Round to nearest number
 - If **exactly** in between, round to nearest **even** number
- Round-to-even example
 - Illustrated with rounding of money

\$1.40\$1.60\$1.50\$2.50\$1.50Rounded\$1\$2\$2\$2-\$2

Closer Look at Round-to-even

- Rounding to other decimal places than the decimal point
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth (i.e., 2 decimal digits in fractional part)
 - 1.23<u>49999</u> => 1.23 (Less than half way)
 - 1.23 *50001* => 1.24 (Greater than half way)
 - 1.23 **50000** => 1.24 (Half way—round to even)
 - 1.24 <u>50000</u> => 1.24 (Half way—round to even)

Rounding Binary Numbers

- Binary fractional numbers
 - Are "even" when least significant bit is 0
 - Are half-way when bits to right of rounding position = $100...0_2$ General form XX...X.YY...Y100...0₂ last Y is the position to which we want to round

• Examples

• Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2+3/32	10.00 <u>011</u> 2	10.00 ₂	(<1/2—down)	2
2+3/16	10.00 <u>110</u> 2	10.01_{2}^{-}	(>1/2—up)	2+1/4
2+3/8	10.01 <u>100</u> 2	10.10^{-}_{2}	(1/2—up to even)	2+1/2
2+5/8	10.10 <u>100</u> 2	10.10_{2}^{-}	(1/2—down to even)	2+1/2
2+7/8	10.11 <u>100</u> 2	11.00_{2}^{-}	(1/2—up to even)	3

Important: remember how rounding works

- Only two options when rounding
 - Leave the number alone
 - Or add one to the number
- 1010.0000100<u>10000</u>
 - Part to remove is 10...0, so we need to round
 - Options are:
 - 1010.00001000 (leave it alone)
 - 1010.00001001 (add one)
 - Pick the one that ends in zero: 1010.00001000

Mathematical Properties of FP Arithmetic

- Mathematical properties of FP Addition
 - Addition is Associative? NO
 - (x + y) + z = x + (y + z)
 - Possibility of overflow and inexactness of rounding
 - (3.14 + 1e10) 1e10 = 0 (rounding)
 - 3.14 + (1e10 1e10) = 3.14
- Mathematical properties of FP Multiplication
 - Multiplication is Associative? NO
 - $(x \times y) \times z = x \times (y \times z)$
 - Possibility of overflow, inexactness of rounding
 - Multiplication distributes over addition? NO
 - $x \times (y + z) = (x \times y) + (x \times z)$
 - Possibility of overflow, inexactness of rounding
- More in bonus slides

Floating Point Summary

- IEEE Floating point (IEEE 754) has clear mathematical properties
 - But not always the ones you may expect!
- Represents numbers of form (-1)^S \times M \times 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as arithmetic on real numbers
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Outline

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Outline

• Bonus slides

- Use these for additional practice
- And if you're interested in additional topics

Interesting Numbers for float/double

Description	ехр	frac	Numeric Value ^{single prec., double prec.}
Zero	0000	0000	0.0
Smallest Pos. Denorm. • Single ~ 1.4 X 10 ⁻⁴ • Double ~ 4.9 X 10 ⁻⁴	0000 ⁵ 324	0001	2-{23,52} X 2-{126,1022}
Largest Denormalized • Single ~ 1.18 X 10 ⁻ • Double ~ 2.2 X 10 ⁻	0000 -38 308	1111	(1.0 − ε) X 2 ^{- {126,1022}}
Smallest Pos. Normalized • Just slightly larger to largest denormalized	0001 than ed	0000	1.0 X 2 ^{-{126,1022}}
One	0111	0000	1.0
Largest Normalized	1110	1111	(2.0 – ε) X 2 ^{127,1023}

- Single ~ 3.4×10^{38}
- Double ~ 1.8 X 10^{308}

Normalized Encoding Example

- Value
 - float F = 12345.0; // single precision: k=8, n=23
 - $12345_{10} = 1100000111001_2 = 1.100000111001_2 \times 2^{13}$
- Significand
 - M = **1**.1000000111001₂
- Exponent
 - E = 13
 - Bias = 127
 - $E = exp Bias \rightarrow exp = E + Bias = 140 = 10001100_2$

Floating Point Representation:								
Hex:	4	6	4	0	E	4	0	0
Binary:	0100	0110	<mark>0</mark> 100	0000	1110	0100	0000	0000

Creating a Floating Point Number

S	exp	frac
1	4-bits	3-bits

• Steps

- Is the number within the range (-2^{1-Bias}, +2^{1-Bias})?
 - If yes, "denormalize" to have a leading 0
 - otherwise, normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding
- QUIZ in next three slides
 - Convert 8-bit unsigned numbers to tiny floating point format

Step 1: Normalize

s	exp	frac
1	1-hits	3-hits

• Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.0000000	7
13	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

- Round up conditions
 - round up if <Guard, Round, Sticky> = $\langle x11 \rangle$ because >0.5
 - round up if <Guard, Round, Sticky> = <110> as per round to even rules

Value	Fraction	GRS	Incr?	Rounded
128	1.000 <mark>0</mark> 000	000	Ν	1.000
13	1.101 <mark>0</mark> 000	100	Ν	1.101
17	1.000 <mark>1</mark> 000	010	Ν	1.000
19	1.001 <mark>1</mark> 000	110	Y	1.010
138	1.000 <mark>1</mark> 010	011	Y	1.001
63	1.111 <mark>1</mark> 100	111	Y	10.000

Step 3: Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
13	1.101	3		13
17	1.000	4		16
19	1.010	4		20
138	1.001	7		144
63	10.000	5	M=1.000 exp=6	64

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

	x == (int) (double) x		
int x =;	x == (int) (float) x		
<pre>float f =;</pre>	d == (double)(float) d		
double $d =;$	f == (float)(double) f		
	f == -(-f);		
Assume neither	1.0/2 == 1/2.0		
d nor f is NaN	d*d >= 0.0		
	(f+d)-f == d		

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

	x == (int) (double) x	Yes
int x =;	x == (int)(float) x	No $(x = TMax)$
<pre>float f =;</pre>	d == (double)(float) d	No (d = 1e40)
double $d =;$	f == (float)(double) f	Yes
	f == -(-f);	Yes
Assume neither	1.0/2 == 1/2.0	Yes
d nor f is NaN	d*d >= 0.0	Yes
	(f+d)-f == d	No (f = 1.0e20, d = 1.0; f+d rounded to 1.0e20

Floating-Point Multiplication, Directly

- For cases where you can't work with exact results
 - E.g., when doing it in hardware
- Operands
 - (-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}
- Exact result
 - (-1)^s M 2^E
 - Sign s: s1 ^ s2
 Significand M: M1 * M2

 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

E1=3 M1=1.11010010 E2=5 M2=1.11001110 E=8 M=11.01001000111111 E=8+1 M=1.101001000111111 M=1.1010010010 E=9

Floating-Point Addition, Directly

- Operands
 - (-1)^{s1} M1 2^{E1}
 - (-1)^{s2} M2 2^{E2}
 - Assume $E^1 > E^2$
- Exact Result
 - (-1)^s M 2^E
 - Sign s, significand M: Result of signed align & add
 - Exponent E: E¹
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if M < 1, shift M left k places, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision


```
E1=5 M1=1.11010010
E2=2 M2=1.11001110
E2=2 M2=0001.11001110
```

E1=5 M1=1.11010010 E2=5 M2=0.00111001110

```
E =5 M =10.00001011110
E =6 M =1.000001011110
```

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? YES
 - But may generate infinity or NaN
 - Commutative? YES
 - Associative? NO
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10=0 (rounding)
 - 3.14+(1e10-1e10)=3.14
 - 0 is additive identity? YES
 - Every element has additive inverse? ALMOST
 - Except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$? ALMOST
 - Except for NaNs

Mathematical Properties of FP Multiplication

- Compare to commutative ring
 - Closed under multiplication? YES
 - But may generate infinity or NaN
 - Multiplication Commutative? YES
 - Multiplication is Associative? NO
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity?YES
 - Multiplication distributes over addition? NO
 - Possibility of overflow, inexactness of rounding
- Monotonicity
 - $a \ge b$ & $c \ge 0 \Rightarrow a * c \ge b * c$? ALMOST
 - Except for NaNs