
Lecture 04
Floating Point

CS213 – Intro to Computer Systems

Branden Ghena – Fall 2023

Slides adapted from:
St-Amour, Hardavellas, Bustamente (Northwestern), Bryant, O’Hallaron (CMU), Garcia, Weaver (UC Berkeley)

Administrivia

• Homework 1 due today! (11:59 pm Central)
• Submit on Gradescope

• About 60% of the class has submitted so far 🧡

• Pack Lab is due next week Tuesday
• Reminder: work collaboratively with your partner, not separately

• Reminder: small office hours changes
• Monday 11-12 was removed. Monday 2-3 was added

• Wednesday 10-12 (with me) moved rooms

• Make use of office hours!

2

Today’s Goals

• Explore representing real (decimal) numbers with binary

• Understand IEEE754 encoding

• Discuss encoding impacts on floating-point arithmetic

3

What is hard about floating point?

• LOTS OF RULES
• No, more than that

• Homework 2 will give you a chance to practice

• Plus on exams you’ll have a notes sheet to write down rules on

4

5

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Outline

Floating point numbers

• In decimal:
• 12345010

• 123.45010

• 1.2345010

• We can use this same system in binary as well:
• 10101102 (8610)

• 1010.1102 (10.7510 =
86

23)

• 1.0101102 (1.3437510 =
86

26)

6

Fractional Binary Numbers

• Representation
• Bits to right of “binary point” represent fractional powers of 2

• Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
20 = 1

21 = 2

22 = 4

2i

2i–1

• • •

1/2 = 2-1

1/4 = 2-2

1/8 = 2-3

• • •

2–j

bk 2
k

k=− j

i



7

Example binary conversion

8

1010.110

Before the binary point:
1*23 + 0*22 + 1*21 +0*20 = 1*23 + 1*21 = 8+2 = 10

After the binary point:
1*2-1 + 1*2-2 + 0*2-3 = 1*2-1 + 1*2-2 = ½ + ¼ = ¾ = 0.75

Fractional Binary Number Examples

• 5+3/4 = 0b

• 2+7/8 = 0b

• 63/64 = 0b

9

101.11

10.111

0.111111

Note:

This the number 3!

This is the number 7!

This is the number 63!

Binary point is part of the solution, but not an entire encoding

• Some problems remain:

1. Computers are finite, but real numbers are not
• Need to choose how many bits to use
• Many decimal numbers would take infinite binary bits to represent perfectly

• 3.1410 = 11.00100011110101112 (we could keep going)

2. We also need to represent where the “binary point” is located
• We’ll use some of our bits to do so

3. Should do signed numbers while we’re at it

10

11

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Outline

Floating Point Standard – IEEE754

• Floating point representations
• Encodes rational numbers of the form V = m × 2e

• Base 2 scientific notation!

• IEEE Standard 754 (IEEE floating point)
• Established in 1985 as uniform standard for floating point arithmetic

• Before that, many idiosyncratic formats
• Headed by William Kahan, CS prof. at UC Berkeley (later won Turing Award)
• Supported by all major CPUs

• Driven by numerical concerns and numerical analysts
• Nice standards for rounding, overflow, underflow
• Had to be implementable in fast hardware as well and support many languages

12

Floating Point Representation

Numerical form:

𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

• Sign bit S determines whether number is negative or positive

• Significand M normally a fractional value in range [1.0,2.0) or [0.0,1.0)
• Called mantissa or significand

• Exponent E weights value by power of two

Sign bit Significand (Mantissa)

Exponent

13

Floating Point Encoding

Numerical form:

𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

• Encoding
• MSb is sign bit (can still look at most-significant bit alone to determine sign!)

• exp field encodes E, k-bits (note: “encodes E” != “is E”)

• frac field encodes M, n-bits

Sign bit Significand (Mantissa)

Exponent

14

s exp frac

Floating Point Precision

• Sizes
• Single precision: k = 8 exp bits, n= 23 frac bits (32b total). float in C

• Double precision: k = 11 exp bits, n = 52 frac bits (64b total). double in C

s exp frac

31 30 23 22 0

s exp frac

63 62 52 51 32

frac

31 0

15

Categories for Encoded Values

• Value encoded – three cases, depending on value of exp

1. Normalized, the most common

2. Denormalized (very small values)

3. Special values – infinity and NaN

s ≠ 0 && not all 1s frac

s 00000000 frac

s 11111111 00000000000000000000000

s 11111111 ≠0

Infinity

NaN

16

Categories for Encoded Values

• Value encoded – three cases, depending on value of exp

1. Normalized, the most common

2. Denormalized (very small values)

3. Special values – infinity and NaN

s ≠ 0 && not all 1s frac

s 00000000 frac

s 11111111 00000000000000000000000

s 11111111 ≠0

Infinity

NaN

17

Normalized, Signifcand

• Condition: not a special exponent (all zeros or ones)

• Significand is encoded with implied leading 1
• M = 1.xxx…x2 (1+f where f = 0.xxx2)

• xxx…x: bits of frac used directly

• Idea: every normalized number is 1.xxxx
• So we’re not going to include the leading 1 in the frac

• We’ll just know it’s there when we convert to decimal

• Saves one extra bit in the encoding!

𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

18
s exp frac

Normalized, Exponent

• Condition: not a special exponent (all zeros or ones)

• Exponent coded as a biased value
• E = Exp – Bias

• Exp : unsigned value denoted by exp

• Bias : Bias value = 2k-1 - 1, k is number of exponent bits
• Single precision (8-bit exp): 127 (Exp: 1…254, E: -126…127)

• Double precision (11-bit exp): 1023 (Exp: 1…2046, E: -1022…1023)

• Exponent really just pushes the binary point around
• 1.11 * 2^2 = 11.1 * 2^1 = 111.0 * 2^0 = 111

• 111 * 2^-2 = 11.1 * 2^-1 = 1.11 * 2^0 = 1.11

𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

19
s exp frac

Decoding example for normalized floating point (32-bit)

• 0x41900000 = 0b01000001100100000000000000000000
• Group bits s: 0 exp: 10000011 frac: 00100000000000000000000

• exp is not all zeros or all ones => not a special case

• M = 1.00100000000000000000000 = 1.001

• E = exp – bias = 131 – 127 = 4
• bias = 2k-1 -1, k=8 -> 27-1 = 127

• Result = (−1)0∗ 1.0012 ∗ 24

20
𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

s exp frac

= 10.012 ∗ 23= 10010.2 = 18

Normalized Encoding Example

• Value
• float F = 15213.0; // single precision: 8 exp bits, 23 frac bits

• 1521310 = 111011011011012 = 1.11011011011012 × 213

• Significand
• M = 1.11011011011012

• frac = 11011011011010000000000 pad with 0s on the right. (example: 1.5 = 1.500)

• Exponent

• E = 13

• Bias = 127

• exp = E + Bias = 140 =100011002

Floating Point Representation:

Hex: 4 6 6 D B 4 0 0

Binary: 0100 0110 0110 1101 1011 0100 0000 0000

exp: 100 0110 0

frac: 110 1101 1011 0100 0000 0000

More examples and practice in the
bonus slides after the end

21

Normalized Numbers: Why These Choices?

• Significand coded with implied leading 1
• Any non-zero integer will start with a 1 bit somewhere
• Leading 1 carries no information, so don’t need to store it!
• Can express mantissas between:

• 1.0 when frac is all 0s
• 2.0 (nearly) when frac is all 1s

• Want smaller? Use a smaller exponent!

• Exponent coded as biased value
• E = Exp – Bias
• Alternative to using two’s complement to represent signed integers
• Reasons are a bit tricky

• Floating point binary values increase in the same order as unsigned = share
comparisons!

• Bias provides a more useful range (when considering denormalized)

22

Question + Break

• 0x3F800000 = 0b00111111100000000000000000000000
• Group bits s: 0 exp: 01111111 frac: 00000000000000000000000

• exp is not 0…0 or 1…1 => not a special case

• M =

• E = exp – bias =
• bias = 2k-1 -1, k=8 -> 27-1 = 127

23
𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

s exp frac

Question + Break

• 0x3F800000 = 0b00111111100000000000000000000000
• Group bits s: 0 exp: 01111111 frac: 00000000000000000000000

• exp is not 0…0 or 1…1 => not a special case

• M =

• E = exp – bias =
• bias = 2k-1 -1, k=8 -> 27-1 = 127

• Result = (−1)0∗ 1.02 ∗ 20 = 1

24
𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

s exp frac

1.00000000000000000000000 = 1.0

127 – 127 = 0

Categories for Encoded Values

• Value encoded – three cases, depending on value of exp

1. Normalized, the most common

2. Denormalized (very small values)

3. Special values – infinity and NaN

s ≠ 0 && not all 1s frac

s 00000000 frac

s 11111111 00000000000000000000000

s 11111111 ≠0

Infinity

NaN

26

Normalized floating point leaves a gap around zero

• Gap is the size of 1.0000 * 2Min Exponent (due to leading 1 bit)
• And how do we encode “zero” anyways?

• Solution: fill in numbers between 0 and 1 * 2Min Exponent

• Using same spacing as the previous range, in the form 0.XXXXX

27

2-124 2-125 2-126

0

2-124 2-125 2-126

0

2-126

Spacing:

Spacing:

Denormalized Values

• Purpose: gracefully represent numbers approaching ±0

• Condition: exp = 000…02

• Value

• Exponent value E = 1 - Bias
• Note: not simply E = 0 - Bias as it would be if we followed the previous rules

• This means we’re re-using the spacing from smallest normalized numbers

• Significand value M = 0.xxx…x2 (0.frac)
• xxx…x: bits of frac. Leading 0 instead of leading 1

• Cases

• exp = 000…0, frac = 000…0 => Represents value 0

• Note that we have distinct values +0 and –0

• exp = 000…0, frac  000…0 => Numbers very close to 0.0
28

𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

Categories for Encoded Values

• Value encoded – three cases, depending on value of exp

1. Normalized, the most common

2. Denormalized (very small values)

3. Special values – infinity and NaN

s ≠ 0 && not all 1s frac

s 00000000 frac

s 11111111 00000000000000000000000

s 11111111 ≠0

Infinity

NaN

29

Special Values

• Purpose: represent quantities that (−1)𝑠∗ 𝑀 ∗ 2𝐸 cannot

• Condition: exp = 111…12

• Cases
• exp = 111…12, frac = 000…02

• Represents value ∞ (infinity)
• Both positive and negative infinity (sign bit to tell apart)
• Operation that overflows: nicer mathematical behavior than modulo!
• E.g., 1.0/0.0 = -1.0/-0.0 = +∞, -1.0/0.0 = -∞

• exp = 111…12, frac  000…02

• Not-a-Number (NaN)
• Represents case when no numeric value can be determined

• Fraction could be used to distinguish sources (rarely used in practice)

• E.g., −1, ∞ - ∞, ∞ * 0

30

Floating Point in C

• C guarantees two levels
• float single precision
• double double precision

• Conversions
• int → float

• maybe rounded
• less bits for actual value (32 → 23)

• int or float → double

• exact value preserved
• double has greater range and higher precision (52 bits for frac)

• double → float

• may overflow, underflow (too small to represent), or be rounded (IEEE 754)
• C99 standard says undefined if value out of range

• double or float → int
• rounded toward zero (-1.999 → -1)
• C99 standard says undefined if value out of range

31

Break + Summary of FP Real Number Encodings

NaN
+∞-∞

−0

+Denorm +Normalized-Denorm-Normalized

+0

Normalized Denormalized

s 0/1 means +/- 0/1 means +/-

exp exp  000…02 and exp  111…12 exp = 000…02

frac x1x2x3…xj x1x2x3…xj

Bias= 2(k-1) – 1, for k exponent bits 2(k-1) – 1, for k exponent bits

E= exp – Bias 1 – Bias

M= 1. x1x2x3…xj a.k.a. 1.frac 0. x1x2x3…xj a.k.a. 0.frac

V= (–1)s × (1.frac) × 2(exp – Bias) (–1)s × (0.frac) × 2(1 – Bias)

𝑉 = (−1)𝑠∗ 𝑀 ∗ 2𝐸

32

NaN

33

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Outline

Floating point examples

• We’ll often do floating point in custom bit widths
• Rather than 32-bit (float) or 64-bit (double)

• Reasons
1. 64 is just too many bits to write out and think about

2. Make sure you understand the concepts of floating point

• Smaller versions still demonstrate concepts! (e.g., 8-bit)

34

Example: Tiny Floating Point

• 8-bit Floating Point Representation
• Sign bit is in the most significant bit.

• Next four (k) bits are exp, with a bias of 7 (2k-1-1)

• Last three (n) bits are frac

• Same general form as IEEE 754 format
• normalized, denormalized numbers

• representation of 0, NaN, infinity

s exp frac

02367

35

Sidebar: increasingly useful for
Machine Learning use!

• Models often don’t need
32-bits of precision

Denormalized encoding example

• Convert 5/512 to 8-bit tiny float
• 5/512 = 0b101 * 2-9 = 10.1 * 2-8 = 1.01 * 2-7

• E = exp - bias -> -7 = exp – (2(4-1)-1) -> -7 = exp – 7
• exp = 0 ???

• But exp can’t be less than 1 (or we’re denormalized)

• So, the answer must be a denormalized number. Reset the problem!

36

s exp frac

02367

Denormalized encoding example

• Convert 5/512 to 8-bit tiny float
• 5/512 = 0b101 * 2-9 = 10.1 * 2-8 = 1.01 * 2-7

• E = 1 – bias = 1 – 7 = -6

• 0.xxx * 2-6
 = 1.01 * 2-7 -> 0.101 * 2-6

• S: 0 (positive) exp: 0000(denorm) frac: 101

• 0b0 0000 101 -> 0x05

37

s exp frac

02367

exp exp E 2E

0 0000 -6 1/64 (denorms)

1 0001 -6 1/64

2 0010 -5 1/32

3 0011 -4 1/16

4 0100 -3 1/8

5 0101 -2 1/4

6 0110 -1 1/2

7 0111 0 1

8 1000 +1 2

9 1001 +2 4

10 1010 +3 8

11 1011 +4 16

12 1100 +5 32

13 1101 +6 64

14 1110 +7 128

15 1111 n/a (inf, NaN)

Exponents for 8-bit tiny floats

Normalized

E = exp – Bias

Denormalized

E = 1 - Bias

Bias = 24-1 - 1 = 7

(4-bit exp)

38

Special

Dynamic Range of 8-bit tiny float

0 0001 000 -6 8/8*1/64 = 8/512

0 0000 111 -6 7/8*1/64 = 7/512

s exp frac E Value s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64(2-6)= 1/512

0 0000 010 -6 2/8*1/64 = 2/512

...

0 0000 110 -6 6/8*1/64 = 6/512

0 0001 001 -6 9/8*1/64 = 9/512

...

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

...

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

0 1111 001 n/a NaN

...

0 1111 111 n/a NaN
39

Dynamic Range of 8-bit tiny float

0 0001 000 -6 8/8*1/64 = 8/512

0 0000 111 -6 7/8*1/64 = 7/512

s exp frac E Value s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64(2-6)= 1/512

0 0000 010 -6 2/8*1/64 = 2/512

...

0 0000 110 -6 6/8*1/64 = 6/512

0 0001 001 -6 9/8*1/64 = 9/512

...

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

...

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

0 1111 001 n/a NaN

...

0 1111 111 n/a NaN
40

Dynamic Range of 8-bit tiny float

0 0001 000 -6 8/8*1/64 = 8/512

0 0000 111 -6 7/8*1/64 = 7/512

s exp frac E Value s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64(2-6)= 1/512

0 0000 010 -6 2/8*1/64 = 2/512

...

0 0000 110 -6 6/8*1/64 = 6/512

0 0001 001 -6 9/8*1/64 = 9/512

...

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

...

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

0 1111 001 n/a NaN

...

0 1111 111 n/a NaN
41

Normalized

numbers

V= (–1)s

 × (1.frac)

 × 2(exp – Bias)

Bias = 7

V= (–1)s

 × (0.frac)

 × 2(1 – Bias)

Denormalized

numbers

Special

values

Dynamic Range of 8-bit tiny float

Normalized

numbers

V= (–1)s

 × (1.frac)

 × 2(exp – Bias)

0 0001 000 -6 8/8*1/64 = 8/512

0 0000 111 -6 7/8*1/64 = 7/512

s exp frac E Value s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64(2-6)= 1/512

0 0000 010 -6 2/8*1/64 = 2/512

...

0 0000 110 -6 6/8*1/64 = 6/512

0 0001 001 -6 9/8*1/64 = 9/512

...

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

...

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

0 1111 001 n/a NaN

...

0 1111 111 n/a NaN

Bias = 7

V= (–1)s

 × (0.frac)

 × 2(1 – Bias)

Denormalized

numbers

42

Special

values

Dynamic Range of 8-bit tiny float

Normalized

numbers

V= (–1)s

 × (1.frac)

 × 2(exp – Bias)

0 0001 000 -6

0 0000 111 -6

s exp frac E Value s exp frac E Value Notes of Interest

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64(2-6)= 1/512

0 0000 010 -6 2/8*1/64 = 2/512

...

0 0000 110 -6 6/8*1/64 = 6/512

0 0001 001 -6 9/8*1/64 = 9/512

...

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

...

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

0 1111 001 n/a NaN

...

0 1111 111 n/a NaN

Bias = 7

V= (–1)s

 × (0.frac)

 × 2(1 – Bias)

Denormalized

numbers

43

Special

values

closest to zero

largest denorm

smallest norm > 0

closest to 1 below

closest to 1 above

largest norm

8/8*1/64 = 8/512

7/8*1/64 = 7/512

Distribution of Values

• 6-bit IEEE-like format
• exp = 3 exponent bits

• frac = 2 fraction bits

• Bias is 3 (23-1-1)

• Notice how the distribution gets denser toward zero.

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

-∞ +∞

44

Distribution of Values (Close-up View)

• 6-bit IEEE-like format
• exp = 3 exponent bits

• frac = 2 fraction bits

• Bias is 3 (23-1-1)

• Smooth transition between normalized and de-normalized numbers due to
definition E = 1 - Bias for denormalized values
• Zeros are denormalized numbers too! (+0 and -0)

-1 -0.5 0 0.5 1

Zeros Denormalized Normalized Infinity

45

s exp frac

01245

46

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Outline

Floating Point Operations

• Conceptual view
• x +float y = Fit(x +math y)
• x *float y = Fit(x *math y)

• First compute exact, mathematical result
• As a human: convert to decimal first, do math in decimal

• Then make it fit into desired precision
• Step 1: Determine frac, exp

• Frac must be of the form 1.xxxx (0.xxx if denormalized)
• Change exp if needed to get frac to that form (e.g., result is 101.xxx)

• Step 2: Possibly overflow if exponent too is large
• Unlike integer overflow, result is mathematically reasonable: infinity

• Step 3: Possibly round to fit into frac if we have too many mantissa bits

47

Rounding

• Default rounding mode for IEEE floating point is Round-to-even
• Other methods are statistically biased (round up, round down, round-to-zero)

• Sum of set of positive numbers will consistently be over- or under- estimated

• Round to nearest number

• If exactly in between, round to nearest even number

• Round-to-even example
• Illustrated with rounding of money

 $1.40 $1.60

 Rounded $1 $2

48

Rounding

• Default rounding mode for IEEE floating point is Round-to-even
• Other methods are statistically biased (round up, round down, round-to-zero)

• Sum of set of positive numbers will consistently be over- or under- estimated

• Round to nearest number

• If exactly in between, round to nearest even number

• Round-to-even example
• Illustrated with rounding of money

 $1.40 $1.60 $1.50 $2.50 –$1.50

 Rounded $1 $2

49

Rounding

• Default rounding mode for IEEE floating point is Round-to-even
• Other methods are statistically biased (round up, round down, round-to-zero)

• Sum of set of positive numbers will consistently be over- or under- estimated

• Round to nearest number

• If exactly in between, round to nearest even number

• Round-to-even example
• Illustrated with rounding of money

 $1.40 $1.60 $1.50 $2.50 –$1.50

 Rounded $1 $2 $2 $2 –$2

50

Closer Look at Round-to-even

• Rounding to other decimal places than the decimal point
• When exactly halfway between two possible values

• Round so that least significant digit is even

• E.g., round to nearest hundredth (i.e., 2 decimal digits in fractional part)

• 1.2349999 => 1.23 (Less than half way)

• 1.2350001 => 1.24 (Greater than half way)

• 1.2350000 => 1.24 (Half way—round to even)

• 1.2450000 => 1.24 (Half way—round to even)

51

Rounding Binary Numbers

• Binary fractional numbers
• Are “even” when least significant bit is 0
• Are half-way when bits to right of rounding position = 100…02

General form XX…X.YY…Y100…02
last Y is the position to which we want to round

• Examples
• Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value

2+3/32 10.000112 10.002 (<1/2—down) 2

2+3/16 10.001102 10.012 (>1/2—up) 2+1/4

2+3/8 10.011002 10.102 (1/2—up to even) 2+1/2

2+5/8 10.101002 10.102 (1/2—down to even) 2+1/2

2+7/8 10.111002 11.002 (1/2—up to even) 3

52

Important: remember how rounding works

• Only two options when rounding
• Leave the number alone

• Or add one to the number

• 1010.000010010000
• Part to remove is 10…0, so we need to round

• Options are:

• 1010.00001000 (leave it alone)

• 1010.00001001 (add one)

• Pick the one that ends in zero: 1010.00001000

53

Mathematical Properties of FP Arithmetic

• Mathematical properties of FP Addition
• Addition is Associative? NO

• (x + y) + z = x + (y + z)
• Possibility of overflow and inexactness of rounding

• (3.14 + 1e10) - 1e10 = 0 (rounding)
• 3.14 + (1e10 - 1e10) = 3.14

• Mathematical properties of FP Multiplication
• Multiplication is Associative? NO

• (x × y) × z = x × (y × z)
• Possibility of overflow, inexactness of rounding

• Multiplication distributes over addition? NO
• x × (y + z) = (x × y) + (x × z)
• Possibility of overflow, inexactness of rounding

• More in bonus slides

54

Floating Point Summary

• IEEE Floating point (IEEE 754) has clear mathematical properties
• But not always the ones you may expect!

• Represents numbers of form (-1)S × M × 2E

• One can reason about operations independent of implementation
• As if computed with perfect precision and then rounded

• Not the same as arithmetic on real numbers
• Violates associativity/distributivity
• Makes life difficult for compilers & serious numerical applications

programmers

55

56

• Fractional Binary Numbers

• Representing Floating Point

• Smaller Floating Point

• Floating Point Arithmetic

Outline

57

• Bonus slides
• Use these for additional practice

• And if you’re interested in additional topics

Outline

Interesting Numbers for float/double

Description exp frac Numeric Value{single prec., double prec.}

Zero 00…00 00…00 0.0

Smallest Pos. Denorm. 00…00 00…01 2– {23,52} X 2– {126,1022}

• Single ~ 1.4 X 10–45

• Double ~ 4.9 X 10–324

Largest Denormalized 00…00 11…11 (1.0 – ε) X 2– {126,1022}

• Single ~ 1.18 X 10–38

• Double ~ 2.2 X 10–308

Smallest Pos. Normalized 00…01 00…00 1.0 X 2– {126,1022}

• Just slightly larger than
largest denormalized

One 01…11 00…00 1.0

Largest Normalized 11…10 11…11 (2.0 – ε) X 2 {127,1023}

• Single ~ 3.4 X 1038

• Double ~ 1.8 X 10308

58

Normalized Encoding Example

• Value
• float F = 12345.0; // single precision: k=8, n=23

• 1234510 = 110000001110012 = 1.10000001110012 X 213

• Significand
• M = 1.10000001110012

• frac = 10000001110010000000000
 (drop leading 1, add 10 zeros)

• Exponent
• E = 13

• Bias = 127

• E = exp – Bias → exp = E + Bias = 140 =100011002

Floating Point Representation:

Hex: 4 6 4 0 E 4 0 0

Binary: 0100 0110 0100 0000 1110 0100 0000 0000
59

Carnegie Mellon

Creating a Floating Point Number

• Steps
• Is the number within the range (-21-Bias, +21-Bias)?

• If yes, “denormalize” to have a leading 0

• otherwise, normalize to have leading 1

• Round to fit within fraction

• Postnormalize to deal with effects of rounding

• QUIZ in next three slides
• Convert 8-bit unsigned numbers to tiny floating point format

s exp frac

1 4-bits 3-bits

60

Step 1: Normalize

• Requirement
• Set binary point so that numbers of form 1.xxxxx

• Adjust all to have leading one

• Decrement exponent as shift left

Value Binary Fraction Exponent

 128

 13

 17

 19

 138

 63

Carnegie Mellon

10000000

00001101

00010001

00010011

10001010

00111111

1.0000000

1.1010000

1.0001000

1.0011000

1.0001010

1.1111100

7

3

4

4

7

5

s exp frac

1 4-bits 3-bits

61

Step 2: Rounding

• Round up conditions
• round up if <Guard, Round, Sticky> = <x11> because >0.5

• round up if <Guard, Round, Sticky> = <110> as per round to even rules

Value Fraction GRS Incr? Rounded
 128

 13

 17

 19

 138

 63

1.0000000

1.1010000

1.0001000

1.0011000

1.0001010

1.1111100

000

100

010

110

011

111

N

N

N

Y

Y

Y

1.000

1.101

1.000

1.010

1.001

10.000

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed

Sticky bit: OR of remaining bits

62

Carnegie Mellon

Step 3: Postnormalize

• Issue
• Rounding may have caused overflow

• Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result

 128 1.000 7 128

 13 1.101 3 13

 17 1.000 4 16

 19 1.010 4 20

 138 1.001 7 144

 63 10.000 5 M=1.000 exp=6 64

63

Floating Point Puzzles

• For each of the following C expressions, either:
• Argue that it is true for all argument values

• Explain why not true

x == (int)(double) x

x == (int)(float) x

d == (double)(float) d

f == (float)(double) f

f == -(-f);

1.0/2 == 1/2.0

d*d >= 0.0

(f+d)-f == d

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

64

Floating Point Puzzles

• For each of the following C expressions, either:
• Argue that it is true for all argument values

• Explain why not true

x == (int)(double) x

x == (int)(float) x

d == (double)(float) d

f == (float)(double) f

f == -(-f);

1.0/2 == 1/2.0

d*d >= 0.0

(f+d)-f == d

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

Yes

No (x = TMax)

No (d = 1e40)

Yes

Yes

Yes

Yes

No (f = 1.0e20,

d = 1.0;

f+d rounded to

1.0e20 65

Floating-Point Multiplication, Directly

• For cases where you can’t work with exact results
• E.g., when doing it in hardware

• Operands
• (–1)s1 M1 2E1 * (–1)s2 M2 2E2

• Exact result
• (–1)s M 2E

• Sign s: s1 ^ s2
• Significand M: M1 * M2
• Exponent E: E1 + E2

• Fixing
• If M ≥ 2, shift M right, increment E
• If E out of range, overflow
• Round M to fit frac precision

• Implementation
• Biggest chore is multiplying significands

E1=3 M1=1.11010010
E2=5 M2=1.11001110
--
E=8 M=11.01001000111111
E=8+1 M=1.101001000111111
E=9 M=1.1010010010

66

Floating-Point Addition, Directly

• Operands
• (–1)s1 M1 2E1

• (–1)s2 M2 2E2

• Assume E1 > E2

• Exact Result
• (–1)s M 2E

• Sign s, significand M: Result of signed align & add

• Exponent E: E1

• Fixing
• If M ≥ 2, shift M right, increment E
• if M < 1, shift M left k places,

decrement E by k
• Overflow if E out of range
• Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1 – E2

+

(–1)s M

E1=5 M1=1.11010010
E2=2 M2=1.11001110
E2=2 M2=0001.11001110

E1=5 M1=1.11010010
E2=5 M2=0.00111001110

E =5 M =10.00001011110
E =6 M =1.000001011110

67

Mathematical Properties of FP Add

• Compare to those of Abelian Group
• Closed under addition? YES

• But may generate infinity or NaN

• Commutative? YES

• Associative? NO

• Overflow and inexactness of rounding

• (3.14+1e10)-1e10=0 (rounding)

• 3.14+(1e10-1e10)=3.14

• 0 is additive identity? YES

• Every element has additive inverse? ALMOST

• Except for infinities & NaNs

• Monotonicity
• a ≥ b  a+c ≥ b+c? ALMOST

• Except for NaNs

68

Mathematical Properties of FP Multiplication

• Compare to commutative ring
• Closed under multiplication? YES

• But may generate infinity or NaN

• Multiplication Commutative? YES

• Multiplication is Associative? NO

• Possibility of overflow, inexactness of rounding

• 1 is multiplicative identity? YES

• Multiplication distributes over addition? NO

• Possibility of overflow, inexactness of rounding

• Monotonicity
• a ≥ b & c ≥ 0  a *c ≥ b *c? ALMOST

• Except for NaNs

69

	Default Section
	Slide 1: Lecture 04 Floating Point

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals
	Slide 4: What is hard about floating point?

	Fractional Binary Numbers
	Slide 5: Outline
	Slide 6: Floating point numbers
	Slide 7: Fractional Binary Numbers
	Slide 8: Example binary conversion
	Slide 9: Fractional Binary Number Examples
	Slide 10: Binary point is part of the solution, but not an entire encoding

	Representing Floating Point
	Slide 11: Outline
	Slide 12: Floating Point Standard – IEEE754
	Slide 13: Floating Point Representation
	Slide 14: Floating Point Encoding
	Slide 15: Floating Point Precision
	Slide 16: Categories for Encoded Values
	Slide 17: Categories for Encoded Values
	Slide 18: Normalized, Signifcand
	Slide 19: Normalized, Exponent
	Slide 20: Decoding example for normalized floating point (32-bit)
	Slide 21: Normalized Encoding Example
	Slide 22: Normalized Numbers: Why These Choices?
	Slide 23: Question + Break
	Slide 24: Question + Break
	Slide 26: Categories for Encoded Values
	Slide 27: Normalized floating point leaves a gap around zero
	Slide 28: Denormalized Values
	Slide 29: Categories for Encoded Values
	Slide 30: Special Values
	Slide 31: Floating Point in C
	Slide 32: Break + Summary of FP Real Number Encodings

	Smaller Floating Point
	Slide 33: Outline
	Slide 34: Floating point examples
	Slide 35: Example: Tiny Floating Point
	Slide 36: Denormalized encoding example
	Slide 37: Denormalized encoding example
	Slide 38: Exponents for 8-bit tiny floats
	Slide 39: Dynamic Range of 8-bit tiny float
	Slide 40: Dynamic Range of 8-bit tiny float
	Slide 41: Dynamic Range of 8-bit tiny float
	Slide 42: Dynamic Range of 8-bit tiny float
	Slide 43: Dynamic Range of 8-bit tiny float
	Slide 44: Distribution of Values
	Slide 45: Distribution of Values (Close-up View)

	Floating Point Arithmetic
	Slide 46: Outline
	Slide 47: Floating Point Operations
	Slide 48: Rounding
	Slide 49: Rounding
	Slide 50: Rounding
	Slide 51: Closer Look at Round-to-even
	Slide 52: Rounding Binary Numbers
	Slide 53: Important: remember how rounding works
	Slide 54: Mathematical Properties of FP Arithmetic

	Wrapup
	Slide 55: Floating Point Summary
	Slide 56: Outline

	Bonus
	Slide 57: Outline
	Slide 58: Interesting Numbers for float/double
	Slide 59: Normalized Encoding Example
	Slide 60: Creating a Floating Point Number
	Slide 61: Step 1: Normalize
	Slide 62: Step 2: Rounding
	Slide 63: Step 3: Postnormalize
	Slide 64: Floating Point Puzzles
	Slide 65: Floating Point Puzzles
	Slide 66: Floating-Point Multiplication, Directly
	Slide 67: Floating-Point Addition, Directly
	Slide 68: Mathematical Properties of FP Add
	Slide 69: Mathematical Properties of FP Multiplication

