
Lecture 20
Wrapup

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Winter 2022

Slides adapted from:
Jesse Tov



Administrivia

• Projects due tomorrow
• Prioritize getting as many spec items completed as possible

• Don’t forget to write model tests as well!

• Submission on Gradescope is available
• If it doesn’t pass tests there, it won’t compile when we go to run it

2



Today’s Goals

• Review what you’ve learned and why it is useful

• Understand when to use or avoid C/C++ in future projects

• Consider what’s next after CS211

• Keep lecture pretty short! I’ve got time to do mini-office hours for
anyone with project questions afterwards.

3



4

• Course Goals

• When should you use C and C++?

• Review of Class Topics

• What’s next?

Outline



So, why CS211?

• It’s going to make you a much better programmer

• It’s going to teach you a bunch of new skills

• It’s going to enable you to succeed in future classes

5



Formal goals

CS211:

• Teaches software design skills at a small-to-medium scale
• Some smaller programs: Overlapped, Brickout

• Some larger programs: Rank-choice Voting, Reversi

6



Formal goals

CS211:

• Teaches software design skills at a small-to-medium scale
• Some smaller programs: Overlapped, Brickout

• Some larger programs: Rank-choice Voting, Reversi

• Bridges students from How to Design Programs languages to 
industry-standard languages and tools
• Unix shell: SSH, ls, cd,

• C and C++ programming languages

• CLion IDE

• Make and CMake

7



Upsides to C and C++

• You are in charge of everything
• You can do anything you want without constraints

• Capable of directly interacting with hardware (“systems language”)
• Grab exactly as much memory as you need and manage it yourself

• Makes it incredibly fast (~100x faster than Python)

• Makes it incredibly efficient (no memory is wasted)

• These lead to the languages being very widely used
• Top five programming languages for decades include C and C++

8



Downsides to C and C++

• You are in charge of everything
• And nothing is taken care of for you

• Things you “can’t” do are UNDEFINED BEHAVIOR

• To enable portability, the languages just straight-up don’t say what 
happens if you violate the rules

• The computer could do anything

• Backwards compatibility means features are only ever added
• You’ll see this especially in C++, C just has less features total
• C++ feels like a bunch of things stapled together

• And there’s an amazing programming language hiding in there

9



So why teach C and C++?

• You’ll learn a lot more about programming
• Syntax and ideas from C inspired a lot of other languages

• Feels very different from Racket or Python

• You’ll become a better programmer
• You’re going to run into a lot of errors and problems in this class

• Hopefully they teach you to better design and plan your code

• Prepare you to dig deeper into computer systems
• A “systems language” is needed to interact directly with hardware

• Major options: Pascal, C, C++, Ada, Rust

10



11

• Course Goals

• When should you use C and C++?

• Review of Class Topics

• What’s next?

Outline



When should you use C?

• You probably shouldn’t

12



When should you use C?

• You probably shouldn’t

• Stronger: Don’t use C.

13



When should you use C?

• You probably shouldn’t

• Stronger: Don’t use C.

• Stronger still (and what I actually believe):

Using C when you could use a safer language is engineering malpractice.

C and UNDEFINED BEHAVIOR are the root of many security vulnerabilities

14



What is C good for?

• Very particular things

• Need for extreme efficiency and speed
• Often efficient services for other programs

• Systems Programming

• Low-level memory or hardware manipulation
• Interact with raw memory

• Computer Systems

15



Slowly we are replacing the need for C

• C is used for extreme efficiency and speed
• Beware premature optimization

• Often algorithm and library choice are more important than language

• C++ (and others) are often good for this as well

• C is used for low-level memory or hardware manipulation
• New languages like Rust are starting to meet the needs here

16



The value of learning C

• The impact it has on every other language you might learn
• Java, Objective-C, C#, Go, Javascript, Swift, PHP, Perl, Python

• You’ll see lots of similar ideas

• Structs

• Curly braces and semicolons

• if, while, for

• Arrays and square bracket indexing

• You may use it for future systems courses: CS213, CS343, etc.

• Some experience helps you understand the danger

17



What about C++?

• More ambiguous than C

• Definitely don’t use old C++
• We learned modern C++14

• Includes many more standard libraries

• Includes safer memory management (smart pointers)

• C++ Core Guidelines is a good place to start

• There are other languages with many of the benefits without the 
confusing parts
• But really big, important software often eventually ends up in C++

18

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines


Use the right programming language for the job

• Remember: there is no best programming language
• Every tool is situational

• C and C++ are not good for simple programs and demonstrations
• So use something simpler, like Python

• But if we wrote all of our video game engines in Python, games 
would be very limited in what they could do
• So use something more complex, like C++

19



Break +
example Go code

• I’m guessing that few 
of you have used Go

• But do you 
understand it?

• Where does code start?

• What is the type of d?

20



Break +
example Go code

• I’m guessing that few 
of you have used Go

• But do you 
understand it?

• Where does code start?
• main()

• What is the type of d?
• day which is a string

21



22

• Course Goals

• When should you use C and C++?

• Review of Class Topics

• What’s next?

Outline



What did we learn in CS211?

• In reverse order:
• Game Design

• C++ Programming

• C Programming

• Unix Shell

23



Game Design

• Model, View, Controller concept
• Model handles the program state

• View displays information based on the state

• Controller modifies the state based on user input

• Breaking a system up into these three parts enables more robust, 
testable code
• Applicable to any interactive program, not just games

24



C++ Programming

• Object Oriented Programming
• Using objects and methods

• Creating our own Classes

• Encapsulation
• Internal state should be private

• Only expose operations that maintain validity of our internal state

• Resource Acquisition Is Initialization (RAII)
• Wrap resources in an object

• Allocate when constructed and deallocate when automatically destructed

25



C Programming

• C syntax and structure
• If, while, for
• Functions and return values
• Headers and Source files

• Types and Variables
• Name, Object, Value
• Type determines the kind of value and size of object

• Memory management
• Stack, Data, and Heap segments
• When to malloc() and free() and possible errors

26

z: 5



Unix Shell (a.k.a. Linux terminal)

• SSH access to remote machines
• This will be a recurring need in future classes

• Interacting with files and programs
• cd, ls

• Relative and absolute paths

• Providing flags to programs and looking up documentation

27



Recommendation: don’t forget about Unix

• Keep playing around with Unix shell
• Incredibly useful tool for software development and productivity

• Several options

• Native MacOS

• Windows Subsystem for Linux (WSL)

• Linux installed in a virtual machine

28



29

• Course Goals

• When should you use C and C++?

• Review of Class Topics

• What’s next?

Outline



More CS classes!

• CS211 is a pre-requisite for CS213
• Obvious next step while you’re still fresh with C programming

• CS111, CS150, and CS211 are the “programming classes”
• Teach you how to program

• Teach you programming languages

• Future classes in CS are “computer science classes”
• Teach you how to understand computation and computers

• How do we use computers to understand and effect our world

• You’ll write programs along the way

30



New languages

• “Wait, but I only know like four programming languages?!!”
• Learning others will be up to you

• The same ideas you’ve already learned will apply
• Types and Imperative Programming

• Functional Programming

• Debugging and Testing

• Lots of great guides online for popular languages

31



Full-Stack Programming

• A benefit to being a “computer scientist” versus “knowing a 
programming language”
• Our curriculum teaches you multiple different parts of the software stack

• You can understand front-end (user-facing) software
• Probably something like Python or Javascript

• You can understand back-end (software-facing) software
• Probably something like C++

32



Plenty More Testing and Debugging

• If you’re going to do a lot of programming, debugging is the most 
useful skill
• You get better with lots of practice

• Learning to test your code will help you be more successful
• Especially on big projects

33



34

• Course Goals

• When should you use C and C++?

• Review of Class Topics

• What’s next?

Outline


