Lecture 16
C++ Inheritance

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Winter 2022

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington), Godmar Back (Virginia Tech)

Northwestern

Administrivia

 Homework 6 is due today

« Remember that project proposals are due on Friday!
« We've gotten only a few proposals so far
* All proposals before 1pm should have received email responses

Today’s Goals

» Introduce concept of inheritance for classes

 Describe inheritance process in C++

 Continue (start) GE211 motion example

Getting the code for today

« Download code in a zip files from here:
https://nu-cs211.qithub.io/cs211-files/lec/15 finalProject.zip
https://nu-cs211.qithub.io/cs211-files/lec/16 inheritance.zip

» Extract code wherever

* Open with CLion
« Make sure you open the folder with the CMakelLists.txt

https://nu-cs211.github.io/cs211-files/lec/15_finalProject.zip
https://nu-cs211.github.io/cs211-files/lec/16_inheritance.zip

Outline

« Concept of Inheritance

* Inheritance in C++

« GE211 Inheritance

« Game Motion Planning

Duplicated behavior in separate classes

« Example: Minecraft
« World is made of destructible blocks of various types
 Blocks have different qualities
« Sounds when hit, number of hits to break, what it drops when broken

Sand Block Coal Ore Block Redstone Ore Block

Example Class for a Sand Block

class Sand block {

public:
Sand block (Posn<int>);

void hit block();
void fall();

private:
Posn<int> position ;

int hits remaining ;

These functions would probably take
arguments and maybe return things.
We’'ll ignore that for this example.

Example Class for a Coal Ore Block

class Coal ore block {

public:
Coal ore block (Posn<int>);

void hit block();

volid drop 1tem();

private:

Posn<int> position ; These functions would probably take
— arguments and maybe return things.

int hits remaining ; We'll ignore that for this example.

Example Class for a Redstone Ore Block

class Redstone ore block {

public:
Redstone ore block (Posn<int>);

void hit block();
void drop 1item();

volid emlt particles();

private:

Posn<int> position ; These functions would probably take
arguments and maybe return things.

int hits remalning ; We'll ignore that for this example.

Design without inheritance

 One class per block type:

Sand_block Coal_ore_block Redstone_ore_block

hit block () hit block () hit block ()
fall() drop item() drop item()
emit particles|()

position position position
hits remaining hits remaining hits remaining

* Feels pretty redundant. Lots of repeated information

« Cannot use multiple blocks as the same thing
« Can't have a vector of blocks, for instance

Concept: share common traits

» Inheritance allows one class to copy all the qualities of another
* i.e. it inherits member functions and data members

* Allows us to form parent-child “is-a” relationship between classes
* A child (derived class) extends a parent (base class)

 Objects can be treated as anything they inherit from
« Object can be treated as the base class to access general functionality
 Or treated as the specific derived class to access specific functionality

11

Redesign of blocks with inheritance _
Coal_ore_block

Ore_block hit block()

drop item()

hit block ()
drop item() position
position
hit_block() hits remaining
L Redstone_ore_block
position
hits remaining hit block ()
drop item
Sand_block oP_ .()
emit particles()
hit block() t
£a11 () E?Sl 1on_. |
1ts remalning
position
hits remaining
_ 12

Derived classes can override inherited functionality

vold Ore block::hit block()
hits remaining--;

1f (hits remaining == 0) { drop 1tem(); }

volid Redstone ore block::hit block() {
hits remaining--—;
emlt particles();

1f (hits remaining == 0) { drop 1tem(); }

Derived classes can be treated as the parent class

« We can make a vector of generic "Block” and fill it with specific types
of blocks

std::vector<Block> blocks;

blocks.push back(Coal ore block());
blocks.push back(Redstone ore block());
blocks.push back(Coal ore block());
blocks.push back(Sand block());

blocks[1l].hit block(); // calls Redstone hit block()

14

Benefits of inheritance

» Code reuse
 Children can automatically inherit code from parents

 Extensibility
 Children can add custom behavior by extending or overriding

* Polymorphism (biggest reason)
« Ability to redefine existing behavior but preserve the interface
 Children can override the behavior of the parent

 Other parts of the code can make calls on objects without knowing which
part of the inheritance tree they are from

15

Break + Quiz: Relationships between our blocks

 Determine if the following —— drop_iten()
. . . . drop_ item() position
is-a relationships exist e [
hit_block() hits_remgining_
-
position_
hits_remaining_ hit block()

. drop_item()
¢ TI‘UG or False. Sl amit _;airzicles()

hit block()

« Redstone_ore_block is-a Ore_block? £a11() b re ronaining

position
hits remaining

« Coal_ore block is-a Ore_block?

e Coal ore block is-a Block?

« Coal_ore block is-a Redstone_ore_block?

* Ore_block is-a Redstone_ore_block?

16

Break + Quiz: Relationships between our blocks

» Determine if the following
is-a relationships exist

* True or False:
« Redstone_ore_block is-a Ore_block? TRUE

* Coa
* Coa
* Coa

ore
ore
ore

OC
OC
OC

hit block()

position
hits_remaining_

K is-a Ore_block? TRUE

K is-a Block? TRUE

K is-a Redstone_ore_block? FALSE

* Ore_block is-a Redstone_ore_block? FALSE

Ore_block

hit block()
drop_ item()

position
hits remaining

Sand_block

hit block()
fall()

position
hits remaining

Coal_ore_block

hit block()
drop item()

position
hits remaining

Redstone_ore_block

hit block()
drop item()
emit particles()

position
hits remaining

17

Outline

« Concept of Inheritance

 Inheritance in C++

« GE211 Inheritance

« Game Motion Planning

Simpler class for demonstrating inheritance

class Position {
public:
Position (int x, 1int vy);
int distance to(Position const& other) const;

vold print () const;

private:
int x ;
int y ;
b

positions.hxx
positions.cxx

19

positions.hxx

Create a new class that inherits from Position Sositions. Cxx

class Position3D: public Position {
public:
Position3D(int x, int vy, int z);
int distance to(Position3D consté& other) const;

vold print () const;

private:
int z ;

by

positions.hxx

Needs its own unique constructor bositions. cxx

class Position3D: public Position {
public:
Position3D(int x, int vy, int z);
int distance to(Position3D consté& other) const;

vold print () const;

private: Class derivation list

int z_; Position3D inherits from Position
I

Class derivation list

class Name : public BaseClassl, public BaseClassZ

{ }s

« It is possible to inherit from any number of classes
« Can add some difficulties outside the scope of this class (Diamond problem)

e public iS an access specifier
 Always want to use public
* Private would make everything inherited private
« Which would mean other things wouldn't know you had them
« Which really defeats the whole purpose

22

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem
https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

Derived class needs its own unique constructor

class Position3D: public Position {
public:

Position3D (int x, int y, int z);

int distance to(Position3D consté& other)
vold print () const;
private: Constructor

positions.hxx
positions.cxx

const;

int z_; Must be unique for each class

by

23

Extending base class functionality

class Position3D: public Position {

public:

Position3D(int x, int vy, int z);

positions.hxx
positions.cxx

int distance to(Position3D const& other) const;

vold print () const;
private: Extended functionality
int z_; Provides features that the

) original class does not

24

Overriding base class functionality

class Position3D: public Position {

public:

Position3D(int x, int vy, int z);

positions.hxx
positions.cxx

int distance to(Position3D consté& other) const;
void print () const;

private: Overridden functionality
nt z_; Redefines existing functionality

) to do something different

25

positions.hxx

Constructor for our derived class bositions.cxx

Position3D::Position3D(1int x, 1nt y, 1int z)

Position(x, V),

e Base class constructors are called first in the initializer list

« C++ will automatically call the default constructor if one exists and you
don't

Access is not allowed to the base class’s private members

int
Position3D::distance to(Position3D consté& other) const

{

int diffx = other.x - x ;
int diffy = other.y -y ;
int diffz = other.z - z ;

return std::sqgrt(diffx*diffx + diffy*diffy
+ diffz*diffz);

- ERROR! This won't work because x and y are private
* Need some way to make them accessible to things that inherit from the class
« Additional access specifier: protected

27

Classes meant to be inherited from use protected members

class Position {
public:
Position (int x, 1int vy);
int distance to(Position const& other) const;

vold print () const;

protected:
int x ;
int y ;
b

28

Compiler decides which version of an overridden function to call

Position pl {0, O};
Position3D p2 {0, 0, O0};
pl.print () ;

p2.print () ;

« How does the compiler know which version of print () to call?

 Decides at compile time based on which type it is
 This is known as "“static dispatch”

29

Problem with static dispatch

 But often we would prefer to call the extended version of the function
« Even if the object is treated as the base class

volid print position(Position consté& p)

p.print () ;

Position pl {0, O0};
Position3D p2 {0, 0, -5};

print position(pl);
print position(p2);// prints the 2D position version

30

Dynamic dispatch

« For some functions, have code use the overridden version if it
exists
« Need some way of specifying which functions should work this way

* This needs to be decided at runtime

 Function doesn’t know in advance which specific type it is going to be
called with

« Language has to support this feature (C++ does!)

31

Declare functions virtual if dynamic dispatch should occur

class Position {
public:
Position (int x, 1int vy);
int distance to(Position const& other) const;

virtual void print () const;

protected:
int x ;
int y ;
b

32

In derived class, mark function as override

class Position3D: public Position {
public:

Position3D(int x, int vy, int z);

int distance to(Position3D consté& other) const;

vold print () const override;
private: Important for compile-time errors.
int z ;

Compiler will tell you if there isn't a
b7 virtual function you’re overriding.

33

Repeat example but with dynamic dispatch

* Now our example works because the program decides which version of
print () to call at run-time

volid print position(Position const& p) |

p.print () ;

Position pl {0, O0};
Position3D p2 {0, 0, -=5};

print position(pl);
print position(p2);// prints the 3D position version!

34

Creating a class that MUST be overridden

» Sometimes we want to include a function in a base class but only
implement it in derived classes

- Back to Minecraft example: _ _
hit block () might not have a default implementation

« We can make a function “pure virtual” in C++
« No implementation is written for the base class
* Any class that inherits is required to implement it

e The base class becomes an “abstract class”

« It cannot be instantiated as an object because all of its functions aren't
implemented

« It is only useful as a class to inherit from

35

Making a pure virtual function

class Printable {

public:

virtual void print() const = 0;

class Position

public Printable {

volid print () const override;

36

Outline

« Concept of Inheritance

* Inheritance in C++

« GE211 Inheritance

« Game Motion Planning

Inheritance in GE211
e https://github.com/tov/ge211/blob/main/include/ge211/base.hxx

 Abstract_game is an abstract base class
« draw(Sprite_set&) is a pure virtual function
* Any game MUST implement draw()

« Many other functions are marked virtual
 Our Controller overrides them with its own implementation
« on_key, on_mouse_move, etc.

« Some functions are implemented and we inherit directly
 run() is a good example of this

38

https://github.com/tov/ge211/blob/main/include/ge211/base.hxx

Outline

« Concept of Inheritance

* Inheritance in C++

« GE211 Inheritance

- Game Motion Planning

Plan for game

» Image sprite that represents a character in the game
» Moves towards a given position at a set velocity

» Text sprite to explain what position is being moved to

« Each character keeps a list of positions to move to
« Moves towards the first position until it reaches it
» Then starts moving towards the next position

 Add to list of positions with mouse clicks

40

Initial Character class

« Data members
« Image_sprite sprite_
« Posn<float> position_

 Interface
 Constructor (from string for filename)
» Getters/Setters for data members

41

Drawing the sprite

 Add sprite image to Resources/

» Add character to Model as a private member
 Probably a std::vector of characters

 Add getter to allow View to access characters vector

« Update View to iterate through the characters and draw each one

42

Add motion to Character class

« Data members
« Image_sprite sprite_
« Posn<float> position_
- float velocity_
» Posn<float> destination__

 Interface
 Constructor (from string for filename)
« Getters/Setters for data members
« update(double dt) called from on_frame()
« distance_to_position_() helper function

43

Making the sprites move

 Add initial destinations upon creation in the Model

« Add on_frame() function to Controller and Model
« Call Model’s on_frame()
« Then call each character’s update()

44

Add a text sprite to explain each character’s movement

* VView gets new private members
« ge211::Text_sprite explanation_
« ge2l11l::Font sans28_

» Build output string in draw()
 Create an Image_sprite::Builder
 Set a font and a Color
» Set the string to be displayed based on the character
« Reconfigure the Image_sprite
« Add the sprite so it appears

45

Upgrade characters to hold a list of destinations

 Probably want to use an std::queue
 push() positions to the end of the queue
« pop() positions from the front of the queue

« Change to the next destination after we reach it
« Occurs in on_frame()

» Make sure the initial destination is the initial position
« Or we'll start moving somewhere right away

46

Use mouse clicks to specify waypoints for a character

« Respond to mouse clicks in the Controller
 Forward click to the model to act upon

* Model uses mouse click to add destination for first character

47

Outline

« Concept of Inheritance

* Inheritance in C++

« GE211 Inheritance

« Game Motion Planning

