
Lecture 16
C++ Inheritance

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Winter 2022

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington), Godmar Back (Virginia Tech)



Administrivia

• Homework 6 is due today

• Remember that project proposals are due on Friday!
• We’ve gotten only a few proposals so far

• All proposals before 1pm should have received email responses

2



Today’s Goals

• Introduce concept of inheritance for classes

• Describe inheritance process in C++

• Continue (start) GE211 motion example 

3



Getting the code for today

• Download code in a zip files from here:
https://nu-cs211.github.io/cs211-files/lec/15_finalProject.zip
https://nu-cs211.github.io/cs211-files/lec/16_inheritance.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt

4

https://nu-cs211.github.io/cs211-files/lec/15_finalProject.zip
https://nu-cs211.github.io/cs211-files/lec/16_inheritance.zip


5

• Concept of Inheritance

• Inheritance in C++

• GE211 Inheritance

• Game Motion Planning

Outline



Duplicated behavior in separate classes

• Example: Minecraft
• World is made of destructible blocks of various types

• Blocks have different qualities

• Sounds when hit, number of hits to break, what it drops when broken

6

Sand Block Coal Ore Block Redstone Ore Block



Example Class for a Sand Block

class Sand_block {

public:
Sand_block(Posn<int>);

void hit_block();

void fall();

private:

Posn<int> position_;

int hits_remaining_;

}

7

These functions would probably take 
arguments and maybe return things. 
We’ll ignore that for this example.



Example Class for a Coal Ore Block

class Coal_ore_block {

public:
Coal_ore_block(Posn<int>);

void hit_block();

void drop_item();

private:

Posn<int> position_;

int hits_remaining_;

}

8

These functions would probably take 
arguments and maybe return things. 
We’ll ignore that for this example.



Example Class for a Redstone Ore Block

class Redstone_ore_block {

public:
Redstone_ore_block(Posn<int>);

void hit_block();

void drop_item();

void emit_particles();

private:

Posn<int> position_;

int hits_remaining_;

}

9

These functions would probably take 
arguments and maybe return things. 
We’ll ignore that for this example.



Design without inheritance

• One class per block type:

• Feels pretty redundant. Lots of repeated information

• Cannot use multiple blocks as the same thing
• Can’t have a vector of blocks, for instance

10

Sand_block

hit_block()

fall()

position_

hits_remaining_

Coal_ore_block

hit_block()

drop_item()

position_

hits_remaining_

Redstone_ore_block

hit_block()

drop_item()

emit_particles()

position_

hits_remaining_



Concept: share common traits

• Inheritance allows one class to copy all the qualities of another
• i.e. it inherits member functions and data members

• Allows us to form parent-child “is-a” relationship between classes
• A child (derived class) extends a parent (base class)

• Objects can be treated as anything they inherit from
• Object can be treated as the base class to access general functionality

• Or treated as the specific derived class to access specific functionality

11



Redesign of blocks with inheritance

12

Sand_block

hit_block()

fall()

position_

hits_remaining_

Coal_ore_block

hit_block()

drop_item()

position_

hits_remaining_

Redstone_ore_block

hit_block()

drop_item()

emit_particles()

position_

hits_remaining_

Block

hit_block()

position_

hits_remaining_

Ore_block

hit_block()

drop_item()

position_

hits_remaining_



Derived classes can override inherited functionality

void Ore_block::hit_block() {

hits_remaining--;

if (hits_remaining == 0) { drop_item(); }

}

void Redstone_ore_block::hit_block() {

hits_remaining--;

emit_particles();

if (hits_remaining == 0) { drop_item(); }

}

13



Derived classes can be treated as the parent class

• We can make a vector of generic “Block” and fill it with specific types 
of blocks

std::vector<Block> blocks;

blocks.push_back(Coal_ore_block());

blocks.push_back(Redstone_ore_block());

blocks.push_back(Coal_ore_block());

blocks.push_back(Sand_block());

blocks[1].hit_block(); // calls Redstone hit_block()

14



Benefits of inheritance

• Code reuse
• Children can automatically inherit code from parents

• Extensibility
• Children can add custom behavior by extending or overriding

• Polymorphism (biggest reason)

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Other parts of the code can make calls on objects without knowing which 
part of the inheritance tree they are from

15



Break + Quiz: Relationships between our blocks

• Determine if the following
is-a relationships exist

• True or False:
• Redstone_ore_block is-a Ore_block?

• Coal_ore_block is-a Ore_block?

• Coal_ore_block is-a Block?

• Coal_ore_block is-a Redstone_ore_block?

• Ore_block is-a Redstone_ore_block?

16



Break + Quiz: Relationships between our blocks

• Determine if the following
is-a relationships exist

• True or False:
• Redstone_ore_block is-a Ore_block? TRUE

• Coal_ore_block is-a Ore_block? TRUE

• Coal_ore_block is-a Block? TRUE

• Coal_ore_block is-a Redstone_ore_block? FALSE

• Ore_block is-a Redstone_ore_block? FALSE

17



18

• Concept of Inheritance

• Inheritance in C++

• GE211 Inheritance

• Game Motion Planning

Outline



Simpler class for demonstrating inheritance

class Position {

public:

Position(int x, int y);

int distance_to(Position const& other) const;

void print() const;

private:

int x_;

int y_;

};

19

positions.hxx
positions.cxx



Create a new class that inherits from Position

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

20

positions.hxx
positions.cxx



Needs its own unique constructor

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

21

Class derivation list

Position3D inherits from Position

positions.hxx
positions.cxx



Class derivation list

class Name : public BaseClass1, public BaseClass2

{ };

• It is possible to inherit from any number of classes
• Can add some difficulties outside the scope of this class (Diamond problem)

• public is an access specifier
• Always want to use public
• Private would make everything inherited private

• Which would mean other things wouldn’t know you had them
• Which really defeats the whole purpose

22

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem
https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem


Derived class needs its own unique constructor

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

23

Constructor

Must be unique for each class

positions.hxx
positions.cxx



Extending base class functionality

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

24

Extended functionality

Provides features that the 
original class does not

positions.hxx
positions.cxx



Overriding base class functionality

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const;

private:

int z_;

};

25

Overridden functionality

Redefines existing functionality 
to do something different

positions.hxx
positions.cxx



Constructor for our derived class

Position3D::Position3D(int x, int y, int z)

: Position(x, y),

z_(z)

{ }

• Base class constructors are called first in the initializer list
• C++ will automatically call the default constructor if one exists and you 

don’t

26

positions.hxx
positions.cxx



Access is not allowed to the base class’s private members

int
Position3D::distance_to(Position3D const& other) const
{

int diffx = other.x_ - x_;

int diffy = other.y_ - y_;

int diffz = other.z_ - z_;

return std::sqrt(diffx*diffx + diffy*diffy
+ diffz*diffz);

}

• ERROR! This won’t work because x_ and y_ are private
• Need some way to make them accessible to things that inherit from the class
• Additional access specifier: protected

27



Classes meant to be inherited from use protected members

class Position {

public:

Position(int x, int y);

int distance_to(Position const& other) const;

void print() const;

protected:

int x_;

int y_;

};

28



Compiler decides which version of an overridden function to call

Position p1 {0, 0};

Position3D p2 {0, 0, 0};

p1.print();

p2.print();

• How does the compiler know which version of print() to call?
• Decides at compile time based on which type it is

• This is known as “static dispatch”

29



Problem with static dispatch

• But often we would prefer to call the extended version of the function
• Even if the object is treated as the base class

void print_position(Position const& p) {

p.print();

}

Position p1 {0, 0};

Position3D p2 {0, 0, -5};

print_position(p1);

print_position(p2);// prints the 2D position version

30



Dynamic dispatch

• For some functions, have code use the overridden version if it 
exists
• Need some way of specifying which functions should work this way

• This needs to be decided at runtime
• Function doesn’t know in advance which specific type it is going to be 

called with

• Language has to support this feature (C++ does!)

31



Declare functions virtual if dynamic dispatch should occur

class Position {

public:

Position(int x, int y);

int distance_to(Position const& other) const;

virtual void print() const;

protected:

int x_;

int y_;

};

32



In derived class, mark function as override

class Position3D: public Position {

public:

Position3D(int x, int y, int z);

int distance_to(Position3D const& other) const;

void print() const override;

private:

int z_;

};

33

Important for compile-time errors.

Compiler will tell you if there isn’t a 
virtual function you’re overriding.



Repeat example but with dynamic dispatch

• Now our example works because the program decides which version of 
print() to call at run-time

void print_position(Position const& p) {

p.print();

}

Position p1 {0, 0};

Position3D p2 {0, 0, -5};

print_position(p1);

print_position(p2);// prints the 3D position version!

34



Creating a class that MUST be overridden

• Sometimes we want to include a function in a base class but only 
implement it in derived classes
• Back to Minecraft example:
hit_block() might not have a default implementation

• We can make a function “pure virtual” in C++
• No implementation is written for the base class
• Any class that inherits is required to implement it

• The base class becomes an “abstract class”
• It cannot be instantiated as an object because all of its functions aren’t 

implemented
• It is only useful as a class to inherit from

35



Making a pure virtual function

class Printable {

public:

virtual void print() const = 0;

}

class Position : public Printable {

void print() const override;

}

36



37

• Concept of Inheritance

• Inheritance in C++

• GE211 Inheritance

• Game Motion Planning

Outline



Inheritance in GE211

• https://github.com/tov/ge211/blob/main/include/ge211/base.hxx

• Abstract_game is an abstract base class
• draw(Sprite_set&) is a pure virtual function
• Any game MUST implement draw()

• Many other functions are marked virtual
• Our Controller overrides them with its own implementation

• on_key, on_mouse_move, etc.

• Some functions are implemented and we inherit directly
• run() is a good example of this

38

https://github.com/tov/ge211/blob/main/include/ge211/base.hxx


39

• Concept of Inheritance

• Inheritance in C++

• GE211 Inheritance

• Game Motion Planning

Outline



Plan for game

• Image sprite that represents a character in the game
• Moves towards a given position at a set velocity

• Text sprite to explain what position is being moved to

• Each character keeps a list of positions to move to
• Moves towards the first position until it reaches it

• Then starts moving towards the next position

• Add to list of positions with mouse clicks

40



Initial Character class

• Data members
• Image_sprite sprite_

• Posn<float> position_

• Interface
• Constructor (from string for filename)

• Getters/Setters for data members

41



Drawing the sprite

• Add sprite image to Resources/

• Add character to Model as a private member
• Probably a std::vector of characters

• Add getter to allow View to access characters vector

• Update View to iterate through the characters and draw each one

42



Add motion to Character class

• Data members
• Image_sprite sprite_

• Posn<float> position_

• float velocity_

• Posn<float> destination_

• Interface
• Constructor (from string for filename)

• Getters/Setters for data members

• update(double dt) called from on_frame()

• distance_to_position_() helper function

43



Making the sprites move

• Add initial destinations upon creation in the Model

• Add on_frame() function to Controller and Model
• Call Model’s on_frame()

• Then call each character’s update()

44



Add a text sprite to explain each character’s movement

• View gets new private members
• ge211::Text_sprite explanation_

• ge211::Font sans28_

• Build output string in draw()
• Create an Image_sprite::Builder

• Set a font and a Color

• Set the string to be displayed based on the character

• Reconfigure the Image_sprite

• Add the sprite so it appears

45



Upgrade characters to hold a list of destinations

• Probably want to use an std::queue
• push() positions to the end of the queue

• pop() positions from the front of the queue

• Change to the next destination after we reach it
• Occurs in on_frame()

• Make sure the initial destination is the initial position
• Or we’ll start moving somewhere right away

46



Use mouse clicks to specify waypoints for a character

• Respond to mouse clicks in the Controller
• Forward click to the model to act upon

• Model uses mouse click to add destination for first character

47



48

• Concept of Inheritance

• Inheritance in C++

• GE211 Inheritance

• Game Motion Planning

Outline


