Lecture 14
Generics and STL

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Winter 2022

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington)

Northwestern

Administrivia

« Homework 5 due tonight

« Homework 6 should be released tonight

* Project details will be released tonight or tomorrow
* First part will be groups proposing a project idea

Today’s Goals

» Introduce concept of generic functions/classes
« How they are made
« How we used them

* Discuss major use case for generics
« C++ Standard Template Library

« Understand how iterators allow generic traversal of a container

Getting the code for today

» Download code in a zip file from here:
https://nu-cs211.github.io/cs211-files/lec/14 generics stl.zip

« Extract code wherever

* Open with CLion
« Make sure you open the folder with the CMakelLists.txt

* Details on CLion in Lab05

https://nu-cs211.github.io/cs211-files/lec/14_generics_stl.zip

Outline

 Generics

 Standard Template Library

 Jterators

« Homework 6 Overview

Overloading functions to support multiple types

« Suppose you want a function that can compare any two things
« Implement for int and implement for float

(// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
int compare (const 1nté& wvaluel, const 1nté& value2) {

1 (valuel < value?2){ return -1;}

1f (value2 < wvaluel){ return 1;}

return 0;

}

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
int compare (const float& valuel, const floaté& value2) {

1f (valuel < wvalue2){ return -1;}

1f (valuez2 < wvaluel){ return 1;}

return 0;

}

We want to avoid duplicated code

* The two implementations of compare () are nearly identical
« Seems wasteful

« What if we want to extend compare () for other things?
* char, short, long, string, Position, String Holder, etc.

« Impossible to get everything...

“Generic” version of the function

(// returns 0 if equal, 1 if valuel is bigger, -1 otherwise |
int compare (const ???& wvaluel, const ???2& value2) {

1f (valuel < value?2){ return -1;}

1 (value2 < wvaluel){ return 1;}

return 0;

}

« What we would prefer is one “generic” version of the function
« Code will be independent of what the real type is

« One implementation works for everything!
 Condition here: must implement operator< ()

C++ Generics

» C++ implements generics through a concept called “templates”

« A template is a function or class that accepts a type as a parameter
 You write the function code once in a type-agnostic way

« When you invoke the function or instantiate the class, you specify the type
as an argument to it

« At compile time, the compiler will generate the “specialized” code
from your template that uses the type provided
« The template definition is NOT runnable code
« The compiler creates runnable code given a concrete type
* A little like macro substitution

Generic functions

» Template to compare () any two things

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise

int compare (const T& valuel, const T& valueZ2) {
1f (valuel < wvalue?) return -1;
1f (valuez2 < wvaluel) return 1;
return 0O;

template <typename T> // <...> can also be written <class T>

10

Generic functions

» Template to compare () any two things

returns 0 1f equal, 1 1f valuel is bigger, -1 otherwise

int compare (const T& valuel, const T& valueZ2) {
1f (valuel < wvalue?) return -1;
1f (valuez2 < wvaluel) return 1;
return 0O;

}

template <typename T> // <...> can also be written <class T>

« Declares the following function a template
« The “generic” type is called T

11

Generic functions

» Template to compare () any two things

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise
template <typename T> <...> can also be written <class T>
int compare const T& value2) {

1f (valuel < wvalue?) return -1;

1f (valuez2 < wvaluel) return 1;

return 0O;

}

« Declares the following function a template
« The “generic” type is called T

 Code inside the template can use T like a type

12

Generic functions

» Template to compare () any two things

// returns 0 if equal, 1 if valuel is bigger, -1 otherwise

template <typename COMPARE TYPE>

int compare (const COMPARE TYPE& valuel, const COMPARE TYPE& value?l)
1f (valuel < wvalue?) return -1;

1f (valuez2 < wvaluel) return 1;
return 0O;

}

{

« We didn't have to name the type T

 Could name it anything we want
« Named in all capital letters by convention

13

Usi ng generiC fu nctions generic_compare.cxx

 Actual type being used goes in angle brackets after function name
* compare<COMPARE TYPE>

int main () {
std: :cout << compare<int> (10, 20) << “\n”;
std: :cout << compare<double>(50.5, 50.6) << “\n”;
std: :cout << compare<std::string>(“hello”, “world”) << “\n”;
return 0;

Using generic functions

« The compiler can sometimes guess the correct type for you based
on the arguments provided

 This is known as “type inference”

 Can occasionally lead to unexpected results though...

int main () {
std::cout << compare (10, 20) << “\n”; // OK
std::cout << compare (50.5, 50.6) << “\n”; // OK

std::cout << compare (“*hello”, “world”) << “\n”; // FAILS!
return 0;

15

Using generic functions

* The compiler can also guess the correct type for you based on the
arguments provided

 This is known as “type inference”

 Can occasionally lead to unexpected results though...
» Third example below ends up calling compare<char*> ()

int main () {
std::cout << compare (10, 20) << “\n”; // OK
std::cout << compare (50.5, 50.6) << “\n”; // OK

std::cout << compare (“*hello”, “world”) << “\n”; // FAILS!
return 0;

16

Generic classes

« Templates are most commonly used for classes (similarly struct

* Entire class definition is templated
« Template type can be used in data member and member functions

17

Example of generic classes

» Let's create a class called Pair that holds two “things”
» The things do NOT have to be the same type
* Like a tuple in python, but limited to two

» Operations
« Set the value of the first thing
» Set the value of the second thing
 Get the value of the first thing
 Get the value of the second thing
* Print the pair of things

 Useful for the ability to return two things at once from a function!

18

Live COding : implement pair generic_pair-complete.cxx

» Operations
« Set the value of the first thing
» Set the value of the second thing
 Get the value of the first thing
» Get the value of the second thing
* Print the pair of things

 Real Pair implementation available in the C++ <utility> library
« https://www.cplusplus.com/reference/utility/pair/pair/

19

https://www.cplusplus.com/reference/utility/pair/pair/

Da ngers Of tem p|ates generic_pair_compare.cxx

 Doing tricky things with compilers results in tricky errors

« Compiler error when you misuse a generic function (usually
unintentionally!) can get really bad
« Example: try calling compare () with something invalid

« Working with templates in general gets complicated and messy

* Need to implement all template code inside headers

« Needs to be imported into each C++ file that uses it so the generated
definitions are available

20

Generics in GE211

* You've already been using them!
e Posn<int>, Posn<float>, Dims<int>, etcC.

 You know enough to understand the entire implementation of Posn

» Take a look at it when you get a chance

« https://qgithub.com/tov/ge211/blob/2d7d3al1bd762c3b6d6fac791b0da2fcéc
2013d3c/include/ge211/geometry.hxx#L264

21

https://github.com/tov/ge211/blob/2d7d3a1bd762c3b6d6fac791b0da2fc6c2013d3c/include/ge211/geometry.hxx#L264

Break + Question

» What syntax would you use to create a Pair where both the values
are Posns that hold ints?

Pair<???> pair({0, 0}, {3, 3});

22

Break + Question

» What syntax would you use to create a Pair where both the values
are Posns that hold ints?

Pair<Posn<int>, Posn<int>> pair({0, 0}, {3, 3});

23

Outline

e (Generics

- Standard Template Library

 Jterators

« Homework 6 Overview

C++ Standard Library

* Four major pieces

1.

4.

The entire C standard library

C++ input/output stream library
« std::cin, std::cout, etc.

. C++ Standard Template Library (STL)

 Containers, iterators, algorithms, etc.

Miscellaneous other stuff
» Strings, exceptions, memory allocation, localization

25

STL Containers

« Standard Template Library
 Contains various useful functionality created as templates!
« Apply for any type you want

A container is an object that stores a collection of other objects
» Like arrays or linked lists

« We already covered one of these: std: :vector

26

STL std::list

« http://www.cplusplus.com/reference/list/list/

* A generic doubly-linked list
« Next pointers and previous pointers allow movement in either direction

« Can be more or less efficient than std::vector
 See CS214

27

http://www.cplusplus.com/reference/list/list/

STL std::unordered_map

e https://www.cplusplus.com/reference/unordered map/unordered

map/

« Generic map from key to value
« For any type of key and type of value

 Can store a value by its key
 Can retrieve a value by its key

» Works just like a python dict

28

https://www.cplusplus.com/reference/unordered_map/unordered_map/

Live coding: unordered_map example [unordered map_example.cxx

int main () {
std: :unordered map<std::string, 1int> map;

map [“CS211”] = 159;

map [“CE346”] = 30;

std: :cout << “map at CS211 = ™
<< map[V"CS2117]
<< \\\nll;

return O;

Other STL containers https://www.cplusplus.com/reference/stl/

« Map
« Key->Value in sorted order by key

 Set
 Ordered list of unique elements

« Unordered_set
« Unique elements in no particular order

* Array
* Fixed size list of elements (like vector, but not resizable)

* And various others
« Stack, Queue, etc.

30

https://www.cplusplus.com/reference/stl/

Outline

e (Generics

 Standard Template Library

 Iterators

« Homework 6 Overview

How do we make algorithms work on generic containers?

» C++ provides various algorithms in its <algorithm> library
e find (), count (), sort ()

» How does it make those work on any container?
« Algorithm needs to traverse the container. But each container is different

» Vector:
for (1=0; 1i<vector.size(); 1++) {
vector[i];

}

 List:
for (node* curr=head; curr!=NULL; curr=curr->next) {
curr.value;

}

32

Iterators allow generic traversing of containers

 Concept:
 Create an object that allows you to move through the container
 Holds a reference to the original object
» Understands how to move through that specific implementation

 Operations an iterator must support:
 Construction
 Getting the value at the current location (* dereference)
* Moving to the next location in the container (++)
« Comparison with another iterator (== or =)
 Usually get two iterators, start and end, and traverse start until at end

33

General iterator pattern

start l1terator = obj

ect.begin () ;

end l1terator = object.end();

while (start 1terator != end iterator) {

value = *start 1ite

rator; // get wvalue

// do something useful with value

start i1terator++;

// move to next location

34

Iterators are modeled after pointers!

int array[5] = {1, 2, 3, 4, 5};

int* start iterator = &(array[0]);

int* end iterator = &(array[D]);

while (start iterator != end i1terator)
int value = *start iterator;

iterator_example.cxx

{

std: :cout << “Walue: Y << wvalue << ™\n”;

start i1terator++;

35

Same code but for std::vector iterator_example.cxx

std: :vector<int> wvec{l, 2, 3, 4, 5};

auto asks the compiler to

auto start iterator = vec.begin(); figure out the type for you

auto end 1terator = vec.end();

while (start iterator != end i1terator) ({ B This part
int value = *start 1terator; didn't

std: :cout << “Walue: “ << wvalue << “\n”; = have to

start iterator++; change
B at all!

36

More complicated iterators can support more operations

» Depending on the container, iterators could support many
operations

 Forward:
 construction, equality, increment, get value

» Bidirectional:
 Everything Forward does, decrement

« Random Access:
 Everything Bidirectional does, arithmetic, comparison, get value at index

37

Live coding: use the count algorithm lterator_example.cxx

* int count (InputlIterator first,
InputIterator second,
constT& value)

» Counts occurrences of a value in a container
» Actually returns an iterator::difference type, but we'll ignore that

e We can count the number of times a certain value occurs inside a
vector or array

38

Break + Question

« How would we implement the following code?

int array[5] = {1, 1, 1, 2, 2};

// count the number of twos in array

int num twos = count (???, ??27?, 2);

39

Break + Question

« How would we implement the following code?
* Pointers!

int array[5] = {1, 1, 1, 2, 2};

// count the number of twos in array

int num twos = count (&(array[0]), &(array[3]),

2);

40

Outline

e (Generics

 Standard Template Library

 Jterators

- Homework 6 Overview

Reversi

 Also known as Othello

» Light player and dark player take turns
placing pieces

« A valid placed piece must be in a line with any number of opposing
pieces followed by one piece of the current player

« All opposing pieces in that bounded line are flipped to belong to the
current player

42

Example move in reversi

* First, must place pieces in the
central four squares
« These don't follow the normal rules

o ~ O O &~ W N =

abcdef gh

a bcde f gh

o ~ O O BB W kKN =

43

Example move in reversi

« It is the dark player’s turn

« They may play in any of the four
locations indicated

« Must form a line with a light piece
in the middle

o ~ O O & W N =

abcdef gh

abcdef gh

o N G O & W N =

44

Example move in reversi

« Once the dark player places a
piece, all opposing pieces in that
line are flipped

o ~ G O A& W N =

abcde f gh

abcdefgh

Qo N G O BB W kKN =

45

Game demo

e https://www.mathsisfun.com/games/reversi.html

» Warning: the game setup rules are slightly different from ours
« We let players play out the first two moves, which must be in the center

46

https://www.mathsisfun.com/games/reversi.html

Project layout

« Model, View, Controller
« Same as with homework 5
 View is responsible for drawing things
« Controller gets inputs from the user
« Model contains the game logic

* Model interacts with several other components
* Board
* Player
* Move
* Position_set
* Move_map

47

Player

» Represents a Player
» Either in terms who owns a piece
« Or whose turn it currently is

enum class Player ({
dark,
light,
neither

by

48

Enums

 Define a new type with a fixed list of possible values

enum class Player {
dark,
light,
nelther

}

* New type: Player
 Possible values: Player::dark, Player::light, Player::neither

* Enums are in C as well as many other languages!

49

Board

« Stores state for the game
« Each Posn<int> within the board contains a Player
* Player::light, Player::dark, or Player::neither

» Valid positions are the rows/columns on the board
« An 8x8 board goes from {0,0} to {7,7}

 Can ask the board which piece is in a certain position
 Can tell the board to set a piece in a certain position

50

Move

* A std: :pair of:
* A position on the board
* All pieces that would flip if the current player played in that position
» Stored as a Position_set

 Move_map
* An std: :unordered map
- Holds Moves

 Key is a position on the board
« Value is the corresponding position set for the Move

51

What do you have to do?

« Interact with a big program with lots of library files you didn't write
» Board, Move, Player, Position_set

 You don't need to understand all of the code, but you do need to
understand how to use them

 Look through the .hxx files for them

» Fill the Move_map next moves

« Contents are each valid Move that the current player could make
* Need to analyze the board to make that determination

 Eventually, you'll fill in the controller/view too
« Including hints to the current player about possible places they could play

52

Outline

e (Generics

 Standard Template Library

 Jterators

« Homework 6 Overview

