
Lecture 14
Generics and STL

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Winter 2022

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (Washington)

Administrivia

• Homework 5 due tonight

• Homework 6 should be released tonight

• Project details will be released tonight or tomorrow
• First part will be groups proposing a project idea

2

Today’s Goals

• Introduce concept of generic functions/classes
• How they are made

• How we used them

• Discuss major use case for generics
• C++ Standard Template Library

• Understand how iterators allow generic traversal of a container

3

Getting the code for today

• Download code in a zip file from here:
https://nu-cs211.github.io/cs211-files/lec/14_generics_stl.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt

• Details on CLion in Lab05

4

https://nu-cs211.github.io/cs211-files/lec/14_generics_stl.zip

5

• Generics

• Standard Template Library

• Iterators

• Homework 6 Overview

Outline

Overloading functions to support multiple types

• Suppose you want a function that can compare any two things
• Implement for int and implement for float

6

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

int compare(const int& value1, const int& value2) {

if (value1 < value2){ return -1;}

if (value2 < value1){ return 1;}

return 0;

}

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

int compare(const float& value1, const float& value2) {

if (value1 < value2){ return -1;}

if (value2 < value1){ return 1;}

return 0;

}

We want to avoid duplicated code

• The two implementations of compare() are nearly identical
• Seems wasteful

• What if we want to extend compare() for other things?
• char, short, long, string, Position, String_Holder, etc.

• Impossible to get everything…

7

“Generic” version of the function

• What we would prefer is one “generic” version of the function
• Code will be independent of what the real type is

• One implementation works for everything!

• Condition here: must implement operator<()

8

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

int compare(const ???& value1, const ???& value2) {

if (value1 < value2){ return -1;}

if (value2 < value1){ return 1;}

return 0;

}

C++ Generics

• C++ implements generics through a concept called “templates”

• A template is a function or class that accepts a type as a parameter
• You write the function code once in a type-agnostic way
• When you invoke the function or instantiate the class, you specify the type

as an argument to it

• At compile time, the compiler will generate the “specialized” code
from your template that uses the type provided
• The template definition is NOT runnable code
• The compiler creates runnable code given a concrete type

• A little like macro substitution

9

Generic functions

• Template to compare() any two things

10

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

template <typename T> // <...> can also be written <class T>

int compare(const T& value1, const T& value2) {

if (value1 < value2) return -1;

if (value2 < value1) return 1;

return 0;

}

Generic functions

• Template to compare() any two things

• Declares the following function a template
• The “generic” type is called T

11

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

template <typename T> // <...> can also be written <class T>

int compare(const T& value1, const T& value2) {

if (value1 < value2) return -1;

if (value2 < value1) return 1;

return 0;

}

Generic functions

• Template to compare() any two things

• Declares the following function a template
• The “generic” type is called T

• Code inside the template can use T like a type
12

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

template <typename T> // <...> can also be written <class T>

int compare(const T& value1, const T& value2) {

if (value1 < value2) return -1;

if (value2 < value1) return 1;

return 0;

}

Generic functions

• Template to compare() any two things

• We didn’t have to name the type T
• Could name it anything we want

• Named in all capital letters by convention

13

// returns 0 if equal, 1 if value1 is bigger, -1 otherwise

template <typename COMPARE_TYPE>

int compare(const COMPARE_TYPE& value1, const COMPARE_TYPE& value2) {

if (value1 < value2) return -1;

if (value2 < value1) return 1;

return 0;

}

Using generic functions

• Actual type being used goes in angle brackets after function name
• compare<COMPARE_TYPE>

14

int main() {

std::cout << compare<int>(10, 20) << “\n”;

std::cout << compare<double>(50.5, 50.6) << “\n”;

std::cout << compare<std::string>(“hello”, “world”) << “\n”;

return 0;

}

generic_compare.cxx

Using generic functions

• The compiler can sometimes guess the correct type for you based
on the arguments provided
• This is known as “type inference”

• Can occasionally lead to unexpected results though…

15

int main() {

std::cout << compare(10, 20) << “\n”; // OK

std::cout << compare(50.5, 50.6) << “\n”; // OK

std::cout << compare(“hello”, “world”) << “\n”; // FAILS!

return 0;

}

Using generic functions

• The compiler can also guess the correct type for you based on the
arguments provided
• This is known as “type inference”

• Can occasionally lead to unexpected results though…
• Third example below ends up calling compare<char*>()

16

int main() {

std::cout << compare(10, 20) << “\n”; // OK

std::cout << compare(50.5, 50.6) << “\n”; // OK

std::cout << compare(“hello”, “world”) << “\n”; // FAILS!

return 0;

}

Generic classes

• Templates are most commonly used for classes (similarly structs)

• Entire class definition is templated
• Template type can be used in data member and member functions

17

Example of generic classes

• Let’s create a class called Pair that holds two “things”
• The things do NOT have to be the same type
• Like a tuple in python, but limited to two

• Operations
• Set the value of the first thing
• Set the value of the second thing
• Get the value of the first thing
• Get the value of the second thing
• Print the pair of things

• Useful for the ability to return two things at once from a function!

18

Live coding: implement pair

• Operations
• Set the value of the first thing

• Set the value of the second thing

• Get the value of the first thing

• Get the value of the second thing

• Print the pair of things

• Real Pair implementation available in the C++ <utility> library
• https://www.cplusplus.com/reference/utility/pair/pair/

19

generic_pair-complete.cxx

https://www.cplusplus.com/reference/utility/pair/pair/

Dangers of templates

• Doing tricky things with compilers results in tricky errors

• Compiler error when you misuse a generic function (usually
unintentionally!) can get really bad
• Example: try calling compare() with something invalid

• Working with templates in general gets complicated and messy

• Need to implement all template code inside headers
• Needs to be imported into each C++ file that uses it so the generated

definitions are available

20

generic_pair_compare.cxx

Generics in GE211

• You’ve already been using them!
• Posn<int>, Posn<float>, Dims<int>, etc.

• You know enough to understand the entire implementation of Posn
• Take a look at it when you get a chance

• https://github.com/tov/ge211/blob/2d7d3a1bd762c3b6d6fac791b0da2fc6c
2013d3c/include/ge211/geometry.hxx#L264

21

https://github.com/tov/ge211/blob/2d7d3a1bd762c3b6d6fac791b0da2fc6c2013d3c/include/ge211/geometry.hxx#L264

Break + Question

• What syntax would you use to create a Pair where both the values
are Posns that hold ints?

Pair<???> pair({0, 0}, {3, 3});

22

Break + Question

• What syntax would you use to create a Pair where both the values
are Posns that hold ints?

Pair<Posn<int>, Posn<int>> pair({0, 0}, {3, 3});

23

24

• Generics

• Standard Template Library

• Iterators

• Homework 6 Overview

Outline

C++ Standard Library

• Four major pieces

1. The entire C standard library

2. C++ input/output stream library
• std::cin, std::cout, etc.

3. C++ Standard Template Library (STL)
• Containers, iterators, algorithms, etc.

4. Miscellaneous other stuff
• Strings, exceptions, memory allocation, localization

25

STL Containers

• Standard Template Library
• Contains various useful functionality created as templates!

• Apply for any type you want

• A container is an object that stores a collection of other objects
• Like arrays or linked lists

• We already covered one of these: std::vector

26

STL std::list

• http://www.cplusplus.com/reference/list/list/

• A generic doubly-linked list
• Next pointers and previous pointers allow movement in either direction

• Can be more or less efficient than std::vector

• See CS214

27

http://www.cplusplus.com/reference/list/list/

STL std::unordered_map

• https://www.cplusplus.com/reference/unordered_map/unordered_
map/

• Generic map from key to value
• For any type of key and type of value

• Can store a value by its key

• Can retrieve a value by its key

• Works just like a python dict

28

https://www.cplusplus.com/reference/unordered_map/unordered_map/

Live coding: unordered_map example

int main() {

std::unordered_map<std::string, int> map;

map[“CS211”] = 159;

map[“CE346”] = 30;

std::cout << “map at CS211 = “

<< map[“CS211”]

<< “\n”;

return 0;

}

29

unordered_map_example.cxx

Other STL containers

• Map
• Key->Value in sorted order by key

• Set
• Ordered list of unique elements

• Unordered_set
• Unique elements in no particular order

• Array
• Fixed size list of elements (like vector, but not resizable)

• And various others
• Stack, Queue, etc.

30

https://www.cplusplus.com/reference/stl/

https://www.cplusplus.com/reference/stl/

31

• Generics

• Standard Template Library

• Iterators

• Homework 6 Overview

Outline

How do we make algorithms work on generic containers?

• C++ provides various algorithms in its <algorithm> library
• find(), count(), sort()

• How does it make those work on any container?
• Algorithm needs to traverse the container. But each container is different

• Vector:
for(i=0; i<vector.size(); i++) {

vector[i];
}

• List:
for(node* curr=head; curr!=NULL; curr=curr->next){

curr.value;
}

32

Iterators allow generic traversing of containers

• Concept:
• Create an object that allows you to move through the container

• Holds a reference to the original object

• Understands how to move through that specific implementation

• Operations an iterator must support:
• Construction

• Getting the value at the current location (* dereference)

• Moving to the next location in the container (++)

• Comparison with another iterator (== or !=)

• Usually get two iterators, start and end, and traverse start until at end

33

General iterator pattern

start_iterator = object.begin();

end_iterator = object.end();

while (start_iterator != end_iterator) {

value = *start_iterator; // get value

// do something useful with value

start_iterator++; // move to next location

}

34

Iterators are modeled after pointers!

int array[5] = {1, 2, 3, 4, 5};

int* start_iterator = &(array[0]);

int* end_iterator = &(array[5]);

while (start_iterator != end_iterator) {

int value = *start_iterator;

std::cout << “Value: “ << value << “\n”;

start_iterator++;

}

35

iterator_example.cxx

Same code but for std::vector

std::vector<int> vec{1, 2, 3, 4, 5};

auto start_iterator = vec.begin();

auto end_iterator = vec.end();

while (start_iterator != end_iterator) {

int value = *start_iterator;

std::cout << “Value: “ << value << “\n”;

start_iterator++;

}

36

This part
didn’t
have to
change
at all!

auto asks the compiler to

figure out the type for you

iterator_example.cxx

More complicated iterators can support more operations

• Depending on the container, iterators could support many
operations

• Forward:
• construction, equality, increment, get value

• Bidirectional:
• Everything Forward does, decrement

• Random Access:
• Everything Bidirectional does, arithmetic, comparison, get value at index

37

Live coding: use the count algorithm

• int count(InputIterator first,

InputIterator second,

constT& value)

• Counts occurrences of a value in a container

• Actually returns an iterator::difference_type, but we’ll ignore that

• We can count the number of times a certain value occurs inside a
vector or array

38

iterator_example.cxx

Break + Question

• How would we implement the following code?

int array[5] = {1, 1, 1, 2, 2};

// count the number of twos in array

int num_twos = count(???, ???, 2);

39

Break + Question

• How would we implement the following code?
• Pointers!

int array[5] = {1, 1, 1, 2, 2};

// count the number of twos in array

int num_twos = count(&(array[0]), &(array[5]), 2);

40

41

• Generics

• Standard Template Library

• Iterators

• Homework 6 Overview

Outline

Reversi

• Also known as Othello

• Light player and dark player take turns
placing pieces

• A valid placed piece must be in a line with any number of opposing
pieces followed by one piece of the current player
• All opposing pieces in that bounded line are flipped to belong to the

current player

42

Example move in reversi

• First, must place pieces in the
central four squares
• These don’t follow the normal rules

43

Example move in reversi

• It is the dark player’s turn

• They may play in any of the four
locations indicated
• Must form a line with a light piece

in the middle

44

Example move in reversi

• Once the dark player places a
piece, all opposing pieces in that
line are flipped

45

Game demo

• https://www.mathsisfun.com/games/reversi.html

• Warning: the game setup rules are slightly different from ours
• We let players play out the first two moves, which must be in the center

46

https://www.mathsisfun.com/games/reversi.html

Project layout

• Model, View, Controller
• Same as with homework 5

• View is responsible for drawing things

• Controller gets inputs from the user

• Model contains the game logic

• Model interacts with several other components
• Board

• Player

• Move

• Position_set

• Move_map

47

Player

• Represents a Player
• Either in terms who owns a piece

• Or whose turn it currently is

enum class Player {

dark,

light,

neither

};

48

Enums

• Define a new type with a fixed list of possible values

enum class Player {

dark,

light,

neither

};

• New type: Player

• Possible values: Player::dark, Player::light, Player::neither

• Enums are in C as well as many other languages!

49

Board

• Stores state for the game
• Each Posn<int> within the board contains a Player

• Player::light, Player::dark, or Player::neither

• Valid positions are the rows/columns on the board

• An 8x8 board goes from {0,0} to {7,7}

• Can ask the board which piece is in a certain position

• Can tell the board to set a piece in a certain position

50

Move

• A std::pair of:
• A position on the board

• All pieces that would flip if the current player played in that position

• Stored as a Position_set

• Move_map
• An std::unordered_map

• Holds Moves

• Key is a position on the board

• Value is the corresponding position set for the Move

51

What do you have to do?

• Interact with a big program with lots of library files you didn’t write
• Board, Move, Player, Position_set
• You don’t need to understand all of the code, but you do need to

understand how to use them
• Look through the .hxx files for them

• Fill the Move_map next_moves

• Contents are each valid Move that the current player could make
• Need to analyze the board to make that determination

• Eventually, you’ll fill in the controller/view too
• Including hints to the current player about possible places they could play

52

53

• Generics

• Standard Template Library

• Iterators

• Homework 6 Overview

Outline

