
Lecture 13
Access Control

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Winter 2022

Slides adapted from:
Jesse Tov (Northwestern), Hal Perkins (University of Washington)

Administrivia

• Homework 5 is underway
• Remember this is a SOLO ASSIGNMENT

• Hardest part: getting used to C++ syntax

• Example: calling a function on an object
• Documentation: Posn<int>::right_by(…)

• Means: Posn<int> has a member function called right_by()

• To call it: pos.right_by(…)

2

Warning: CLion isn’t always trustworthy

• CLion tries too hard to be useful
• And can end up changing files you didn’t mean to

• When it pops up and asks if you want to do something,
usually the answer is “No!”

• Example: static functions

• This can end up changing code in files you didn’t mean to touch
• Easiest fix is often to check out the project again and move your files over

3

Today’s Goals

• Continue practice on constructors and objects
• Discuss operator overloading

• Discuss using exceptions to signal errors

• Introduce concept of encapsulation and access control
• How technically it’s done in C++

• Why we care about it

4

Getting the code for today

• Download code in a zip file from here:
https://nu-cs211.github.io/cs211-files/lec/13_access.zip

• Extract code wherever

• Open with CLion
• Make sure you open the folder with the CMakeLists.txt

5

https://nu-cs211.github.io/cs211-files/lec/13_access.zip

6

• Tour of GE211

• More Constructors

• Operator Overloading

• Exceptions

• Access Control

• Encapsulation Policy

Outline

GE211

• A simple game engine designed by Jesse Tov at Northwestern!
• Game Engine for CS211

• Source:
• https://github.com/tov/ge211

• Docs:
• https://tov.github.io/ge211/

7

https://github.com/tov/ge211
https://tov.github.io/ge211/

High-level overview

• GE211 has a big while loop that runs 60 times per second

• Each time through the loop:
• Checks for user inputs (mouse and keyboard)

• Calls functions in your code providing you those details

• Draws everything on screen

• Calls the draw() function in your code to get the sprites to draw

• All of this works through C++ objects
• Some details rely on inheritance, which we’ll discuss later

8

Game application code structure

• Model
• Keeps track of “game” state
• Might have multiple helper files for various objects it needs

• Controller
• Reads inputs from user and changes the model

• View
• Reads from model and sets the drawing

• Lab05 combines Controller and View into a single UI

9

ge211::geometry::Posn

• Docs: https://tov.github.io/ge211/structge211_1_1geometry_1_1_posn.html

• Keeps track of a 2D position!
• Defines various constructors

• Methods that shift the coordinate

• Operators for comparison and modification

10

https://tov.github.io/ge211/structge211_1_1geometry_1_1_posn.html

ge211::geometry::Dims

• Docs: https://tov.github.io/ge211/structge211_1_1geometry_1_1_dims.html

• Keeps track of the dimensions of an object
• Width and height

• Returned as the difference between two Posn

• Defines constructors and operators

11

https://tov.github.io/ge211/structge211_1_1geometry_1_1_dims.html

12

• Tour of GE211

• More Constructors

• Operator Overloading

• Exceptions

• Access Control

• Encapsulation Policy

Outline

Today’s working example

• String_Holder
• Manages strings using a constant-length array to hold characters

• Members:
• int length

• char characters[80]

• Rules (invariants)

• 0 <= length <= 80

• length matches the number of valid characters in characters

13

Live Coding: constructors for String_Holder

• String_Holder::String_Holder()

• Initialize empty

• String_Holder::String_Holder(const char* str)

• Construct from null-terminated string

• String_Holder::String_Holder(const char* str, int len)

• Construct from a length of characters

• String_Holder::String_Holder(const String_Holder& other)

• Copy constructor (from another String_Holder)

14

src/string_holder-implemented.cxx
src/string_holder.cxx

Delegating constructors

• One constructor can call another to handle initialization
• Delegates construction to that other constructor

// defined somewhere else

String_Holder::String_Holder(const char* str, int len);

// delegates to other constructor

String_Holder::String_Holder(const String_Holder& other)

: String_Holder(other.characters, other.length)

{}

15

Explicit constructors

• The explicit keyword before a constructor means that the
constructor must be manually called by the developer
• Rather than automatically called by the compiler

• Reason to have compiler automagic:

• String_Holder str = “Test”;

• Automatically calls String_Holder::String_Holder(“Test”);

• Kind of nice that it just works…

16

Explicit constructors

• The explicit keyword before a constructor means that the
constructor must be manually called by the developer
• Rather than automatically called by the compiler

• Reason to use explicit:

• void do_complicated_string_stuff(String_Holder str);

• do_complicated_string_stuff(“Test”);

• Also automatically calls the constructor
• But maybe the user just passed in the wrong argument and a compile

error would have been better…

17

18

• Tour of GE211

• More Constructors

• Operator Overloading

• Exceptions

• Access Control

• Encapsulation Policy

Outline

Defining operators for our objects

• One strength of C++ is that we can define how normal operators
work on our objects
• +, -, +=, ==, <<, etc.

• Most of these are not defined for you
• How would the compiler know what they mean for a String_Holder?

• An exception is assignment (=), which is defined as a copy of all fields

• We can implement the operators ourselves though!

• Can be implemented as standalone functions or member functions

19

Example overloaded operator

Standalone (normal) function

bool operator==(String_Holder const& lhs, String_Holder const& rhs){

…

}

Member function (assumes the first argument is *this)

bool String_Holder::operator==(String_Holder const& rhs) const{

…

}

Either is fine, but can’t do both! That would be a duplicate function

20

Note: lhs - left-hand side, rhs - right-hand side

src/string_holder.cxx

What might we want to do with our strings?

• Compare them
• bool operator==(T const& lhs, T const& rhs)

• Concatenate them
• T operator+(T const& lhs, T const& rhs)

• T& operator+=(T& lhs, T const& rhs)

• Print them through std::cout (which is type std::ostream)
• std::ostream&
operator<<(std::ostream& os, T const& value)

• Note: cannot be a member function because String_Holder is not the lhs

21

List of operator functions: https://gist.github.com/beached/38a4ae52fcadfab68cb6de05403fa393

src/string_holder.cxx

(substitute String_Holder for T)

https://gist.github.com/beached/38a4ae52fcadfab68cb6de05403fa393

Break + Question

• If we wanted to write operator+ as a member function, what
would its signature be?
• T operator+(T const& lhs, T const& rhs)

struct position {

…

???

}

22

(substitute String_Holder for T)

Break + Question

• If we wanted to write operator+ as a member function, what would
its signature be?
• T operator+(T const& lhs, T const& rhs)

struct String_Holder {

…

String_Holder operator+(String_Holder const& rhs) const;

}

23

(substitute String_Holder for T)

24

• Tour of GE211

• More Constructors

• Operator Overloading

• Exceptions

• Access Control

• Encapsulation Policy

Outline

Enforcing invariants with constructors

• What if a user violates the rules?
• 0 <= length <= 80

• length matches the number of valid characters in characters

• Possibilities
• Probably length should be an unsigned int to start with

• Truncate length to 80

• Only copy over as many characters as will fit

• But what if there’s no obvious choice for what to do?

• Constructor cannot return a value to say it failed

25

Exceptions conceptually

• Stop running this code and return a special error to the caller

• Things went wrong, so we can’t just keep executing code like
normal

• If the caller doesn’t expect the error and can’t handle it, repeat the
process
• Again stop running the code and return the special error

26

Exceptions are “thrown” by the function

• throw keyword performs the special “error return”

• Takes an argument of the error to return
• Example:

throw std::invalid_argument(“String is too long”);

• Actually, you can throw anything (for historical reasons)
throw 6;

• You should almost certainly throw a class based on std::exception

• https://en.cppreference.com/w/cpp/error/exception

27

https://en.cppreference.com/w/cpp/error/exception

Properly handling exceptions

• If no caller in the “call stack” handles the exception, the program
will exit

• Handle exceptions with a try-catch block

try {

// code that could throw an exception goes here

} catch (const std::invalid_argument& ex) {

// code to handle the exception goes here

}

• This example only catches std::invalid_argument exceptions

28

General try-catch form

try {

// code that could throw exceptions

} catch (some specific exception) {

// handler code

} catch (another specific exception) {
// handler code

} catch (...) {

// general case matches all exceptions

// actually includes the ... in the C++ code
}

29

Live coding: exceptions

• Functions to add to:
• String_Holder::String_Holder(const char*, int)

• Ensure that int values are:
• >= 0

• < MAX_STRING_LENGTH

• String_Holder::char_at(int)

• Ensure that int values are:
• >= 0

• < length

30

src/string_holder-exception.cxx

Break + Relevant XKCD

31
https://xkcd.com/2200/

32

• Tour of GE211

• More Constructors

• Operator Overloading

• Exceptions

• Access Control

• Encapsulation Policy

Outline

The problem of public access

• Constructors (and other member functions) that enforce rules are
insufficient
• Anyone could access the data member directly

String_Holder str(“Test String”);

str.length = 5000;

std::cout << str; // oops, UNDEFINED BEHAVIOR

33

Access modifiers

struct My_struct {

// accessible to all parts of the program

}

34

By default, all data and functions are “public”

Access modifiers

struct My_struct {

private:

// accessible only to member functions

}

35

Can choose to make data/functions “private”

Access modifiers

struct My_struct {

public:

// accessible to all parts of the program

private:

// accessible only to member functions

}

36

Can choose exactly which data / functions are
publicly accessibly versus privately accessible!

Access modifiers

struct My_struct {

public:

// accessible to all parts of the program

private:

// accessible only to member functions

public:

// accessible to all parts of the program

}
37

Can choose exactly which data / functions are
publicly accessibly versus privately accessible!

Structs versus Classes

• Struct and Class are interchangeable
• The difference is the default behavior

• Both can use private: and public: access modifiers

struct Test {

// accessible to all parts of the program

}

class Test {

// accessible only to member functions

}

38

Style convention

• Use classes for abstractions (smart data)
• Example: String_Holder, Ball

• Use structs for “plain old data”
• Example: Position, Dimension

• We intentionally violated this in homework 5 to keep things simple
• And to make transition from C simpler: “structs with functions”

39

Additional specifier: protected

• Like private, but accessible to classes that inherit from this one
• i.e., other classes that are based on this one

• Will talk about more next week

• If you see it around before then, consider it the same as private

40

41

• Tour of GE211

• More Constructors

• Operator Overloading

• Exceptions

• Access Control

• Encapsulation Policy

Outline

Encapsulation

• Goal: protect the rules of your data so it remains consistent

• Method:
1. Make the data private

2. Add public member functions to let clients do useful things

3. Don’t add public member functions that let clients do bad things
(like break the rules of the data)

42

Step back: why do we care about consistency?

• Helps us avoid UNDEFINED BEHAVIOR

• Keep track of sizes of arrays, for instance

• Avoids errors
• Maybe you expect your data to always be sorted

• Improves efficiency
• Make assumptions about the data that you know MUST be true

43

Live coding: update String_Holder access control

• Data members should be private
• Convention: private members end with “_”

• Functions should be public
• And functions should never allow the rules to be broken

44

Encapsulation cuts off direct access to data members

• Problem: functions outside of the class can never access data
members, even to just read from them

• Options:
1. Include as a member function

2. Add “getters” for data variables
String_Holder::size()

3. Declare function as a friend

45

Allowing specific things access to private members

• friend keyword declares another thing that can access private
members from this class

• Example overloaded operator! operator<<()
• Needs to access the private members of String_Holder

• Inside the String_Holder class definition, add:

friend std::ostream& operator<<(std::ostream&, const String_Holder&);

46

Welcome to Encapsulation

• Software engineering principle:
1. Bundle your data and operations together
2. Don’t let non-bundled operations mess with your bundled data

• Benefits
• Correctness

• Data will never become inconsistent

• Flexibility
• Implementation details can change without modifying the API

• Does NOT improve security
• Data can still be accessed, just not by accident

47

48

• Tour of GE211

• More Constructors

• Operator Overloading

• Exceptions

• Access Control

• Encapsulation Policy

Outline

