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Administrivia

• Homework 3 due tonight
• Remember that slip days exist

• Beware: office hours are overloaded

• Prepare for long delays until you can get help, and only high-level help

• Feel free to ask questions on Campuswire too
• I’ll be checking it all evening

• No lab due this weekend!
• Get started on Homework 4 early instead (which will be out tonight)
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Homework 3 hint: comparing strings

char* a = “abc”

char b[4] = {‘a’, ‘b’, ‘c’, ‘\0’}

if (a == b) {

print(“They match!\n”);

} else {

print(“They do not match\n”);

}

This code prints: “They do not match\n”. Why?

What does a == b compare?

Two pointers!
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Strings must be compared with strcmp()

• https://www.cplusplus.com/reference/cstring/strcmp/

• int strcmp(const char* str1, const char* str2)

• Compares two strings character-by-character until reaching a ‘\0’

• Returns an integer value of the following:

• <0 – str1 comes before str2 alphabetically

• 0 – str1 is equal to str2

• >0 – str1 comes after str2 alphabetically
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https://www.cplusplus.com/reference/cstring/strcmp/


SEGV is a null pointer dereference

• This AddressSanitizer error is due to dereferencing a NULL pointer
• Often in Homework 3, it’s because you tried to read a NULL candidate name

• Possibly with `strcmp()`
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Today’s Goals

• Practice dynamic memory allocation with arrays
• How do we make an array the dynamically changes size?

• Introduce and explore concept of linked lists
• What are they and what are their advantages?

• How do we write code that uses them?

• Discuss concept of pointers to pointers
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Getting the code for today

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/08_linked_lists.tgz

cd 08_linked_lists/
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Dealing with dynamic input

• What if you want to read in data, but you don’t know how much 
data there might be?

• Arrays in C are a fixed size

• But you can malloc() as many times as needed
• Request some memory

• Use until you run out

• Request more memory and copy existing values over

• realloc() makes this simple
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Example of dynamic memory: read_line()

char* read_line(void)

• Reads an entire line at a time from stdin
• Can’t know in advance how many bytes there will be to read

• Keeps reading in bytes until ‘\n’ character or end-of-file

• Needs to request more memory until it holds the entire line

• Note: part of the 211 library, not standard C
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Live coding: implement read_line()

char* read_line(void)

• Requirements
• Read from stdin until ‘\n’ or end-of-file (EOF)

• Allocate an array to hold the read characters

• Make sure to end it with a ‘\0’

• Returns

• NULL pointer if EOF was reached immediately

• Pointer to string otherwise (not including the newline character)
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readline.c



Realloc versus malloc

• We could just malloc() and copy ourselves, what does 
realloc() add?

• realloc() can be far more efficient
• Doesn’t have to copy data at all if there is room in the heap to expand

• Also simpler for programmers
• Can’t forget to free the old memory if realloc() does it for you
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Default string size will change efficiency

• Memory efficiency
• Pointer returned could have way more memory than characters

• User might hold on to memory for a while before freeing

• The less wasted memory, the less memory the program needs

• Runtime speed
• malloc() and realloc() are slow

• The fewer times we call them, the faster the program will run

• Need to pick a sweet spot to balance the two of these
• Real program: starts at 80 characters, doubles size when reallocating
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Does efficiency really matter though?

• If you’re writing a CS211 homework: no

• If you’re writing a Javascript interpreter for Firefox,
• Which has millions of users

• times hundreds of websites per day for each user

• times hundreds of lines of code per website

• and each line of code is read with read_line()

• YES
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Break + relevant xkcd

15https://xkcd.com/2347/
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Problems with arrays

• They make a lot of sense when you have fixed data

• But they’re not very flexible for dynamic data

• Not smooth or simple to grow/shrink arrays
• Lots of thought for how to dynamically change memory

• Writing to an array only overwrites existing slots, doesn’t append
• How would we add data to front of an array?
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Live coding example

• Let’s write a function that adds to the front of an existing array

• print_array()

• Prints contents of array so we can see what the program is doing

• add_to_front()

• Appends a value to the front of an existing array

• It’s annoying to try to append to an array

• It’s also very inefficient. Needs to move every element
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array_add_front.c



An alternative: linked allocations
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3 4 2 3 NULL

array_pointer:

linked_list_pointer:



Linked list analogy as a train

• Think of a linked list as a train

20



Linked list analogy

• Think of a linked list as a train
• Multiple Nodes are linked together into a Linked List
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Linked list analogy

• Think of a linked list as a train
• Multiple Nodes are linked together into a Linked List

• Additional Nodes can be added anywhere in the Linked List

• Just disconnect, add the Node in between, and reconnect
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C code for a linked list structure

• Array version:
int myarray[];

• Linked List version:
struct node {

int value;

struct node* next;

};

typedef struct node node_t;

node_t* head;
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Rules for linked lists

• The variable holding the “list” is actually a pointer to the first node 
of the list
• Just like an array is a pointer to the first element in the array

• First node: the “Head” of the list

• Each node must have a pointer to the next node in the list

• The last node in the list has a NULL pointer
• Last node: the “Tail” of the list
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Live coding example

• Working with a linked list
• Create an empty list

• Add elements to the list

• Determine length

• Print entire list
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linked_list.c



Break + Question: Which is better, and why?

void free_list(list_t list) 

{

while (list != NULL) {

free(list);

list = list->next;

}

}
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void free_list(list_t list) 

{

if (list != NULL) {

free_list(list->next);

free(list);

}

}



Break + Question: Which is better, and why?

void free_list(list_t list) 

{

while (list != NULL) {

free(list);

list = list->next;

}

}
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void free_list(list_t list) 

{

if (list != NULL) {

free_list(list->next);

free(list);

}

}

Error: use after free!!

Best would be a working while loop
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The memory for each list node must be managed

• Lists are composed of many small memory allocations rather than 
one large memory allocation (like arrays)

• So every individual node needs to be separately freed in order to 
destroy the entire list

• Let’s write list_destroy()

29

linked_list.c



Lists have no random access

• You can ask an array for any item, and you get it immediately
• array[6]

• All access for linked lists is sequential
• You must start at the head and “walk” the list until you get to the item

• list->next->next->next->next->next->next->value

• Let’s write get_at_index()
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linked_list.c



Items can be added at any point in the list

• We can add/remove the middle item of the list
• Just make sure you get the next pointer right

• Arrays can’t support that kind of thing
• You would have to copy over all the later elements in the array

• Let’s write list_append_front() and 
list_remove_front() functions
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linked_list.c



Break + Open Question

• Which uses more memory, an array or a linked list?
• Assume each contains the same values

• How much more?
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Linked lists take more memory than arrays

• Each node must include data and a “next” pointer

• This increases overall memory use
• As a cost for the ease of use that linked lists provide

• Compare an array of int versus linked list of int
• Linked list will be 3x the amount of memory

• The large in size your data is, the less the overhead will be
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Pointers are another type of value

• Values could be a number, like 5 or 6.27

• Or they could be a “pointer” to an object
• Points at the object, not the variable or value

• It points at the “chunk of memory”

• Technically, in C it holds the address of that memory
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z: 5

z_pointer:



We can make a pointer to another pointer

• Pointers are values stored in an object
• That object has a memory address

• We could make a pointer to a pointer
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z: 5

z_pointer:

z_pointer_pointer:



Double pointers in C

• To make a pointer to something, add a * to the type
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z: 5

z_pointer:

z_pointer_pointer:
int z = 5;

int* z_pointer = &z;

int** z_pointer_pointer = &z_pointer;



When is this useful?

• Various functions in the linked list code need to return the
new head of the linked list
• Instead, they could update the linked list variable

struct node* list_append_front(struct node* list, int value);

could become

void list_append_front(struct node** list, int value);
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linked_list.c



Also occurs in arguments to main

• argv is an array of strings
• Strings are char*

• So argv is char**

• char* argv[] is equivalent to char** argv
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