
Lecture 08
Linked Lists

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Winter 2022

Slides adapted from:
Jesse Tov



Administrivia

• Homework 3 due tonight
• Remember that slip days exist

• Beware: office hours are overloaded

• Prepare for long delays until you can get help, and only high-level help

• Feel free to ask questions on Campuswire too
• I’ll be checking it all evening

• No lab due this weekend!
• Get started on Homework 4 early instead (which will be out tonight)

2



Homework 3 hint: comparing strings

char* a = “abc”

char b[4] = {‘a’, ‘b’, ‘c’, ‘\0’}

if (a == b) {

print(“They match!\n”);

} else {

print(“They do not match\n”);

}

This code prints: “They do not match\n”. Why?

What does a == b compare?

Two pointers!

3



Strings must be compared with strcmp()

• https://www.cplusplus.com/reference/cstring/strcmp/

• int strcmp(const char* str1, const char* str2)

• Compares two strings character-by-character until reaching a ‘\0’

• Returns an integer value of the following:

• <0 – str1 comes before str2 alphabetically

• 0 – str1 is equal to str2

• >0 – str1 comes after str2 alphabetically

4

https://www.cplusplus.com/reference/cstring/strcmp/


SEGV is a null pointer dereference

• This AddressSanitizer error is due to dereferencing a NULL pointer
• Often in Homework 3, it’s because you tried to read a NULL candidate name

• Possibly with `strcmp()`

5



Today’s Goals

• Practice dynamic memory allocation with arrays
• How do we make an array the dynamically changes size?

• Introduce and explore concept of linked lists
• What are they and what are their advantages?

• How do we write code that uses them?

• Discuss concept of pointers to pointers

6



Getting the code for today

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/08_linked_lists.tgz

cd 08_linked_lists/

7



8

• Dynamic Arrays

• Linked Lists

• Linked List Details

• Pointers to Pointers

Outline



Dealing with dynamic input

• What if you want to read in data, but you don’t know how much 
data there might be?

• Arrays in C are a fixed size

• But you can malloc() as many times as needed
• Request some memory

• Use until you run out

• Request more memory and copy existing values over

• realloc() makes this simple

9



Example of dynamic memory: read_line()

char* read_line(void)

• Reads an entire line at a time from stdin
• Can’t know in advance how many bytes there will be to read

• Keeps reading in bytes until ‘\n’ character or end-of-file

• Needs to request more memory until it holds the entire line

• Note: part of the 211 library, not standard C

10



Live coding: implement read_line()

char* read_line(void)

• Requirements
• Read from stdin until ‘\n’ or end-of-file (EOF)

• Allocate an array to hold the read characters

• Make sure to end it with a ‘\0’

• Returns

• NULL pointer if EOF was reached immediately

• Pointer to string otherwise (not including the newline character)

11

readline.c



Realloc versus malloc

• We could just malloc() and copy ourselves, what does 
realloc() add?

• realloc() can be far more efficient
• Doesn’t have to copy data at all if there is room in the heap to expand

• Also simpler for programmers
• Can’t forget to free the old memory if realloc() does it for you

12



Default string size will change efficiency

• Memory efficiency
• Pointer returned could have way more memory than characters

• User might hold on to memory for a while before freeing

• The less wasted memory, the less memory the program needs

• Runtime speed
• malloc() and realloc() are slow

• The fewer times we call them, the faster the program will run

• Need to pick a sweet spot to balance the two of these
• Real program: starts at 80 characters, doubles size when reallocating

13



Does efficiency really matter though?

• If you’re writing a CS211 homework: no

• If you’re writing a Javascript interpreter for Firefox,
• Which has millions of users

• times hundreds of websites per day for each user

• times hundreds of lines of code per website

• and each line of code is read with read_line()

• YES

14



Break + relevant xkcd

15https://xkcd.com/2347/



16

• Dynamic Arrays

• Linked Lists

• Linked List Details

• Pointers to Pointers

Outline



Problems with arrays

• They make a lot of sense when you have fixed data

• But they’re not very flexible for dynamic data

• Not smooth or simple to grow/shrink arrays
• Lots of thought for how to dynamically change memory

• Writing to an array only overwrites existing slots, doesn’t append
• How would we add data to front of an array?

17



Live coding example

• Let’s write a function that adds to the front of an existing array

• print_array()

• Prints contents of array so we can see what the program is doing

• add_to_front()

• Appends a value to the front of an existing array

• It’s annoying to try to append to an array

• It’s also very inefficient. Needs to move every element

18

array_add_front.c



An alternative: linked allocations

19

3 4 2 3

3 4 2 3 NULL

array_pointer:

linked_list_pointer:



Linked list analogy as a train

• Think of a linked list as a train

20



Linked list analogy

• Think of a linked list as a train
• Multiple Nodes are linked together into a Linked List

21

Node
(Head)

Node Node
(Tail)

Next Pointer Next Pointer



Linked list analogy

• Think of a linked list as a train
• Multiple Nodes are linked together into a Linked List

• Additional Nodes can be added anywhere in the Linked List

• Just disconnect, add the Node in between, and reconnect

22

Node
(Head)

Node Node
(Tail)

Node Node Node Node

Next
Pointer

Next
Pointer

Next
Pointer

Next
Pointer

Next
Pointer

Next
Pointer



C code for a linked list structure

• Array version:
int myarray[];

• Linked List version:
struct node {

int value;

struct node* next;

};

typedef struct node node_t;

node_t* head;

23



Rules for linked lists

• The variable holding the “list” is actually a pointer to the first node 
of the list
• Just like an array is a pointer to the first element in the array

• First node: the “Head” of the list

• Each node must have a pointer to the next node in the list

• The last node in the list has a NULL pointer
• Last node: the “Tail” of the list

24



Live coding example

• Working with a linked list
• Create an empty list

• Add elements to the list

• Determine length

• Print entire list

25

linked_list.c



Break + Question: Which is better, and why?

void free_list(list_t list) 

{

while (list != NULL) {

free(list);

list = list->next;

}

}

26

void free_list(list_t list) 

{

if (list != NULL) {

free_list(list->next);

free(list);

}

}



Break + Question: Which is better, and why?

void free_list(list_t list) 

{

while (list != NULL) {

free(list);

list = list->next;

}

}

27

void free_list(list_t list) 

{

if (list != NULL) {

free_list(list->next);

free(list);

}

}

Error: use after free!!

Best would be a working while loop



28

• Dynamic Arrays

• Linked Lists

• Linked List Details

• Pointers to Pointers

Outline



The memory for each list node must be managed

• Lists are composed of many small memory allocations rather than 
one large memory allocation (like arrays)

• So every individual node needs to be separately freed in order to 
destroy the entire list

• Let’s write list_destroy()

29

linked_list.c



Lists have no random access

• You can ask an array for any item, and you get it immediately
• array[6]

• All access for linked lists is sequential
• You must start at the head and “walk” the list until you get to the item

• list->next->next->next->next->next->next->value

• Let’s write get_at_index()

30

linked_list.c



Items can be added at any point in the list

• We can add/remove the middle item of the list
• Just make sure you get the next pointer right

• Arrays can’t support that kind of thing
• You would have to copy over all the later elements in the array

• Let’s write list_append_front() and 
list_remove_front() functions

31

linked_list.c



Break + Open Question

• Which uses more memory, an array or a linked list?
• Assume each contains the same values

• How much more?

32



Linked lists take more memory than arrays

• Each node must include data and a “next” pointer

• This increases overall memory use
• As a cost for the ease of use that linked lists provide

• Compare an array of int versus linked list of int
• Linked list will be 3x the amount of memory

• The large in size your data is, the less the overhead will be

33



34

• Dynamic Arrays

• Linked Lists

• Linked List Details

• Pointers to Pointers

Outline



Pointers are another type of value

• Values could be a number, like 5 or 6.27

• Or they could be a “pointer” to an object
• Points at the object, not the variable or value

• It points at the “chunk of memory”

• Technically, in C it holds the address of that memory

35

z: 5

z_pointer:



We can make a pointer to another pointer

• Pointers are values stored in an object
• That object has a memory address

• We could make a pointer to a pointer

36

z: 5

z_pointer:

z_pointer_pointer:



Double pointers in C

• To make a pointer to something, add a * to the type

37

z: 5

z_pointer:

z_pointer_pointer:
int z = 5;

int* z_pointer = &z;

int** z_pointer_pointer = &z_pointer;



When is this useful?

• Various functions in the linked list code need to return the
new head of the linked list
• Instead, they could update the linked list variable

struct node* list_append_front(struct node* list, int value);

could become

void list_append_front(struct node** list, int value);

38

linked_list.c



Also occurs in arguments to main

• argv is an array of strings
• Strings are char*

• So argv is char**

• char* argv[] is equivalent to char** argv

39



40

• Dynamic Arrays

• Linked Lists

• Linked List Details

• Pointers to Pointers

Outline


