
Lecture 06
Dynamic Memory

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Fall 2021

Slides adapted from:
Jesse Tov

Administrivia

• Homework 2 due today
• Homework 2 self-eval opens tomorrow

• Remember that you can use slip days

• Make sure that at least the final submission has both partners on it

• Lab04 will release later today
• Practice with GDB, a debugging tool

• Homework 3 will release late today
• Create a system for counting votes

• Uses dynamic memory allocation to hold the votes

2

Administrivia

• Quiz next week Tuesday
• In-person quiz taken during class time, after lecture
• If you’ve got special circumstances, I’ll reach out ASAP

• General format: 15 minutes to answer a few questions on paper
• Usually 1-3 questions, which could each have multiple sub-parts
• Goal is NOT to put you under time pressure

• Should be plenty of time if you know what’s going on
• Covers material from the last few weeks

• So this one will focus on C: Syntax, Types, Pointers, Arrays, Strings, Memory

• Be sure to bring a pencil
• Or a pen if you’re feeling brave

3

Today’s Goals

• Understand how dynamic memory works
• And what to be careful about

• Discuss related ideas:
• How much memory do C types need?

• How do we avoid common dynamic memory mistakes?

4

Getting the code for today

cd ~/cs211/lec/ (or wherever you put stuff)

tar -xkvf ~cs211/lec/06_dynamic.tgz

cd 06_dynamic/

5

6

• Dynamic Memory Allocation
• Dynamic Memory Example

• Memory Sizes of C Types

• Ownership

Outline

Review: What is memory conceptually?

• A nearly infinite series of slots that can be used to hold data
• Units of memory are known as bytes

• So 4 GB of RAM is memory with 4294967296 bytes

• Typical variables take 1-8 bytes

• Each slot in the memory has an index: a memory address
• Pointers are the memory address of a variable

7

• • •

Review: C memory layout

• Stack Section
• Local variables
• Function arguments

• Heap Section
• Memory granted through malloc()

• Static Section (a.k.a. Data Section)
• Global variables
• Static function variables
• Subsection with read-only data

• Like string literals

• Text Section (a.k.a Code Section)
• Program code

8

Stack

Heap

Static

TextAddress
0x0000000000000000

Address
0xFFFFFFFFFFFFFFFF

Review: When is a pointer “valid”?

1. If it is initialized

2. If the variable it is referencing still has a valid lifetime
• Variables “live” until the end of the scope they were created in

• Scopes are defined by { }

• Example:

void some_function(void) {

int a = 5;

}

9

a goes “out of scope” here

The variable stops being “alive”

Relating memory sections back to lifetimes

• Stack memory has the lifetime of the “scope”
• From { to }

• Local variables are here

• Static memory has the lifetime of the process
• From the start of main() until it returns

• Strings are here

• What if you want memory that outlives a function, but doesn’t live
for the entire duration of the program
• Heap memory! Claim with malloc()

10

Allocate memory with malloc()

void* malloc(size_t size)

• Requests size bytes of memory from the heap

• Returns a pointer to this new object

• Not associated with any variable (sort of like string literals)

• It has no value by default

• The object persists until it is manually deallocated

• Deallocated through a call to free()

11

Malloc return value

void* malloc(size_t size)

• void* is a special pointer type in C
• “A pointer to nothing” (or to anything)

• Must be cast into the desired type before dereferencing
int* myptr = (int*)malloc(sizeof(int));

• malloc() can fail!!
• The return value is NULL if it was unable to allocate the memory

• You always need to check the return value of malloc() before using it

12

Deallocate memory with free()

void free(void* ptr)

• Returns the memory at the pointer to the heap
• Only works if the memory address was given by malloc()

• Must be called when you are finished with the memory
• Or else you have a “memory leak”

• Memory leaks occur when malloc()’d memory is not free()’d
• Process slowly accumulates memory that it was given, but can’t access

anymore
• Keeps using more and more memory when it runs for a long time
• Until the OS eventually has to kill it

13

Free needs to be used carefully

void free(void* ptr)

• If you pass in a pointer that wasn’t created with malloc():
• UNDEFINED BEHAVIOR (often a segfault)

• This includes a pointer that has been modified from the one returned by malloc

• free(NULL) is fine though

• Once memory is freed, it must NEVER be used again
• Or else… UNDEFINED BEHAVIOR (surprise!)

• Definitely don’t free it twice

• AddressSanitizer will helpfully crash your code in both of these cases!

14

Rules for dynamic memory allocation

1. Every pointer returned by malloc() must be NULL-checked

2. Every object returned by malloc() must have its address
passed to free() exactly once

3. After an object is freed, it must not be accessed or freed again

4. An object not obtained from malloc() must not be freed

• Breaking any of these rules leads to UNDEFINED BEHAVIOR

15

Pros/cons of dynamic memory allocation

• Pros
• You can create exactly as much memory as you want

• It lives for exactly as long as you need it

• Not tied to any particular function

• Cons
• UNDEFINED BEHAVIOR everywhere if you’re not careful

• Must be sure to later free() all memory given by malloc()

16

Other “dynamic memory family” functions

void* calloc(size_t num, size_t size)

• Allocates a block of memory for num elements, each of size bytes
• Zeros each element in the memory

void* realloc(void* ptr, size_t size)

• Changes the size of the memory block pointed to by ptr

• Might return the same pointer, might be a new pointer
• Frees the old pointer if giving you a new one
• Values in the memory are maintained

• Can be used to increase the size of a malloc()’d array!

17

Break + Question

int testfunction (int i) {

int* ptr = (int*)malloc(sizeof(int));

*ptr = i;

printf(“Before: %d\n”, *ptr);

free(ptr);

return *ptr;

}

int main(void) {

printf(“After: %d\n”, testfunction(5));

return 0;

}

18

What values does this program print?

testfunction.c

Break + Question

int testfunction (int i) {

int* ptr = (int*)malloc(sizeof(int));

*ptr = i;

printf(“Before: %d\n”, *ptr);

free(ptr);

return *ptr;

}

int main(void) {

printf(“After: %d\n”, testfunction(5));

return 0;

}

19

What values does this program print?

It prints: “Before: 5\n”

After that: UNDEFINED BEHAVIOR

“use-after-free” error

testfunction.c

20

• Dynamic Memory Allocation
• Dynamic Memory Example

• Memory Sizes of C Types

• Ownership

Outline

Live coding example

• Let’s write a program that uses dynamic memory to create uppercase
versions of string literals

• Functions:

char* make_mutable_string(const char*);

void uppercase_string(char*);
• Useful library function: toupper()

void print_and_destroy(char*);

int main(void)

21

dynamic_string_example.c AND toupper_starter.c

22

• Dynamic Memory Allocation
• Dynamic Memory Example

• Memory Sizes of C Types

• Ownership

Outline

How much memory do various types in C take?

• Actually a complicated question

• Many types in C are defined as a “minimum size”
• Where they are bigger on some machines and smaller on others

• HOWEVER, if you work on a modern 64-bit computer, you can
carefully make some assumptions
• And we’ll talk about those assumptions

23

Standard sizes of C types on modern (64-bit) computers

• 1 byte
• char, unsigned char, signed char
• bool

• 2 bytes
• short, unsigned short, signed short

• 4 bytes
• int, unsigned int, signed int
• float

• 8 bytes
• long, unsigned long, signed long
• double

• Every pointer type!

24

What about more complex things?

• Arrays
• Easy!

• Number of slots times the size of each slot

• Example: int array[8] is 32 bytes (8 slots * 4 bytes/slot)

• Structs
• Complicated! (we’ll explore more in CS213)

• At least the size of every field inside it

• Plus more depending on the order of the fields for efficiency reasons

25

Don’t assume you know these sizes in code

1. It’s hard to remember all of this

2. They could be different on a different computer system
• Especially 32-bit systems, microcontrollers, or other special computers

• Use sizeof() to figure out the number of bytes a type is
• Not a library function, actually an operator in C
• Primarily used on types, but can be used on variables too

• Results may sometimes be confusing though…

• Example
• sizeof(int)
• sizeof(double)
• sizeof(bool*)

26

27

• Dynamic Memory Allocation
• Dynamic Memory Example

• Memory Sizes of C Types

• Ownership

Outline

Ownership idea

• If all malloc()’d memory must later be free()’d
• Then there must be some agreement on which function should free it

• This concept is known as “ownership”
• Ownership is unique. An object cannot have multiple owners

• The part of the software that “owns” the memory must either:
1. Eventually free that memory

OR

2. Eventually transfer ownership

28

Ownership questions

• When memory is passed into or out of a function, two options:
1. Ownership transfer

2. “Borrowing” the memory

• Borrowing memory means that it can be accessed until the
function returns
• But the function won’t hold on to a pointer and try to access it later

• Example:

• printf() only ever borrows memory. It never frees the memory or
tries to access that memory again during future calls to printf()

29

Ownership in our dynamic memory example

char* make_mutable_string(const char*);

• The caller takes ownership of the result
• (This function creates memory, but is not in charge of freeing it)

void uppercase_string(char*);

• Borrows the string transiently
• (Accesses it temporarily, but does not take ownership)

void print_and_destroy(char*);

• Takes ownership of the input string
• (This function will free it)

30

Ownership is a concept

• Nothing in the compiler will enforce ownership 😢

• No way to know if a function takes ownership or borrows without
reading the documentation

• Ownership is a contract about how you promise to implement code
• But if you follow it, it makes dynamic memory easier!

• The contract will be specified in the writeup for homeworks in CS211

31

The full ownership protocol

• The owner of a heap-allocated object is responsible for
deallocating it
• No one else may do so

• Borrowers of an object may access or modify it
• But they may not hold on to a reference to it or deallocate it

• Passing or returning a pointer may or may not transfer ownership
• If so, caller must have owned it previously and now give up ownership

• If not, caller could also be borrowing. The new function is also borrowing

32

33

• Dynamic Memory Allocation
• Dynamic Memory Example

• Memory Sizes of C Types

• Ownership

Outline

34

• Bonus: Bits and Bytes

Outline

Positional Numbering Systems

• The position of a numeral (e.g., digit) determines its contribution to the
overall number
• Makes arithmetic simple (compared to, say, roman numerals)
• Any number has one canonical representation

• Example: base 10
• 1045610 = 1*104 + 0*103 + 4*102 + 5*101 + 6*100

• Other bases are also possible
• Base 2: 100100102 = 1*27 + 1*24 + 1*21 = 14610

• Base 60, used by the Babylonians
• The source of 60 seconds in a minute, 60 minutes in an hour
• And 360 degrees in a circle

• Base 20, used by the Maya and Gauls (bits remain in French today)

35

Base 2 Example

• Computer Scientists use base 2 a LOT

• Let’s convert 13410 to base 2

• We need to decompose 13410 into a sum of powers of 2
• Start with the largest power of 2 that is smaller or equal to 13410

• Subtract it, then repeat the process

13410 – 12810 = 610

610 – 410 = 210

210 – 210 = 010

13410 = 1×128 + 0×64 + 0×32 + 0×16 + 0×8 + 1×4 + 1×2 + 0×1

13410 = 100001102

13410 = 1×27 + 0×26 + 0×25 + 0×24 + 0×23 + 1×22 + 1×21 + 0×20

36

Why computers use Base 2

• Simple electronic implementation
• Easy to store with bi-stable elements
• Reliably transmitted on noisy and inaccurate wires

• Straightforward implementation of arithmetic functions

• (Pretty much) all computers use base 2

0.0V

0.5V

2.8V

3.3V

0 1 0

37

Why don’t computers use Base 10?

• Because implementing it electronically is a pain
• Hard to store

• ENIAC (first general-purpose electronic computer)
used 10 vacuum tubes / digit

• Hard to transmit
• Need high precision to encode

10 signal levels on single wire

• Messy to implement digital logic functions
• Addition, multiplication, etc.

38

Base 16: Hexadecimal

• Writing long sequences of 0s and 1s is tedious and
error-prone
• And takes up a lot of space on a page!

• So we’ll often use base 16 (also called hexadecimal)

• 16 = 24, so every group of 4 bits becomes a
hexadecimal digit (or hexit)
• If we have a number of bits not divisible by 4, add 0s on

the left (always ok, just like base 10)

• Base 2 = 2 symbols (0, 1)
Base 10 = 10 symbols (0-9)
Base 16, need 16 symbols
• Use letters A-F once we run out of decimal digits

Hex Decimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

1 0 1 0 0 1 0 1 1 1 1 0 1 1 0x297B0 0 “0x” prefix = it’s in hex
39

Bytes

• A single bit doesn’t hold much information
• Only two possible values: 0 and 1

• So we’ll typically work with larger groups of bits

• For convenience, we’ll refer to groups of 8 bits as bytes
• And usually work with multiples of 8 bits at a time

• Conveniently, 8 bits = 2 hexits

• Some examples
• 1 byte: 0b01100111 = 0x67

• 2 bytes: 11000100 001011112 = 0xC42F

40

“0b” prefix = it’s in binary

Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• Convert binary to decimal:

41

Practice problem

• Convert 0x42 to decimal

• Steps
• Convert 0x42 to binary:

• 0x4 -> 0b0100 0x2 -> 0b0010 0x42 -> 0b 0100 0010

• Convert binary to decimal:

• 1*26 + 1*21 = 64 + 2 = 66

42

Practice problem

• Convert 0x42 to decimal

• Critical thinking:
• What are the maximum and minimum values?

• Minimum 0 (0x00)

• Maximum 255 (0xFF)

• How big is 0x42 out of 0xFF?

• ~25% (0x40, 0x80, 0xC0, 0x100)

• So 255/4 ≈ 240/4 ≈ 60

43

Big idea: bits can be used to represent anything

• Depending on the context, the bits 11000011 could mean
• The number 195

• The number -61

• The number -1.1875

• The value True

• The character ‘├’

• The ret x86 instruction

• You have to know the context to make sense of any bits you have!
• People and software they write determine what the bits actually mean

44

