
Lecture 01
Introduction

CS211 – Fundamentals of Computer Programming II

Branden Ghena – Winter 2022

Slides adapted from:
Jesse Tov



Welcome to CS211

• Course Goal: become a better and broader programmer

• First half
• C programming
• Unix shell

• Second half
• C++ programming

• Introduces students to industry-standard languages and tools

• Builds foundational software design skills at a medium scale

2



Online classes

• We’re online for the next two weeks, but I fully expect to be back 
in person after that
• Note: I’m not an expert in public health

• For now, we’ll make the best of being online

3



Branden Ghena (he/him)

• Assistant Faculty of Instruction

• Education
• Undergrad: Michigan Tech
• Master’s: University of Michigan
• PhD: University of California, Berkeley

• Research
• Resource-constrained sensing systems
• Low-energy wireless networks
• Embedded operating systems

• Teaching
• Computer Systems

• CS211: Fundamentals of Programming II
• CS213: Intro to Computer Systems
• CS343: Operating Systems
• CE346: Microprocessor System Design
• CS397: Wireless Protocols for the IoT

4

Things I love



Sruti Bhagavatula (she/her)

• Assistant Professor of Instruction

• Education
• BS: University of Illinois Chicago

• MS/PhD: Carnegie Mellon University

• Research
• Spread of security and privacy information online
• Measurement of security and privacy behavior
• (Social networks, machine learning, IoT) + 

security/privacy

• Teaching
• CS 211: Fundamentals of Programming II

• CS 397/497: Data Privacy

5
5

My hobbies



Questions in class

• Please ask questions!!!
• It’s not just you who doesn’t understand something.

• You can always ask questions verbally during class
• Raise hand (in-person or virtually) or just speak up

• Bonus option: send messages in chat
• Sruti will be watching and can answer if I don’t

• We’ll have a chat system for questions when in-person too

6



Today’s Goals

• Discuss why we teach (and require) this class

• Describe how this class is going to function

• Introduction to working in Unix shell (command line)

7



8

• Why?

• Course Overview

• Unix Shell

Outline



What does CS211 teach?

• C and C++ Programming

• Unix Shell

9



C - the most important programming language

• Old (1972), but nowhere near the first programming language
• FORTRAN, LISP, ALGOL, COBOL, Basic, B, and many others came first

• Right time, right place, right capability
• Enables both low-level control and (relatively) high level thinking

• Fast, efficient, and highly portable

• Inspired everything that has come since
• C syntax is copied partially or completely in MANY other languages

• Lessons learned from using C inspired improvements to make 
programming easier

10



C++ - an evolutionary addition to C

• Additional features on top of C
• Most important: classes to support Object Oriented Programming

• Also includes a significant amount of libraries that C does not

• Enables more complicated software design
• Manages which part of code can access which things at which times

• Manages how things are named and referred to

• Manages errors to help software respond to them

11



Things written in C/C++

• All major modern operating systems are partially or entirely C
• Windows, Linux, MacOS, Android, iOS

• Scientific computing (mix of C and C++)
• Mathematica, MATLAB, various scientific libraries

• Video game engines (often C++)
• Unreal Engine, Unity, CryEngine

• Embedded control systems (usually C, occasionally C++)
• Cars, Airplanes, Satellites and Rovers, Thermostats, Webcams, …

12



Upsides to C and C++

• You are in charge of everything
• You can do anything you want without constraints

• Capable of directly interacting with hardware (“systems language”)
• Grab exactly as much memory as you need and manage it yourself

• Makes it incredibly fast (~100x faster than Python)

• Makes it incredibly efficient (no memory is wasted)

• These lead to the languages being very widely used
• Top five programming languages for decades include C and C++

13



Downsides to C and C++

• You are in charge of everything
• And nothing is taken care of for you

• Things you “can’t” do are UNDEFINED BEHAVIOR

• To enable portability, the languages just straight-up don’t say what 
happens if you violate the rules

• The computer could do anything

• Backwards compatibility means features are only ever added
• You’ll see this especially in C++, C just has less features total
• C++ feels like a bunch of things stapled together

• And there’s an amazing programming language hiding in there

14



Analogies for programming languages

• Racket
• Generic beginner’s car that gets you places

• Python
• Great car you can drive without a license
• Unless you want to go really fast or on bad terrain, might be good enough

• C
• A racing car that goes incredibly fast but breaks down every fifty miles

• C++
• A souped-up version of the C racing car with dozens of extra features that only 

breaks down every 250 miles
• But when it breaks down, nobody can figure out what went wrong

15http://users.cms.caltech.edu/~mvanier/hacking/rants/cars.html



So why teach C and C++?

• You’ll learn a lot more about programming
• Syntax and ideas from C inspired a lot of other languages

• Feels very different from Racket or Python

• You’ll become a better programmer
• You’re going to run into a lot of errors and problems in this class

• Hopefully they teach you to better design and plan your code

• Prepare you to dig deeper into computer systems
• A “systems language” is needed to interact directly with hardware

• Major options: Pascal, C, C++, Ada, Rust

16



What does CS211 teach?

• C and C++ Programming

• Unix Shell

17



Unix

• A wildly popular operating system in the 1970s and 80s

• Today refers to the family of operating systems inspired or grown from 
Unix
• Particular design style for “everything is a file”
• Various tools the OS is expected to provide
• Command line interface, also known as a “shell”

18

Unix

Linux Android

BSD
MacOS

iOS



C and Unix were born together

• Operating systems used to be written in assembly
• Basic instructions specific to a certain processor family (see CS213)

• So supporting a new computer type meant rewriting all of your software

• Unix development started in 1969 by Ken Thompson and Dennis Ritchie
• Developed at Bell Labs, which was a computing research powerhouse

• C language was created in 1972 by Dennis Ritchie to write Unix programs
• And they quickly rewrote the whole OS in C as well

• This made the OS simpler to modify and easier to port to new systems

• Unix became enormously popular due in part to its portability

19



Unix shell

• Text-based interface to a computer
• Compare to graphical interfaces that need a mouse

• Necessary for remote interactions with many computers
• Cloud servers

• Specialized “headless” hardware

• Can be incredibly efficient and powerful
• Find all JPEG files in this folder and change to be PNGs
• mogrify –format png *.jpg

20



So why teach Unix shell?

• Many future classes are going to require you to work on a 
specialized computer that is shared by the class
• More resources, specific capabilities, etc.

• Add another basic computing tool to your skillset
• You might not use shell every day

• But maybe you might

• You get to feel like a “hacker”
• Shell isn’t the only way to be a

programmer, but is a stereotypical way

21



So, why CS211?

• It’s going to make you a much better programmer

• It’s going to teach you a bunch of new skills

• It’s going to enable you to succeed in future classes

22



Architecture of a lecture

23

A
tt

en
ti

o
n

Time (minutes)

0 20 25 50 53 78 80

Administrivia
+ stretch break

Summary
+ Bonus

Open
Question

Full



24

• Why?

• Course Overview

• Unix Shell

Outline



Course Staff

• TA (1)
• Sherwin Shen

• PhD student in Computer Science

• PMs (12)
• AJ Hesby Alexander Redding
• Antonio Rocha Brian Gleason
• Chris Song Danche Smilkova
• Dilan Nair Eli Barlow
• John Sanchez Mirage Modi
• Naythen Farr Nick Baird

• Their role: support student questions via office hours and campuswire

25



Lectures

• Lectures: synchronous, recorded via Zoom (for now)
• Please attend and ask questions!

• Panopto tab on Canvas will have recordings (a few hours later)

• This should still be true when we’re back in-person

26



Labs

• Small, guided practice sessions to help you learn
• Teach you a new skill/language

• Two parts
• Lab guide will walk you through doing some things

• Lab assessment on Canvas will ask a few short questions about it

• Should be easy if you did the lab

• These are not formal assignments or quizzes
• You may work with others on them

27



Quizzes

• Multiple quizzes instead of a big exam
• Should be four total

• Each is roughly 15-20 minutes

• Quizzes cover mainly material from the last two weeks
• But build upon knowledge from the entire course

• More details on these to come
• We will hopefully be back in person for the first one…

28



Homeworks

• Programming assignments with about a week to complete it
• This is where you’ll learn the most in class

• First four are C, last two are C++

• Homeworks 1 and 5 are on your own

• Other homeworks are with a partner of your choosing
• We’ll put up a survey for those who want to be paired with a random partner

• These are serious. Be careful about academic integrity on these

29



Final Project

• A bigger homework, where you get to choose what you want to do
• Done with a partner of your choosing

• Make an “interactive program” (usually a game)
• Examples: Pacman, Tetris, Two-dots, Checkers, Desert Bus

• This is your chance to do something interesting and fun!

• Can be a significant amount of work though

30



Grade composition

Category Count Total Value

Labs 5 5%

Quizzes 4 10%

Homework 6 60%

Final project 1 25%

31



Relative homework difficulties

* But really it’s up to you

32

Homework Difficulty

Hw01 2

Hw02 5

Hw03 7

Hw04 11

Hw05 6

Hw06 9

Final Project 10ish*

Hw04 is the last in C
Then a one week break
Hw05 is the first in C++



Late Policy

• You can submit homeworks late
• Quizzes and labs cannot be submitted late

• 10% penalty to maximum grade per day late
• Example: three days late means maximum grade is 70%

• Final project has a sliding scale
• 90% for up to 24-hours late

• 60% and 30% for the two days after that

33



Slip Days

• Slip days let you turn in a homework late and receive no penalty

• Each student gets 3 slip days
• Apply to homeworks only (not final project or labs)
• You don’t need to tell us you’re using them, we’ll just automatically apply 

them at the end of the year
• Be sure to coordinate about them on partner assignments

• Examples:
• Turn in hw01 three days late
• Turn in hw04 two days late and hw06 one day late
• Turn in hw02 four days late with only a one-day penalty

34



We can support you for unexpected problems

• We can be flexible with deadlines for problems outside of your 
control
• Sick, family emergency, broken computer

• Contact us (via Campuswire)

35



Collaboration in CS211, three levels:

1. Partner Collaboration
• Your code and the other student’s code are identical because you share it and 

work on it together
• ONLY for registered partners on specified homeworks

2. Close Collaboration
• You communicate about code however you see fit
• ONLY acceptable for labs

3. Arms-Length Collaboration
• You discuss problems and solutions at a high level
• MAY NOT read, write, look at, record, or transcribe code
• MAY NOT have the code up on screen during collaboration
• MUST cite your sources, both arms-length collaborators and other resources

36
Refer to syllabus for the official version of this policy



Academic Honesty

• In CS211, we take cheating very seriously

• Cheating is when you:
• Engage in an inappropriate level of collaboration

• Such as look at another student’s code

• Enable another student, present or future, to cheat
• Such as letting a CS211 student read your code next year

• Fail to cite your sources (friend, Stack Overflow, etc.)
• Such as you get a big hint and don’t acknowledge where it came from 

in a code comment

37



Academic Honesty

• Please do not cheat in CS211

1. If you don’t write code, you won’t learn!

2. Cheating on code is super easy to catch!!
• No, like really really easy

• All suspected cheating is reported to the relevant dean for investigation

• Last time I taught it was 8 cases

• If you are unsure about a situation, ask the staff on Campuswire

38



Getting Help – Campuswire

• Post questions here
• Staff and I monitor and answer questions

• You can also answer each other! (or note that you have the same issue)

• I’ll also post useful or interesting notes here

• Do NOT email me. Post to Campuswire instead
• I won’t see your email until way later and then I’ll feel guilty about it

39



Getting Help – Office Hours

• Office hours are mostly hosted by the PMs and TA
• Sruti and I will have some too! Especially for higher-level questions

• Schedule
• We’re going to host a TON of office hours

• Entirely remote for now (on gather.town)

• Hopefully we can add some in-person hours later

• Details to follow, schedule on Canvas homepage

• Reminder: office hours are meant to augment the class
• Attend them!

40



Getting Help – Request a Meeting

• Lecture is my side gig

• My main job is helping students succeed

• If you are struggling, reach out and I will meet with you
• Course material

• Homework

• Other stuff going on in your life

41



Advice

• Submit assignments early and often!

• If you find this course difficult, that’s because it is difficult.

• However, nobody fails unless they give up.

• You belong here and can succeed here.

• Be kind to each other.

42



Break + relevant xkcd

43https://xkcd.com/1053/



44

• Why?

• Course Overview

• Unix Shell

Outline



How do you get a Unix shell?

• Have a MacOS or Linux computer
• Or set up Windows Subsystem for Linux (WSL) on Windows

• Install Virtualbox and Linux
• Installing Ubuntu is free and only takes twenty minutes

• Log in to a class server remotely!
• This is what we’ll do for CS211

• Lab01 teaches you how to do this (posted later today)

45



Command line interfaces

• Text-based commands

• Positives
• It’s easy to be precisely clear about what you want and how things are 

configured

• Negatives
• How do you remember everything?

• Reality
• There will be a few dozen commands you’ll memorize (after practice)
• And you’ll learn how to look up everything else

46



Live code demo!!!

47



Commands for moving between directories

• Directory structure and moving through it
• ls

• Lists files in the current directory
• cd

• Change directory
• pwd

• Prints the path of the current directory

• Mis-typing something
• “Command not found” means you tried to run something invalid
• fish: somecommandyoumistyped: command not found...

48



Directory structure in Linux

• Example: /usr/bin/ is the path to user-installed programs

49



Special paths

. the current directory

.. the parent of the current directory

../../ the parent of the parent of the current directory

../../../ and so on…

- the previous directory you were in before the current one

~/ the home directory of the current user (your home)

~cs211 the home directory of the user cs211
(works for any user, but you’ll probably won’t interact with other users)

/ the root directory (analogous to C:\ on windows)

50



Relative vs absolute paths

• Relative paths are relative to the current directory
• ../

• src/

• ../../code/src/../build/

• Absolute paths have the full path name to the location
• /home/branden/

• /home/branden/cs213/code/

• /home/branden/cs213/code/src/../build/

51



Wildcard in path names

• Sometimes you’re not sure exactly what the name is
• Or there might be multiple files that you want to interact with 

simultaneously

• The wildcard symbol, *, replaces any number of characters in a 
path name

• Examples
• ls /home/*/ List all files in all user’s home directories

• ls ~/cs21*/ List all files in any directory starting with cs21

• ls code/src/*.c List all files that end with “.c” in code/src/

52



Tab Completion

• Typing takes toooooooo looooooonnnnggg
• Solution, let the computer guess what you’re trying to type

• Pressing tab while part-way through typing just about anything in 
terminal will tab-complete it for you
• As long as you have typed enough characters so that only one option 

remains, it will complete it

• If multiple options remain, it will stop trying

53



Command flags

• man

• Opens the manual pages for a program

• Example: man ls

• Flags are configurations for a command that change what it does
• ls –l lists files in the current directory in a vertical list with details 

• ls –t sorts the ls output by most recently modified

• ls –l –t does both

• You can type multiple flags after a single dash
• ls –lt is equivalent to ls –l –t is equivalent to ls -tl

54



Searching for things

• grep –r “text” *

• Explanation

• Grep prints lines matching a pattern

• The pattern in this case is “text”

• -r means search recursively, i.e. in this directory and all subdirectories

• * means to search in any file in the current directory

• Summary

• Search all the files here and below for the word “text”

55



Working with files

• cat path

• Prints out the contents of the file

• mv path1 path2

• Moves a file from path1 to path2

• cp path1 path2

• Copies a file from path1 to path2

• rm path

• Deletes (removes) a file

56



Editing files

• There are many different terminal text editors
• And there are holy wars about why one is best

• There is no best. Just use whatever you like

• Example editors
• Vim, Emacs, Nano

• In CS211, I’ll be teaching you using the Micro text editor
• Occasionally I’ll open vim by accident. Someone yell at me when I do

• https://micro-editor.github.io/

57



Editing with Micro

• micro filename
• Opens micro, editing filename

• Works just like any text editor you’ve used
• Mouse moves the cursor around, as do the arrow keys

• Typing makes text appear

• (This isn’t true in some shell editors, looking at you vim)

• Ctrl-s save the file

• Ctrl-o open a file

• Ctrl-q quit

58



Build a C file if there’s enough time

• Lab01

• https://nu-cs211.github.io/cs211-files/lab/lab01.pdf

59

https://nu-cs211.github.io/cs211-files/lab/lab01.pdf


Don’t be overwhelmed!!!!

• You have plenty of time to learn this

• Lab01 guides you through the same kinds of commands I did 
today, step by step

• Practice is the only thing that will really help
• And CS211 will give you plenty of practice

60



Helpful guides

• Great lecture notes on using the shell
• https://swcarpentry.github.io/shell-novice/

• Tool to explain various shell commands
• https://explainshell.com/

• Tool to explain how to use various shell commands
• Just type the command into the box at the top

• https://tldr.ostera.io/

61

https://swcarpentry.github.io/shell-novice/
https://explainshell.com/
https://tldr.ostera.io/


62

• Why?

• Course Overview

• Unix Shell

Outline


