Lecture 01
Introduction

CS211 — Fundamentals of Computer Programming II
Branden Ghena — Winter 2022

Slides adapted from:
Jesse Tov

Northwestern

Welcome to CS211

» Course Goal: become a better and broader programmer

 First half
« C programming
« Unix shell

» Second half
« C++ programming

« Introduces students to industry-standard languages and tools
* Builds foundational software design skills at a medium scale

Online classes

« We're online for the next two weeks, but I fully expect to be back
in person after that
* Note: I'm not an expert in public health

« For now, we'll make the best of being online

Branden Ghena (he/him)

« Assistant Faculty of Instruction

 Education
« Undergrad: Michigan Tech
« Master’s: University of Michigan
« PhD: University of California, Berkeley

« Research
« Resource-constrained sensing systems
« Low-energy wireless networks
« Embedded operating systems

 Teaching

« Computer Systems
CS211: Fundamentals of Programming II
CS213: Intro to Computer Systems
CS343: Operating Systems
CE346: Microprocessor System Design
CS397: Wireless Protocols for the IoT

Michiganjlech,

Houghton, Michigan ,

Sruti Bhagavatula (she/her)

 Assistant Professor of Instruction

» Education
« BS: University of Illinois Chicago
« MS/PhD: Carnegie Mellon University

» Research
« Spread of security and privacy information online
« Measurement of security and privacy behavior
 (Social networks, machine learning, IoT) +

security/privac o Eggr ~
tY/p y an you trust w EVO]' HDN » 7‘:;-;{"3\P£fr;r
* Teaching | suspecT " 2Ry
. (ne voice at the end of 1% g T ot S
» CS 211: Fundamentals of Programming II KEIGO. AT

« CS 397/497: Data Privacy

Questions in class

* Please ask questions!!!
» It's not just you who doesn’t understand something.

* You can always ask questions verbally during class
 Raise hand (in-person or virtually) or just speak up

» Bonus option: send messages in chat
« Sruti will be watching and can answer if I don't
« We'll have a chat system for questions when in-person too

Today’s Goals

* Discuss why we teach (and require) this class
» Describe how this class is going to function

» Introduction to working in Unix shell (command line)

Outline
 Why?

e Course Overview

* Unix Shell

What does CS211 teach?

« C and C++ Programming

* Unix Shell

C - the most important programming language

« Old (1972), but nowhere near the first programming language
« FORTRAN, LISP, ALGOL, COBOL, Basic, B, and many others came first

» Right time, right place, right capability
« Enables both low-level control and (relatively) high level thinking
* Fast, efficient, and highly portable

* Inspired everything that has come since
 C syntax is copied partially or completely in MANY other languages

 Lessons learned from using C inspired improvements to make
programming easier

10

C++ - an evolutionary addition to C

 Additional features on top of C
« Most important: classes to support Object Oriented Programming
» Also includes a significant amount of libraries that C does not

« Enables more complicated software design
« Manages which part of code can access which things at which times
« Manages how things are named and referred to
« Manages errors to help software respond to them

11

Things written in C/C++

» All major modern operating systems are partially or entirely C
« Windows, Linux, MacOS, Android, iOS

« Scientific computing (mix of C and C++)
« Mathematica, MATLAB, various scientific libraries

* Video game engines (often C++)
» Unreal Engine, Unity, CryEngine

« Embedded control systems (usually C, occasionally C++)
 Cars, Airplanes, Satellites and Rovers, Thermostats, Webcams, ...

12

Upsides to C and C++

 You are in charge of everything
 You can do anything you want without constraints

 Capable of directly interacting with hardware (“systems language”)
« Grab exactly as much memory as you need and manage it yourself
« Makes it incredibly fast (~100x faster than Python)
« Makes it incredibly efficient (no memory is wasted)

» These lead to the languages being very widely used
 Top five programming languages for decades include C and C++

13

Downsides to C and C++

 You are in charge of everything
« And nothing is taken care of for you

 Things you “can’t” do are UNDEFINED BEHAVIOR

 To enable portability, the languages just straight-up don’t say what
happens if you violate the rules

» The computer could do anything

« Backwards compatibility means features are only ever added
* You'll see this especially in C++, C just has less features total
« C++ feels like a bunch of things stapled together
« And there’s an amazing programming language hiding in there

14

Analogies for programming languages

 Racket
» Generic beginner’s car that gets you places

 Python
» Great car you can drive without a license
 Unless you want to go really fast or on bad terrain, might be good enough

- C
A racing car that goes incredibly fast but breaks down every fifty miles

« C++

A souped-up version of the C racing car with dozens of extra features that only
breaks down every 250 miles

« But when it breaks down, nobody can figure out what went wrong

http://users.cms.caltech.edu/~mvanier/hacking/rants/cars.html 15

So why teach C and C++7?

 You'll learn a lot more about programming
« Syntax and ideas from C inspired a lot of other languages
 Feels very different from Racket or Python

* You'll become a better programmer
 You're going to run into a lot of errors and problems in this class
« Hopefully they teach you to better design and plan your code

 Prepare you to dig deeper into computer systems
A “systems language” is needed to interact directly with hardware
« Major options: Pascal, C, C++, Ada, Rust

16

What does CS211 teach?

« C and C++ Programming

 Unix Shell

17

Unix

A wildly popular operating system in the 1970s and 80s

. 'Ll]oday refers to the family of operating systems inspired or grown from
nix

* Particular design style for “everything is a file”
« Various tools the OS is expected to provide
« Command line interface, also known as a “shell”

Linux —
-
s M

18

C and Unix were born together

» Operating systems used to be written in assembly
« Basic instructions specific to a certain processor family (see CS213)
« So supporting a new computer type meant rewriting all of your software

» Unix development started in 1969 by Ken Thompson and Dennis Ritchie
« Developed at Bell Labs, which was a computing research powerhouse

 C language was created in 1972 by Dennis Ritchie to write Unix programs
« And they quickly rewrote the whole OS in C as well
« This made the OS simpler to modify and easier to port to new systems
 Unix became enormous/y popular due in part to its portability

19

Unix shell

 Text-based interface to a computer
« Compare to graphical interfaces that need a mouse

« Necessary for remote interactions with many computers
 Cloud servers
 Specialized “headless” hardware

 Can be incredibly efficient and powerful

 Find all JPEG files in this folder and change to be PNGs
* mogrify —format png *.jpg

20

So why teach Unix shell?

« Many future classes are going to require you to work on a
specialized computer that is shared by the class
« More resources, specific capabilities, etc.

» Add another basic computing tool to your skillset
* You might not use shell every day
« But maybe you might

* You get to feel like a “hacker”

 Shell isn’t the only way to be a
programmer, but is a stereotypical way

So, why CS2117

» [t's going to make you a much better programmer
» [t's going to teach you a bunch of new skills

» [t's going to enable you to succeed in future classes

22

Architecture of a lecture

Full

Attention

NN TN

Administrivia Open Summary
+ stretch break Question + Bonus

| | |

0 20 25 50 53 78 80

Time (minutes)

23

Outline
« Why?

 Course Overview

* Unix Shell

Course Staff
. TA (1)

« Sherwin Shen
« PhD student in Computer Science

* PMs (12)
* AJ Hesby Alexander Redding
« Antonio Rocha Brian Gleason
 Chris Song Danche Smilkova
 Dilan Nair Eli Barlow
 John Sanchez Mirage Modi
« Naythen Farr Nick Baird

 Their role: support student questions via office hours and campuswire

25

Lectures

e Lectures: synchronous, recorded via Zoom (for now)
 Please attend and ask questions!
« Panopto tab on Canvas will have recordings (a few hours later)
 This should still be true when we're back in-person

26

Labs

» Small, guided practice sessions to help you learn
 Teach you a new skill/language

« TWO parts
 Lab guide will walk you through doing some things
- Lab assessment on Canvas will ask a few short questions about it
« Should be easy if you did the lab

* These are not formal assignments or quizzes
« You may work with others on them

27

Quizzes

 Multiple quizzes instead of a big exam
« Should be four total
« Each is roughly 15-20 minutes

 Quizzes cover mainly material from the last two weeks
« But build upon knowledge from the entire course

« More details on these to come
« We will hopefully be back in person for the first one...

28

Homeworks

* Programming assignments with about a week to complete it
 This is where you'll learn the most in class

 First four are C, last two are C++

« Homeworks 1 and 5 are on your own

« Other homeworks are with a partner of your choosing
« We'll put up a survey for those who want to be paired with a random partner

* These are serious. Be careful about academic integrity on these

29

Final Project

* A bigger homework, where you get to choose what you want to do
« Done with a partner of your choosing

« Make an “interactive program” (usually a game)
« Examples: Pacman, Tetris, Two-dots, Checkers, Desert Bus

* This is your chance to do something interesting and fun!
 Can be a significant amount of work though

30

Grade composition

Category |[Count |Total Value
Labs 5 5%
Quizzes 4 10%
Homework 6 60%
Final project 1 25%

31

Relative homework difficulties

Homework |Difficulty

HwO1 2

HwO02 5

HwO03 /

HWO4 11 HwO04 is the last in C

O . G T e a one M_/eek_ break
HwO5 is the first in C++

HwO06 9

Final Project 10ish*

* But really it's up to you

32

Late Policy

* YOou can submit ~Aomeworks late
* Quizzes and labs cannot be submitted late

« 10% penalty to maximum grade per day late
« Example: three days late means maximum grade is 70%

* Final project has a sliding scale
« 90% for up to 24-hours late
« 60% and 30% for the two days after that

33

Slip Days

» Slip days let you turn in a homework late and receive no penalty

 Each student gets 3 slip days
« Apply to homeworks only (not final project or labs)

 You don’t need to tell us you're using them, we'll just automatically apply
them at the end of the year

 Be sure to coordinate about them on partner assignments

« Examples:
 Turn in hwO01 three days late
« Turn in hw04 two days late and hw06 one day late
« Turn in hw02 four days late with only a one-day penalty

34

We can support you for unexpected problems

« We can be flexible with deadlines for problems outside of your
control
* Sick, family emergency, broken computer
« Contact us (via Campuswire)

35

Collaboration in CS211, three levels:

1. Partner Collaboration

 Your code and the other student’s code are identical because you share it and
work on it together

« ONLY for registered partners on specified homeworks

2. Close Collaboration
« You communicate about code however you see fit
« ONLY acceptable for labs

3. Arms-Length Collaboration
* You discuss problems and solutions at a high level
« MAY NOT read, write, look at, record, or transcribe code
« MAY NOT have the code up on screen during collaboration
« MUST cite your sources, both arms-length collaborators and other resources

Refer to syllabus for the official version of this policy

36

Academic Honesty

« In CS211, we take cheating very seriously

 Cheating is when you:
« Engage in an inappropriate level of collaboration
 Such as look at another student’s code

« Enable another student, present or future, to cheat
« Such as letting a CS211 student read your code next year

« Fail to cite your sources (friend, Stack Overflow, etc.)

 Such as you get a big hint and don’t acknowledge where it came from
in @ code comment

37

Academic Honesty

* Please do not cheat in CS211
1. If you don't write code, you won't learn!

2. Cheating on code is super easy to catch!!
* No, like really really easy

« All suspected cheating is reported to the relevant dean for investigation
 Last time I taught it was 8 cases

e If you are unsure about a situation, ask the staff on Campuswire

38

Getting Help — Campuswire
* Post questions here

« Staff and I monitor and answer questions
 You can also answer each other! (or note that you have the same issue)

* I'll also post useful or interesting notes here

* Do NOT email me. Post to Campuswire instead
« I won't see your email until way later and then I'll feel guilty about it

39

Getting Help — Office Hours

« Office hours are mostly hosted by the PMs and TA
« Sruti and I will have some too! Especially for higher-level questions

* Schedule

« We're going to host a TON of office hours
 Entirely remote for now (on gather.town)

« Hopefully we can add some in-person hours later
» Details to follow, schedule on Canvas homepage

« Reminder: office hours are meant to augment the class
 Attend them!

40

Getting Help — Request a Meeting

* Lecture is my side gig
« My main job is helping students succeed

« If you are struggling, reach out and I will meet with you
« Course material
* Homework
 Other stuff going on in your life

41

Advice

« Submit assignments early and often!

« If you find this course difficult, that's because it is difficult.
« However, nobody fails unless they give up.

* You belong here and can succeed here.

- Be kind to each other.

42

Break + relevant xkcd

[T TRYNOT T MAKE FUN OF PESPLE R |
ADHITTING THEY DONT KNOW THINGS,

IF T MAKE FUN OF PEOPLE, |

'BECAUSE FOR ERACH THING “EVERYONE |

KNOWS™ By THE TME THEYRE ADULTS,

FVERY DAY THERE PRE,MHHER%E,"

10,000 PEDPLE IN THE (JS HERRING

ABOUT IT FOR THE FIRST TIVE.

oM -
beokd oF 1 o = O

oM
AOOF T B = 100%

Us BRH RAE = 1,000,000/)eac

NUMBER HEARING
AGOUT TFoR THE “"’m’:@"
FIRET TIME %y

T TRAIN THEM NoT W TELL ME
WHEN THEY HAVE THOSE. MOMENTS. |

AND T MiS5 00T ON HE FUN. |

‘DIET COKE AND MENTOS

THING'? \WHATS THAT?
OHMAN! COME ON, WERE
GGHGETHEEEI:{EE*EEEEE.

WHY? YOURE ONE OF
TODAY'S LCKY
—/ 10000,

https://xkcd.com/1053/

43

Outline
« Why?

e Course Overview

 Unix Shell

How do you get a Unix shell?

» Have a MacOS or Linux computer
* Or set up Windows Subsystem for Linux (WSL) on Windows

« Install Virtualbox and Linux
« Installing Ubuntu is free and only takes twenty minutes

* Log in to a class server remotely!
 This is what we'll do for CS211
« Lab01 teaches you how to do this (posted later today)

45

Command line interfaces

« Text-based commands

e Positives

» It's easy to be precisely clear about what you want and how things are
configured

* Negatives
« How do you remember everything?

* Reality
« There will be a few dozen commands you’ll memorize (after practice)
« And you'll learn how to look up everything else

46

Live code demo!!!

47

Commands for moving between directories

» Directory structure and moving through it
* 1s
« Lists files in the current directory
e cd
« Change directory
* pwd
* Prints the path of the current directory

 Mis-typing something
« “"Command not found” means you tried to run something invalid
e fish: somecommandyoumistyped: command not found...

48

Directory structure in Linux

root

[!]

| /bin/ | /boot/ I

fopt/ |

« Example: /usr/bin/ is the path to user-installed

| /root/ l

l /dev/ I | letc/ I

| /sbin/ l

© B

| fsrv/ |

| /home/ | Mlib/

Itmp/ | lusr/

fvar/ l

/media/ | /mnt/ I

[bins | (includer| { i/ | (/sbinv |

(1cacher| (r0g/| {/spoot/

[ftmpl]

programs

49

Special paths

/../
/o /o
~/
~cs211

t
t
t

ne current directory
ne parent of the current directory

ne parent of the parent of the current directory

and so on...

the previous directory you were in before the current one

the home directory of the current user (your home)

the home directory of the user cs211
(works for any user, but you'll probably won't interact with other users)

the root directory (analogous to c:\ on windows)

50

Relative vs absolute paths

» Relative paths are relative to the current directory
.« ../
e src/
e ../../code/src/../build/

 Absolute paths have the full path name to the location
e /home/branden/
e /home/branden/cs213/code/
e /home/branden/cs213/code/src/../build/

51

Wildcard in path names

« Sometimes you're not sure exactly what the name is

« Or there might be multiple files that you want to interact with
simultaneously

» The wildcard symbol, *, replaces any number of characters in a
path name

« Examples
e 1s /home/*/ List all files in all user's home directories
* 1s ~/cs21*/ List all files in any directory starting with cs21
* 1s code/src/*.c Listall files that end with “.c” in code/src/

52

Tab Completion

» Typing takes tooooo000 looooooonnnnggg
* Solution, let the computer guess what you're trying to type

* Pressing tab while part-way through typing just about anything in
terminal will tab-complete it for you

 As long as you have typed enough characters so that only one option
remains, it will complete it

« If multiple options remain, it will stop trying

53

Command flags

*man

« Opens the manual pages for a program
 Example: man 1s

* Flags are configurations for a command that change what it does
« 1s -1 lists files in the current directory in a vertical list with details
« 1s —t sorts the Is output by most recently modified
« 1s -1 —t does both

 You can type multiple flags after a single dash
« 1s —1ltisequivalentto 1s -1 -t isequivalentto 1s -t1l

54

Searching for things

*grep —r “text” *

 Explanation
 Grep prints lines matching a pattern
« The pattern in this case is “text”
* —r means search recursively, i.e. in this directory and all subdirectories
« * means to search in any file in the current directory

« Summary
 Search all the files here and below for the word “text”

55

Working with files

* cat path
 Prints out the contents of the file

*mv pathl path?Z
« Moves a file from path1l to path2

* cp pathl path?Z
 Copies a file from path1 to path2

*rm path
 Deletes (removes) a file

56

Editing files

* There are many different terminal text editors
* And there are holy wars about why one is best
- There is no best. Just use whatever you like

« Example editors
* Vim, Emacs, Nano

« In CS211, T'll be teaching you using the Micro text editor
 Occasionally I'll open vim by accident. Someone yell at me when I do
* https://micro-editor.github.io/

57

Editing with Micro

 micro filename
« Opens micro, editing filename

« Works just like any text editor you‘ve used
« Mouse moves the cursor around, as do the arrow keys
« Typing makes text appear
* (This isn’t true in some shell editors, ioking at you vim)

« Ctrl-s save the file
« Ctrl-o open a file
« Ctrl-g quit

58

Build a C file if there's enough time

* Lab01

« https://nu-cs211.github.io/cs211-files/lab/lab01.pdf

59

https://nu-cs211.github.io/cs211-files/lab/lab01.pdf

Don’t be overwhelmed!!!!

 You have plenty of time to learn this

 Lab01 guides you through the same kinds of commands I did
today, step by step

* Practice is the only thing that will really help
« And CS211 will give you plenty of practice

60

Helpful guides

» Great lecture notes on using the shell
« https://swcarpentry.github.io/shell-novice/

« Tool to explain various shell commands
« https://explainshell.com/

» Tool to explain how to use various shell commands
» Just type the command into the box at the top
» https://tldr.ostera.io/

61

https://swcarpentry.github.io/shell-novice/
https://explainshell.com/
https://tldr.ostera.io/

Outline
« Why?

e Course Overview

* Unix Shell

