
CS 211 Lab 4
Debugging

Winter 2022

Today we are going to practice debugging using GDB.
GDB is a debugger lets you see inside your program while it runs.

You can step through it line by line, or you can choose a particular
place to stop—a breakpoint—and then have it continue at full speed
until it reaches the point where you’ve asked it to pause. You can
print out the values of objects, modify their values, and even call
functions.

Getting Started

The starter code is available at ~cs211/lab/lab04.tgz, so you can extract
it into your current working directory with the command

% tar -xkvf ~cs211/lab/lab04.tgz

Your current working directory should now contain a subdirectory
called lab04.

Guide to GDB

For this lab, we will provide you with some code that needs to be
debugged. Afterwards, hopefully you see some value in using GDB
on your own code when you are having problems.

To use the debugger, you need to compile your C code with the
-g flag. The Makefiles we supply you with in each lab and homework
comes with that enabled already, so you should be all set. But if you
run cc by hand, or use a future project with a different build system,
don’t forget to pass it the -g flag.

By default GDB isn’t very easy to understand. The update we
made to your GDB configuration however, improves it quite a bit. It
will show you which line of code is executing as well as the current
values of every local variable. It actually shows you far more infor-
mation than you need, but you can limit what GDB displays, as we’ll
instruct you to do below.

GDB Commands

help Displays help; follow it with a command name to get help on
that command.

Enter Repeats the previous command again.



cs 211 lab 4 2

Finding & Loading

file 〈FILE〉 Tells GDB where to load your program from. This is
relative to GDB’s working directory, so something like ../count.

pwd Prints GDB’s working directory.

cd 〈DIR〉 Changes GDB’s working directory.

Starting & Stopping

break 〈point〉 Sets a breakpoint at a function, a line number, or
〈file〉:〈line〉).

clear 〈point〉 Deletes any breakpoints at 〈point〉; omit 〈point〉 to clear
a breakpoint on the current line.

run 〈args〉. . . Runs your program from the start; optionally passes
〈args〉 as command-line arguments.

Ctrl-c Pauses the running program. Code will stop on whatever line
was executing when the key combination was pressed. Warning:
only press Ctrl-c once. Pressing it multiple times freezes GDB for
some reason.

next Executes until the next line of your program, not looking inside
function calls.

step Executes one small step of your program, including stepping
into function calls.

finish Resumes your program for the remainder of the current func-
tion call.

continue Resumes your program from where it’s paused and runs to
the next breakpoint.

Peeking & Poking

print 〈EXPR〉 Prints the value of a variable in your program (in scope
at the execution point), or the value of a larger expression in the
context of your program. (Can even call functions!)

set variable 〈VARNAME〉 = 〈EXPR〉 Modifies the value of a variable
in your program.



cs 211 lab 4 3

Changing Dashboards

dashboard -layout breakpoints source variables Reduces the number
of output displays to remove information that’s irrelevant for this
class. Pressing tab while typing the command lists other possible
display output that could be enabled by adding it to the list, but
those three should be enough.

Debugging some code

First, enter the lab04/ directory and run make.

Fixing an infinite loop

The executable infinite is created from src/infinite.c Try compiling the
code and running it first. As you may have guessed, it runs forever. Remember that you can use the com-

mand Ctrl-c in the shell to terminate a
running program.

This isn’t what it’s supposed to do, however. It has a bug. Let’s use
GDB to figure out where the unintentionally-infinite loop is.

1. Run GDB on the program with the command gdb infinite.

2. GDB should start and give you a prompt. Type run to start run-
ning the code. Just like when you run it outside of GDB this code
will run forever without printing anything.

3. Press the key combination Ctrl-c (only once!) to pause the running
code. A number of displays will appear with information about
your code.

4. Many of these displays aren’t all that useful. Type
dashboard -layout breakpoints source variables to reduce the number of
displays to ones with information we actually care about.

Now there should be three or four displays. The top is possibly
“Output/messages” which displays various output information
including error messages from your code, but only displays when
it has something to say.

Below that is “Breakpoints” which lists any active break points in
your code (there shouldn’t be any yet).

Below that is “Source” which displays the line of code where
execution was paused and several lines before/after it. This is
probably displaying your code for make_uppercase(), but could
also be displaying the source code for toupper() depending on
where it paused.

Finally, the “Variables” display lists all variables and their cur-
rent values. It does its best to show multiple representations of



cs 211 lab 4 4

variables: such as the decimal or character version, or both the
memory address and contents of pointers.

5. Type step to move through code line-by-line. You can type it again,
or use up arrow to retrieve recent commands and hit enter to run
it again. As you do, you will see the current line changing in the
“Source” display and the local variables and their values changing
in the “Variables” display.

6. You can also use the print command to display the value of vari-
ables. For example, you can type print s to display the input argu-
ment to the function.

7. Step through the code for a while, watching the local variable
values, and see if you can figure out why this code runs infinitely.

8. To close the GDB session, you can type quit and then answer y to
the prompt to exit.

Understanding nonfunctional code

Broken code doesn’t always infinite loop. Sometimes it completes
quickly, but doesn’t provide a correct result. Let’s use GDB to take a
look at a second program, broken, that runs but doesn’t work prop-
erly.

First, try running broken in the shell and take a look at the code for
it in src/broken.c. It currently prints out the wrong summation for the
array. It does finish running though, so this time we’ll have to debug
it using breakpoints.

1. The first few steps are the same as last time: run gdb broken to start
a GDB session debugging the executable.

2. You should limit the default displays again by typing
dashboard -layout breakpoints source variables. You can do this right
away rather than waiting for the displays to appear first.

3. Now type break sum_array. This will create a breakpoint at the start
of that function, any time it is called.

4. Type run to start running the code. This time, execution will pause
automatically once the breakpoint is reached.

5. Like last time, use step and the local variable values in the “Vari-
ables” display to determine what is going wrong and fix it.

6. To close the GDB session, you can type quit and then answer y to
the prompt to exit.


	Getting Started
	GDB Commands
	Debugging some code

