Undefined
Sehavior

CS 211




Initial code setup

The code in this course is available in your Unix shell account. You can get
your own copy like this:

c
% tar -xvkf ~cs2ll/lec/07_ub.tgz

% cd 07_ub

2(2)



Road map Undefined Behavior

The awful truth about int



Road map Undefined Behavior

The awful truth about int

WTF



Road map Undefined Behavior

The awful truth about int
WTF

Examples of undefined behavior



Up next Undefined Behavior

The awful truth about int



Something funny about int

Not every mathematical integer canfitina C int.

5(7)



Something funny about int

Not every mathematical integer canfitina C int.

e Anintisstoredin afinite number of bits (like 16 or 32 or 64)

5(8)



Something funny about int

Not every mathematical integer canfitina C int.

e Anintis storedin afinite number of bits (like 16 or 32 or 64)
e Thismeans that it has a finite range

5(9)



Something funny about int

Not every mathematical integer canfitina C int.

e Anintis storedin afinite number of bits (like 16 or 32 or 64)
e Thismeans that it has a finite range
e Forexample, 32-bit ints (usually) range from —23"to 23! — 1 (inclusive)

5(10)



Something funny about int

Not every mathematical integer canfitina C int.

Anintis storedin a finite number of bits (like 16 or 32 or 64)

This means that it has a finite range
For example, 32-bit ints (usually) range from —23"to 23! — 1 (inclusive)
The actual values are definedin<limits.h>as INT_MINand INT_MAX

5 (11)



Something funny about int

Not every mathematical integer canfitinaC int.

Anintis storedin a finite number of bits (like 16 or 32 or 64)

This means that it has a finite range

For example, 32-bit ints (usually) range from —23'to 23! — 1 (inclusive)
The actual values are definedin<limits.h>as INT_MINand INT_MAX
An int operation whose mathematical result is out of range causes

UNBEFINED BEHAVIOR

5(12)



Let’s see these limits

#include <limits.h>

finclude <stdio.h>
#define SHOW_ME(Type, Fmt, Min, Max) \
printf("%-19s %2zu bytes %21" Fmt " to %-21" Fmt "\n", \
#Type, sizeof(Type), (Type)Min, (Type)Max)

int main(void)

¢
SHOW_ME (int, "d", INT_MIN, INT_MAX);
SHOW_ME(long, "1d", LONG_MIN, LONG_MAX);
SHOW_ME (unsigned int, "u", 0, UINT_MAX);
SHOW_ME(unsigned long, "lu", OL, ULONG_MAX);
3

6 (13)



Up next UNDEFINED BEHAVIOR

WTF



WTF IS UNDEFINED BEHAVIOR?!?!

It's like akind of error...

8(15)



WTF IS UNDEFINED BEHAVIOR?!?!

It's like akind of error...

But the computer doesn't necessarily notice...

8(16)



WTF IS UNDEFINED BEHAVIOR?!?!

It's like akind of error...
But the computer doesn't necessarily notice...

Your program might just keep running and produce nonsense!

8(17)



WTF IS UNDEFINED BEHAVIOR?!?!

It's like a kind of error...
But the computer doesn't necessarily notice...
Your program might just keep running and produce nonsense!

Technically, a program with B has no meaning. It's allowed to do anything:

8(18)



WTF IS UNDEFINED BEHAVIOR?!?!

It's like a kind of error...
But the computer doesn't necessarily notice...
Your program might just keep running and produce nonsense!

Technically, a program with B has no meaning. It's allowed to do anything:

e Crash

8(19)



WTF IS UNDEFINED BEHAVIOR?!?!

It's like akind of error...

But the computer doesn't necessarily notice...

Your program might just keep running and produce nonsense!
Technically, a program with B has no meaning. It's allowed to do anything:

e Crash
e Keepgoing

8(20)



WTF IS UNDEFINED BEHAVIOR?!?!

It's like akind of error...

But the computer doesn't necessarily notice...

Your program might just keep running and produce nonsense!

Technically, a program with B has no meaning. It's allowed to do anything:
e Crash

e Keepgoing
e Reformat your hard disk

8(21)



WTF IS UNDEFINED BEHAVIOR?!?!

It's like akind of error...

But the computer doesn't necessarily notice...

Your program might just keep running and produce nonsense!
Technically, a program with B has no meaning. It's allowed to do anything:

e Crash
e Keepgoing

Reformat your hard disk
Launch the missiles

8(22)



No Traveling

From Prof. John Regehr, an expert on C compilation:
Itis very common for people to say—or at least think—something like this:

The x86 ADD instruction is used to implement C’s signed add opera-
tion, and it has two's complement behavior when the result overflows.
I'm developing for an x86 platform, so | should be able to expect two's
complement semantics when 32-bit signed integers overflow.

9(23)


https://blog.regehr.org/archives/213

No Traveling

From Prof. John Regehr, an expert on C compilation:
Itis very common for people to say—or at least think—something like this:

The x86 ADD instruction is used to implement C’s signed add opera-
tion, and it has two's complement behavior when the result overflows.
I'm developing for an x86 platform, so | should be able to expect two's
complement semantics when 32-bit signed integers overflow.

THIS IS WRONG. You are saying something like this:

Somebody once told me that in basketball you can’t hold the ball and
run. | got a basketball and tried it and it worked just fine. He obviously
didn’t understand basketball.

https://blog.regehr.org/archives/213

9(24)


https://blog.regehr.org/archives/213

Up next UNDEFINED BEHAVIOR

Examples of UNDEFINED BEHAVIOR



Some examples of B

e Uninitialized memory access
e Integerdivisionby O
e Integer result out of range (“overflow”)

11(26)



Some examples of B

e Uninitialized memory access
e Integerdivisionby O
e Integer result out of range (“overflow”)

Example of all three:

int x, y;
scanf ("%d%d", &x, &y);
printf("%d\n", x / vy);

1(27)



Some examples of B

e Uninitialized memory access
e Integer division by O
e Integer result out of range (“overflow”)

Example of all three:

int x, y;
scanf ("%d%d", &x, &y);
printf("%d\n", x / vy);

Fix for all three:

int x, y;

if (scanf("%d%d", &x, &y) == 2 &&
y 1= 0 &&
'(x == INT_MIN && y == -1))

printf("%d\n", x / y);

11(28)



UBis really weird

tinclude <limits.h>

#include <stdio.h>

void how_about_this_int(int z)

{ puts(z < z + 1 ? "math"™ : "C.S.");
3
int main(void)
{
how_about_this_int(0);
how_about_this_int (INT_MAX);
3

12(29)



The results depend on the optimization level

o°

13(30)



The results depend on the optimization level

% make int_max

13(31)



The results depend on the optimization level

0

% make int_max
cc -0 int_max src/int_max.c -std=cll -pedanti..

)
°

13(32)



The results depend on the optimization level

0

% make int_max
cc -0 int_max src/int_max.c -std=cll -pedanti..

0

% ./int_max

13(33)



The results depend on the optimization level

0

% make int_max

cc -0 int_max src/int_max.c -std=cll -pedanti..
% ./int_max

math

C.S.

)
°

13(34)



The results depend on the optimization level

0

% make int_max

cc -0 int_max src/int_max.c -std=cll -pedanti..
% ./int_max

math

C.S.

0

% make int_max.opt

13 (35)



The results depend on the optimization level

0

% make int_max

cc -0 int_max src/int_max.c -std=cll -pedanti..
% ./int_max

math

C.S.

% make int_max.opt
cc -02 -o int_max.opt src/int_max.c -std=cl1l ..

[
°

13(36)



The results depend on the optimization level

0

% make int_max

cc -0 int_max src/int_max.c -std=cll -pedanti..
% ./int_max

math

C.S.

% make int_max.opt

cc -02 -o int_max.opt src/int_max.c -std=cl1l ..

0

% ./int_max.opt

13(37)



The results depend on the optimization level

0

% make int_max

cc -0 int_max src/int_max.c -std=cll -pedanti..
% ./int_max

math

C.S.

% make int_max.opt

cc -02 -o int_max.opt src/int_max.c -std=cl1l ..
% ./int_max.opt

math

math

)
/o

13(38)



The results depend on the optimization level

% make int_max

cc -0 int_max src/int_max.c -std=cll -pedanti..
% ./int_max

math

C.S.

% make int_max.opt

cc -02 -o int_max.opt src/int_max.c -std=cl1l ..
% ./int_max.opt

math

math

)
/o

(Thisis very, very bad.)

13(39)



A few more things that are UNBEFINER in C

e Dereferencing anull or freed pointer

14.(40)



A few more things that are UNBEFINER in C

e Dereferencing anull or freed pointer
e Pointer arithmetic that goes out of bounds

14.(41)



A few more things that are UNBEFINER in C

e Dereferencing anull or freed pointer

e Pointer arithmetic that goes out of bounds (except for
one-past-the-end, which is okay)

14 (42)



A few more things that are UNBEFINER in C

e Dereferencing anull or freed pointer

e Pointer arithmetic that goes out of bounds (except for
one-past-the-end, which is okay)

e Comparing unrelated pointers with <, <=, >, 0r >=

14 (43)



A few more things that are UNBEFINER in C

Dereferencing a null or freed pointer

e Pointer arithmetic that goes out of bounds (except for
one-past-the-end, which is okay)

Comparing unrelated pointers with <, <=, >, or >=

Any arithmetic operation on a signed integral type whose mathematical
resultis out of range for that type

14 (44)



A few more things that are UNBEFINER in C

e Dereferencing anull or freed pointer

e Pointer arithmetic that goes out of bounds (except for
one-past-the-end, which is okay)

e Comparing unrelated pointers with <, <=, >, 0r >=

e Any arithmetic operation on a signed integral type whose mathematical
resultis out of range for that type

e Passing a function the wrong number or types of arguments

14 (45)



A few more things that are UNBEFINER in C

e Dereferencing anull or freed pointer

e Pointer arithmetic that goes out of bounds (except for
one-past-the-end, which is okay)

e Comparing unrelated pointers with <, <=, >, 0r >=

e Any arithmetic operation on a signed integral type whose mathematical
resultis out of range for that type

e Passing a function the wrong number or types of arguments

e Reaching the end of anon-void function without returning aresult, if the
caller uses the result

14 (46)



A few more things that are UNBEFINER in C

e Dereferencing anull or freed pointer

e Pointer arithmetic that goes out of bounds (except for
one-past-the-end, which is okay)

e Comparing unrelated pointers with <, <=, >, 0r >=

e Any arithmetic operation on a signed integral type whose mathematical
resultis out of range for that type

e Passing a function the wrong number or types of arguments

e Reaching the end of anon-void function without returning aresult, if the
caller uses the result

e Performing two side-effecting operations on the same objectinan
indeterminate order (e.g., ++x + ++X)

14.(47)



A few more things that are UNBEFINER in C

Dereferencing a null or freed pointer

Pointer arithmetic that goes out of bounds (except for
one-past-the-end, which is okay)

Comparing unrelated pointers with <, <=, >, or >=

Any arithmetic operation on a signed integral type whose mathematical
resultis out of range for that type

Passing a function the wrong number or types of arguments

Reaching the end of anon-void function without returning aresult, if the
caller uses the result

Performing two side-effecting operations on the same objectinan
indeterminate order (e.g., ++x + ++X)

...and many more!

14 (48)



—Next time: Linked Data Structures (for real) —



	The awful truth about int
	WTF
	Examples of undefined behavior

