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Initial code setup

The code in this course is available in your Unix shell account. You can get
your own copy like this:

c
% tar -xvkf ~cs2ll/lec/07_ub.tgz

% cd 07_ub
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5(7)



Something funny about int

Not every mathematical integer canfitina C int.

e Anintisstoredin afinite number of bits (like 16 or 32 or 64)

5(8)



Something funny about int

Not every mathematical integer canfitina C int.

e Anintis storedin afinite number of bits (like 16 or 32 or 64)
e Thismeans that it has a finite range

5(9)



Something funny about int

Not every mathematical integer canfitina C int.

e Anintis storedin afinite number of bits (like 16 or 32 or 64)
e Thismeans that it has a finite range
e Forexample, 32-bit ints (usually) range from —23"to 23! — 1 (inclusive)

5(10)



Something funny about int
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Something funny about int

Not every mathematical integer canfitinaC int.

Anintis storedin a finite number of bits (like 16 or 32 or 64)

This means that it has a finite range

For example, 32-bit ints (usually) range from —23'to 23! — 1 (inclusive)
The actual values are definedin<limits.h>as INT_MINand INT_MAX
An int operation whose mathematical result is out of range causes

UNBEFINED BEHAVIOR

5(12)



Let’s see these limits

#include <limits.h>

finclude <stdio.h>
#define SHOW_ME(Type, Fmt, Min, Max) \
printf("%-19s %2zu bytes %21" Fmt " to %-21" Fmt "\n", \
#Type, sizeof(Type), (Type)Min, (Type)Max)

int main(void)

¢
SHOW_ME (int, "d", INT_MIN, INT_MAX);
SHOW_ME(long, "1d", LONG_MIN, LONG_MAX);
SHOW_ME (unsigned int, "u", 0, UINT_MAX);
SHOW_ME(unsigned long, "lu", OL, ULONG_MAX);
3
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It's like akind of error...
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It's like akind of error...

But the computer doesn't necessarily notice...

Your program might just keep running and produce nonsense!

Technically, a program with B has no meaning. It's allowed to do anything:
e Crash
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WTF IS UNDEFINED BEHAVIOR?!?!

It's like akind of error...

But the computer doesn't necessarily notice...

Your program might just keep running and produce nonsense!
Technically, a program with B has no meaning. It's allowed to do anything:

e Crash
e Keepgoing

Reformat your hard disk
Launch the missiles
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No Traveling

From Prof. John Regehr, an expert on C compilation:
Itis very common for people to say—or at least think—something like this:

The x86 ADD instruction is used to implement C’s signed add opera-
tion, and it has two's complement behavior when the result overflows.
I'm developing for an x86 platform, so | should be able to expect two's
complement semantics when 32-bit signed integers overflow.
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From Prof. John Regehr, an expert on C compilation:
Itis very common for people to say—or at least think—something like this:

The x86 ADD instruction is used to implement C’s signed add opera-
tion, and it has two's complement behavior when the result overflows.
I'm developing for an x86 platform, so | should be able to expect two's
complement semantics when 32-bit signed integers overflow.

THIS IS WRONG. You are saying something like this:

Somebody once told me that in basketball you can’t hold the ball and
run. | got a basketball and tried it and it worked just fine. He obviously
didn’t understand basketball.

https://blog.regehr.org/archives/213
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Some examples of B

e Uninitialized memory access
e Integerdivisionby O
e Integer result out of range (“overflow”)

11(26)



Some examples of B

e Uninitialized memory access
e Integerdivisionby O
e Integer result out of range (“overflow”)

Example of all three:

int x, y;
scanf ("%d%d", &x, &y);
printf("%d\n", x / vy);
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Some examples of B

e Uninitialized memory access
e Integer division by O
e Integer result out of range (“overflow”)

Example of all three:

int x, y;
scanf ("%d%d", &x, &y);
printf("%d\n", x / vy);

Fix for all three:

int x, y;

if (scanf("%d%d", &x, &y) == 2 &&
y 1= 0 &&
'(x == INT_MIN && y == -1))

printf("%d\n", x / y);
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UBis really weird

tinclude <limits.h>

#include <stdio.h>

void how_about_this_int(int z)

{ puts(z < z + 1 ? "math"™ : "C.S.");
3
int main(void)
{
how_about_this_int(0);
how_about_this_int (INT_MAX);
3
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The results depend on the optimization level
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The results depend on the optimization level

% make int_max

cc -0 int_max src/int_max.c -std=cll -pedanti..
% ./int_max

math

C.S.

% make int_max.opt

cc -02 -o int_max.opt src/int_max.c -std=cl1l ..
% ./int_max.opt

math

math

)
/o

(Thisis very, very bad.)
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A few more things that are UNBEFINER in C
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A few more things that are UNBEFINER in C

Dereferencing a null or freed pointer

Pointer arithmetic that goes out of bounds (except for
one-past-the-end, which is okay)

Comparing unrelated pointers with <, <=, >, or >=

Any arithmetic operation on a signed integral type whose mathematical
resultis out of range for that type

Passing a function the wrong number or types of arguments

Reaching the end of anon-void function without returning aresult, if the
caller uses the result

Performing two side-effecting operations on the same objectinan
indeterminate order (e.g., ++x + ++X)

...and many more!
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—Next time: Linked Data Structures (for real) —
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