
Pointers, etc.
CS211



Roadmap Pointers, etc.

Aprogram to sort numbers (using an array)

C variables don’t share their objects

Apointer is an object that refers to another object



Roadmap Pointers, etc.

Aprogram to sort numbers (using an array)

C variables don’t share their objects

Apointer is an object that refers to another object



Roadmap Pointers, etc.

Aprogram to sort numbers (using an array)

C variables don’t share their objects

Apointer is an object that refers to another object



Initial code setup

Thecode in this course is available in yourUnix shell account. You canget
your owncopy like this:

% cd cs211
% tar ‑xvkf ~cs211/lec/04_pointers.tgz
...
% cd 04_pointers

3 (5)



Upnext Pointers, etc.

Aprogram to sort numbers (using an array)

C variables don’t share their objects

Apointer is an object that refers to another object



Upnext Pointers, etc.

Aprogram to sort numbers (using an array)

C variables don’t share their objects

Apointer is an object that refers to another object



Upnext Pointers, etc.

Aprogram to sort numbers (using an array)

C variables don’t share their objects

Apointer is an object that refers to another object



Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A

¹

&o

• T canbe any type

(like intor struct dogor struct dog*)
• p canbe any expressionwhose value is a pointer
• o canbe anyobject (like xor a[3], but not a non-object value like 5or

n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++



Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A¹ &o

• T canbe any type

(like intor struct dogor struct dog*)
• p canbe any expressionwhose value is a pointer
• o canbe anyobject (like xor a[3], but not a non-object value like 5or

n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++



Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A

¹

&o

• T canbe any type

(like intor struct dogor struct dog*)

• p canbe any expressionwhose value is a pointer
• o canbe anyobject (like xor a[3], but not a non-object value like 5or

n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++



Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A

¹

&o

• T canbe any type (like intor struct dogor struct dog*)

• p canbe any expressionwhose value is a pointer
• o canbe anyobject

(like xor a[3], but not a non-object value like 5or
n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++



Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A

¹

&o

• T canbe any type (like intor struct dogor struct dog*)
• p canbe any expressionwhose value is a pointer

• o canbe anyobject

(like xor a[3], but not a non-object value like 5or
n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++



Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A

¹

&o

• T canbe any type (like intor struct dogor struct dog*)
• p canbe any expressionwhose value is a pointer
• o canbe anyobject

(like xor a[3], but not a non-object value like 5or
n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++



Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A

¹

&o

• T canbe any type (like intor struct dogor struct dog*)
• p canbe any expressionwhose value is a pointer
• o canbe anyobject (like xor a[3], but not a non-object value like 5or

n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++



Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A

¹

&o

• T canbe any type (like intor struct dogor struct dog*)
• p canbe any expressionwhose value is a pointer
• o canbe anyobject (like xor a[3], but not a non-object value like 5or

n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++



–Next time: DynamicMemory –


	A program to sort numbers (using an array)
	C variables don’t share their objects
	A pointer is an object that refers to another object

