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Initial code setup

Thecode in this course is available in yourUnix shell account. You canget
your owncopy like this:

% cd cs211
% tar ‑xvkf ~cs211/lec/04_pointers.tgz
...
% cd 04_pointers
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Understanding * and * and &

operator in types inexpressions

* T* *p
& N/A

¹

&o

• T canbe any type

(like intor struct dogor struct dog*)
• p canbe any expressionwhose value is a pointer
• o canbe anyobject (like xor a[3], but not a non-object value like 5or

n + m)

Then *p is the object that ppoints to, and &o is a pointer to the object o.

¹&doesn’t appear in types inC, but it will inC++
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–Next time: DynamicMemory –
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